1 // Licensed to the .NET Foundation under one or more agreements.
2 // The .NET Foundation licenses this file to you under the MIT license.
3 // See the LICENSE file in the project root for more information.
4 /* ------------------------------------------------------------------------- *
5 * DbgIPCEvents.h -- header file for private Debugger data shared by various
9 * ------------------------------------------------------------------------- */
11 #ifndef _DbgIPCEvents_h_
12 #define _DbgIPCEvents_h_
17 #include <corjit.h> // for ICorDebugInfo::VarLocType & VarLoc
18 #include <specstrings.h>
20 #include "dbgtargetcontext.h"
23 // Get version numbers for IPCHeader stamp
24 #include "ndpversion.h"
26 #include "dbgappdomain.h"
30 //-----------------------------------------------------------------------------
31 // V3 additions to IPC protocol between LS and RS.
32 //-----------------------------------------------------------------------------
34 // Special Exception code for LS to communicate with RS.
35 // LS will raise this exception to communicate managed debug events to the RS.
36 // Exception codes can't use bit 0x10000000, that's reserved by OS.
37 #define CLRDBG_NOTIFICATION_EXCEPTION_CODE ((DWORD) 0x04242420)
39 // This is exception argument 0 included in debugger notification events.
40 // The debugger uses this as a sanity check.
41 // This could be very volatile data that changes between builds.
42 #define CLRDBG_EXCEPTION_DATA_CHECKSUM ((DWORD) 0x31415927)
45 // Reasons for hijack.
46 namespace EHijackReason
50 kUnhandledException = 1,
52 kFirstChanceSuspend = 3,
56 inline bool IsValid(EHijackReason value)
59 return (value > 0) && (value < kMax);
65 #define MAX_LOG_SWITCH_NAME_LEN 256
67 //-----------------------------------------------------------------------------
69 // This file describes the IPC communication protocol between the LS (mscorwks)
70 // and the RS (mscordbi). For Desktop builds, it is private and can change on a
71 // daily basis. The version of the LS will always match the version of the RS
72 // (but see the discussion of CoreCLR below). They are like a single conceptual
73 // DLL split across 2 processes.
74 // The only restriction is that it should be flavor agnostic - so don't change
75 // layout based off '#ifdef DEBUG'. This lets us drop a Debug flavor RS onto
76 // a retail installation w/o any further installation woes. That's very useful
78 //-----------------------------------------------------------------------------
81 // We want this available for DbgInterface.h - put it here.
89 // Names of the setup sync event and shared memory used for IPC between the Left Side and the Right Side. NOTE: these
90 // names must include a %d for the process id. The process id used is the process id of the debuggee.
93 #define CorDBIPCSetupSyncEventName W("CorDBIPCSetupSyncEvent_%d")
96 // This define controls whether we always pass first chance exceptions to the in-process first chance hijack filter
97 // during interop debugging or if we try to short-circuit and make the decision out-of-process as much as possible.
99 #define CorDB_Short_Circuit_First_Chance_Ownership 1
102 // Defines for current version numbers for the left and right sides
104 #define CorDB_LeftSideProtocolCurrent 2
105 #define CorDB_LeftSideProtocolMinSupported 2
106 #define CorDB_RightSideProtocolCurrent 2
107 #define CorDB_RightSideProtocolMinSupported 2
110 // The remaining data structures in this file can be shared between two processes and for network transport
111 // based debugging this can mean two different platforms as well. The two platforms that can share these
112 // data structures must have identical layouts for them (each field must lie at the same offset and have the
113 // same length). The MSLAYOUT macro should be applied to each structure to avoid any compiler packing differences.
117 // DebuggerIPCRuntimeOffsets contains addresses and offsets of important global variables, functions, and fields in
118 // Runtime objects. This is populated during Left Side initialization and is read by the Right Side. This struct is
119 // mostly to facilitate unmanaged debugging support, but it may have some small uses for managed debugging.
121 struct MSLAYOUT DebuggerIPCRuntimeOffsets
123 #ifdef FEATURE_INTEROP_DEBUGGING
124 void *m_genericHijackFuncAddr;
125 void *m_signalHijackStartedBPAddr;
126 void *m_excepForRuntimeHandoffStartBPAddr;
127 void *m_excepForRuntimeHandoffCompleteBPAddr;
128 void *m_signalHijackCompleteBPAddr;
129 void *m_excepNotForRuntimeBPAddr;
130 void *m_notifyRSOfSyncCompleteBPAddr;
131 void *m_raiseExceptionAddr; // The address of kernel32!RaiseException in the debuggee
132 DWORD m_debuggerWordTLSIndex; // The TLS slot for the debugger word used in the debugger hijack functions
133 #endif // FEATURE_INTEROP_DEBUGGING
134 SIZE_T m_TLSIndex; // The TLS index the CLR is using to hold Thread objects
135 SIZE_T m_TLSIsSpecialIndex; // The index into the Predef block of the the "IsSpecial" status for a thread.
136 SIZE_T m_TLSCantStopIndex; // The index into the Predef block of the the Can't-Stop count.
137 SIZE_T m_EEThreadStateOffset; // Offset of m_state in a Thread
138 SIZE_T m_EEThreadStateNCOffset; // Offset of m_stateNC in a Thread
139 SIZE_T m_EEThreadPGCDisabledOffset; // Offset of the bit for whether PGC is disabled or not in a Thread
140 DWORD m_EEThreadPGCDisabledValue; // Value at m_EEThreadPGCDisabledOffset that equals "PGC disabled".
141 SIZE_T m_EEThreadFrameOffset; // Offset of the Frame ptr in a Thread
142 SIZE_T m_EEThreadMaxNeededSize; // Max memory to read to get what we need out of a Thread object
143 DWORD m_EEThreadSteppingStateMask; // Mask for Thread::TSNC_DebuggerIsStepping
144 DWORD m_EEMaxFrameValue; // The max Frame value
145 SIZE_T m_EEThreadDebuggerFilterContextOffset; // Offset of debugger's filter context within a Thread Object.
146 SIZE_T m_EEThreadCantStopOffset; // Offset of the can't stop count in a Thread
147 SIZE_T m_EEFrameNextOffset; // Offset of the next ptr in a Frame
148 DWORD m_EEIsManagedExceptionStateMask; // Mask for Thread::TSNC_DebuggerIsManagedException
149 void *m_pPatches; // Addr of patch table
150 BOOL *m_pPatchTableValid; // Addr of g_patchTableValid
151 SIZE_T m_offRgData; // Offset of m_pcEntries
152 SIZE_T m_offCData; // Offset of count of m_pcEntries
153 SIZE_T m_cbPatch; // Size per patch entry
154 SIZE_T m_offAddr; // Offset within patch of target addr
155 SIZE_T m_offOpcode; // Offset within patch of target opcode
156 SIZE_T m_cbOpcode; // Max size of opcode
157 SIZE_T m_offTraceType; // Offset of the trace.type within a patch
158 DWORD m_traceTypeUnmanaged; // TRACE_UNMANAGED
160 DebuggerIPCRuntimeOffsets()
162 ZeroMemory(this, sizeof(DebuggerIPCRuntimeOffsets));
167 // The size of the send and receive IPC buffers.
168 // These must be big enough to fit a DebuggerIPCEvent. Also, the bigger they are, the fewer events
169 // it takes to send variable length stuff like the stack trace.
170 // But for perf reasons, they need to be small enough to not just push us over a page boundary in an IPC block.
171 // Unfortunately, there's a lot of other goo in the IPC block, so we can't use some clean formula. So we
172 // have to resort to just tuning things.
175 // When using a network transport rather than shared memory buffers CorDBIPC_BUFFER_SIZE is the upper bound
176 // for a single DebuggerIPCEvent structure. This now relates to the maximal size of a network message and is
177 // orthogonal to the host's page size. Because of this we defer definition of CorDBIPC_BUFFER_SIZE until we've
178 // declared DebuggerIPCEvent at the end of this header (and we can do so because in the transport case there
179 // aren't any embedded buffers in the DebuggerIPCControlBlock).
181 #if defined(DBG_TARGET_X86) || defined(DBG_TARGET_ARM)
183 #define CorDBIPC_BUFFER_SIZE (2096)
185 #define CorDBIPC_BUFFER_SIZE (2088) // hand tuned to ensure that ipc block in IPCHeader.h fits in 1 page.
187 #else // !_TARGET_X86_ && !_TARGET_ARM_
188 // This is the size of a DebuggerIPCEvent. You will hit an assert in Cordb::Initialize() (DI\process.cpp)
189 // if this is not defined correctly. AMD64 actually has a page size of 0x1000, not 0x2000.
190 #define CorDBIPC_BUFFER_SIZE 4016 // (4016 + 6) * 2 + 148 = 8192 (two (DebuggerIPCEvent + alignment padding) +
191 // other fields = page size)
192 #endif // DBG_TARGET_X86 || DBG_TARGET_ARM
195 // DebuggerIPCControlBlock describes the layout of the shared memory shared between the Left Side and the Right
196 // Side. This includes error information, handles for the IPC channel, and space for the send/receive buffers.
198 struct MSLAYOUT DebuggerIPCControlBlock
200 // Version data should be first in the control block to ensure that we can read it even if the control block
202 SIZE_T m_DCBSize; // note this field is used as a semaphore to indicate the DCB is initialized
203 ULONG m_verMajor; // CLR build number for the Left Side.
204 ULONG m_verMinor; // CLR build number for the Left Side.
206 // This next stuff fits in a DWORD.
207 bool m_checkedBuild; // CLR build type for the Left Side.
208 // using the first padding byte to indicate if hosted in fiber mode.
209 // We actually just need one bit. So if needed, can turn this to a bit.
211 bool m_bHostingInFiber;
215 ULONG m_leftSideProtocolCurrent; // Current protocol version for the Left Side.
216 ULONG m_leftSideProtocolMinSupported; // Minimum protocol the Left Side can support.
218 ULONG m_rightSideProtocolCurrent; // Current protocol version for the Right Side.
219 ULONG m_rightSideProtocolMinSupported; // Minimum protocol the Right Side requires.
222 unsigned int m_errorCode;
224 #if defined(DBG_TARGET_WIN64)
225 // 64-bit needs this padding to make the handles after this aligned.
226 // But x86 can't have this padding b/c it breaks binary compatibility between v1.1 and v2.0.
228 #endif // DBG_TARGET_WIN64
231 RemoteHANDLE m_rightSideEventAvailable;
232 RemoteHANDLE m_rightSideEventRead;
234 // @dbgtodo inspection - this is where LSEA and LSER used to be. We need to the padding to maintain binary compatibility.
235 // Eventually, we expect to remove this whole block.
236 RemoteHANDLE m_paddingObsoleteLSEA;
237 RemoteHANDLE m_paddingObsoleteLSER;
239 RemoteHANDLE m_rightSideProcessHandle;
241 //.............................................................................
242 // Everything above this point must have the exact same binary layout as v1.1.
243 // See protocol details below.
244 //.............................................................................
246 RemoteHANDLE m_leftSideUnmanagedWaitEvent;
250 // This is set immediately when the helper thread is created.
251 // This will be set even if there's a temporary helper thread or if the real helper
252 // thread is not yet pumping (eg, blocked on a loader lock).
253 DWORD m_realHelperThreadId;
255 // This is only published once the helper thread starts running in its main loop.
256 // Thus we can use this field to see if the real helper thread is actually pumping.
257 DWORD m_helperThreadId;
259 // This is non-zero if the LS has a temporary helper thread.
260 DWORD m_temporaryHelperThreadId;
262 // ID of the Helper's canary thread.
263 DWORD m_CanaryThreadId;
265 DebuggerIPCRuntimeOffsets *m_pRuntimeOffsets;
266 void *m_helperThreadStartAddr;
267 void *m_helperRemoteStartAddr;
268 DWORD *m_specialThreadList;
270 BYTE m_receiveBuffer[CorDBIPC_BUFFER_SIZE];
271 BYTE m_sendBuffer[CorDBIPC_BUFFER_SIZE];
273 DWORD m_specialThreadListLength;
274 bool m_shutdownBegun;
275 bool m_rightSideIsWin32Debugger; // RS status
276 bool m_specialThreadListDirty;
278 bool m_rightSideShouldCreateHelperThread;
280 // NOTE The Init method works since there are no virtual functions - don't add any virtual functions without
282 // Only initialized by the LS, opened by the RS.
293 #if defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
295 // We need an alternate definition for the control block if using the transport, because the control block has to be sent over the transport
296 // In particular we can't nest the send/receive buffers inside of it and we don't use any of the remote handles
298 struct MSLAYOUT DebuggerIPCControlBlockTransport
300 // Version data should be first in the control block to ensure that we can read it even if the control block
302 SIZE_T m_DCBSize; // note this field is used as a semaphore to indicate the DCB is initialized
303 ULONG m_verMajor; // CLR build number for the Left Side.
304 ULONG m_verMinor; // CLR build number for the Left Side.
306 // This next stuff fits in a DWORD.
307 bool m_checkedBuild; // CLR build type for the Left Side.
308 // using the first padding byte to indicate if hosted in fiber mode.
309 // We actually just need one bit. So if needed, can turn this to a bit.
311 bool m_bHostingInFiber;
315 ULONG m_leftSideProtocolCurrent; // Current protocol version for the Left Side.
316 ULONG m_leftSideProtocolMinSupported; // Minimum protocol the Left Side can support.
318 ULONG m_rightSideProtocolCurrent; // Current protocol version for the Right Side.
319 ULONG m_rightSideProtocolMinSupported; // Minimum protocol the Right Side requires.
322 unsigned int m_errorCode;
324 #if defined(DBG_TARGET_WIN64)
325 // 64-bit needs this padding to make the handles after this aligned.
326 // But x86 can't have this padding b/c it breaks binary compatibility between v1.1 and v2.0.
328 #endif // DBG_TARGET_WIN64
330 // This is set immediately when the helper thread is created.
331 // This will be set even if there's a temporary helper thread or if the real helper
332 // thread is not yet pumping (eg, blocked on a loader lock).
333 DWORD m_realHelperThreadId;
335 // This is only published once the helper thread starts running in its main loop.
336 // Thus we can use this field to see if the real helper thread is actually pumping.
337 DWORD m_helperThreadId;
339 // This is non-zero if the LS has a temporary helper thread.
340 DWORD m_temporaryHelperThreadId;
342 // ID of the Helper's canary thread.
343 DWORD m_CanaryThreadId;
345 DebuggerIPCRuntimeOffsets *m_pRuntimeOffsets;
346 void *m_helperThreadStartAddr;
347 void *m_helperRemoteStartAddr;
348 DWORD *m_specialThreadList;
350 DWORD m_specialThreadListLength;
351 bool m_shutdownBegun;
352 bool m_rightSideIsWin32Debugger; // RS status
353 bool m_specialThreadListDirty;
355 bool m_rightSideShouldCreateHelperThread;
357 // NOTE The Init method works since there are no virtual functions - don't add any virtual functions without
359 // Only initialized by the LS, opened by the RS.
364 #endif // defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
366 #if defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
367 #include "dbgtransportsession.h"
368 #endif // defined(FEATURE_DBGIPC_TRANSPORT_VM) || defined(FEATURE_DBGIPC_TRANSPORT_DI)
370 #if defined(DBG_TARGET_X86) && !defined(FEATURE_CORESYSTEM)
371 // We have an versioning requirement.
372 // Certain portions of the v1.0 and v1.1 IPC block are shared. This is b/c a v1.1 debugger needs to be able
373 // to look at a v2.0 app enough to recognize the version mismatch.
374 // This check is only necessary for platforms that ran on v1.1 (Win32-x86)
376 // Just to catch any potential illegal change in the IPC block, we assert the offsets against the offsets from v1.1.
377 // The constants here are pulled from v1.1.
378 // The RS will look at these versioning fields, so they absolutely must line up.
379 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_leftSideProtocolCurrent) == 0x10);
380 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_leftSideProtocolMinSupported) == 0x14);
381 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProtocolCurrent) == 0x18);
382 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProtocolMinSupported) == 0x1c);
384 // Unfortunately, on detecting such failure, v1.1 will also null out LSEA, LSER and RSPH.
385 // If these get adjusted, a version-mismatch attach will effectively null out random fields.
386 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_paddingObsoleteLSEA) == 0x30);
387 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_paddingObsoleteLSER) == 0x34);
388 static_assert_no_msg(offsetof(DebuggerIPCControlBlock, m_rightSideProcessHandle) == 0x38);
394 #define INITIAL_APP_DOMAIN_INFO_LIST_SIZE 16
397 //-----------------------------------------------------------------------------
398 // Provide some Type-safety in the IPC block when we pass remote pointers around.
399 //-----------------------------------------------------------------------------
402 //-----------------------------------------------------------------------------
403 // This is the same in both the LS & RS.
404 // Definitions on the LS & RS should be binary compatible. So all storage is
405 // declared in GeneralLsPointer, and then the Ls & RS each have their own
406 // derived accessors.
407 //-----------------------------------------------------------------------------
408 class MSLAYOUT GeneralLsPointer
411 friend ULONG_PTR LsPtrToCookie(GeneralLsPointer p);
415 bool IsNull() { return m_ptr == NULL; }
418 class MSLAYOUT GeneralRsPointer
424 bool IsNull() { return m_data == 0; }
427 // In some cases, we need to get a uuid from a pointer (ie, in a hash)
428 inline ULONG_PTR LsPtrToCookie(GeneralLsPointer p) {
429 return (ULONG_PTR) p.m_ptr;
431 #define VmPtrToCookie(vm) LsPtrToCookie((vm).ToLsPtr())
434 #ifdef RIGHT_SIDE_COMPILE
435 //-----------------------------------------------------------------------------
436 // Infrasturcture for RS Definitions
437 //-----------------------------------------------------------------------------
439 // On the RS, we don't have the LS classes defined, so we can't templatize that
440 // in terms of <class T>, but we still want things to be unique.
441 // So we create an empty enum for each LS type and then templatize it in terms
443 template <typename T>
444 class MSLAYOUT LsPointer : public GeneralLsPointer
456 static LsPointer<T> NullPtr()
458 return MakePtr(NULL);
461 static LsPointer<T> MakePtr(T* p)
464 #pragma warning(push)
465 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
477 bool operator!= (void * p) { return m_ptr != p; }
478 bool operator== (void * p) { return m_ptr == p; }
479 bool operator==(LsPointer<T> p) { return p.m_ptr == this->m_ptr; }
481 // We should never UnWrap() them in the RS, so we don't define that here.
485 template <class T> UINT AllocCookie(CordbProcess * pProc, T * p);
486 template <class T> T * UnwrapCookie(CordbProcess * pProc, UINT cookie);
488 UINT AllocCookieCordbEval(CordbProcess * pProc, class CordbEval * p);
489 class CordbEval * UnwrapCookieCordbEval(CordbProcess * pProc, UINT cookie);
491 template <class CordbEval> UINT AllocCookie(CordbProcess * pProc, CordbEval * p)
493 return AllocCookieCordbEval(pProc, p);
495 template <class CordbEval> CordbEval * UnwrapCookie(CordbProcess * pProc, UINT cookie)
497 return UnwrapCookieCordbEval(pProc, cookie);
502 // This is how the RS sees the pointers in the IPC block.
504 class MSLAYOUT RsPointer : public GeneralRsPointer
507 // Since we're being used inside a union, we can't have a ctor.
509 static RsPointer<T> NullPtr()
516 bool AllocHandle(CordbProcess *pProc, T* p)
518 // This will force validation.
519 m_data = AllocCookie<T>(pProc, p);
520 return (m_data != 0);
523 bool operator==(RsPointer<T> p) { return p.m_data == this->m_data; }
525 T* UnWrapAndRemove(CordbProcess *pProc)
527 return UnwrapCookie<T>(pProc, m_data);
533 // Forward declare a class so that each type of LS pointer can have
534 // its own type. We use the real class name to be compatible with VMPTRs.
535 #define DEFINE_LSPTR_TYPE(ls_type, ptr_name) \
537 typedef LsPointer<ls_type> ptr_name;
540 #define DEFINE_RSPTR_TYPE(rs_type, ptr_name) \
542 typedef RsPointer<rs_type> ptr_name;
544 #else // !RIGHT_SIDE_COMPILE
545 //-----------------------------------------------------------------------------
546 // Infrastructure for LS Definitions
547 //-----------------------------------------------------------------------------
549 // This is how the LS sees the pointers in the IPC block.
551 class MSLAYOUT LsPointer : public GeneralLsPointer
554 // Since we're being used inside a union, we can't have a ctor.
557 static LsPointer<T> NullPtr()
559 return MakePtr(NULL);
562 static LsPointer<T> MakePtr(T * p)
565 #pragma warning(push)
566 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
578 bool operator!= (void * p) { return m_ptr != p; }
579 bool operator== (void * p) { return m_ptr == p; }
580 bool operator==(LsPointer<T> p) { return p.m_ptr == this->m_ptr; }
582 // @todo - we want to be able to swap out Set + Unwrap functions
586 // We could validate the pointer here.
592 // If we wanted to validate the pointer, here's our chance.
593 return static_cast<T*>(m_ptr);
598 class MSLAYOUT RsPointer : public GeneralRsPointer
601 static RsPointer<n> NullPtr()
608 bool operator==(RsPointer<n> p) { return p.m_data == this->m_data; }
610 // We should never UnWrap() them in the LS, so we don't define that here.
613 #define DEFINE_LSPTR_TYPE(ls_type, ptr_name) \
615 typedef LsPointer<ls_type> ptr_name;
617 #define DEFINE_RSPTR_TYPE(rs_type, ptr_name) \
618 enum __RS__##rs_type { }; \
619 typedef RsPointer<__RS__##rs_type> ptr_name;
621 #endif // !RIGHT_SIDE_COMPILE
623 // We must be binary compatible w/ a pointer.
624 static_assert_no_msg(sizeof(LsPointer<void>) == sizeof(GeneralLsPointer));
626 static_assert_no_msg(sizeof(void*) == sizeof(GeneralLsPointer));
630 //-----------------------------------------------------------------------------
631 // Definitions for Left-Side ptrs.
632 // NOTE: Use VMPTR instead of LSPTR. Don't add new LSPTR types.
634 //-----------------------------------------------------------------------------
638 DEFINE_LSPTR_TYPE(class Assembly, LSPTR_ASSEMBLY);
639 DEFINE_LSPTR_TYPE(class DebuggerJitInfo, LSPTR_DJI);
640 DEFINE_LSPTR_TYPE(class DebuggerMethodInfo, LSPTR_DMI);
641 DEFINE_LSPTR_TYPE(class MethodDesc, LSPTR_METHODDESC);
642 DEFINE_LSPTR_TYPE(class DebuggerBreakpoint, LSPTR_BREAKPOINT);
643 DEFINE_LSPTR_TYPE(class DebuggerEval, LSPTR_DEBUGGEREVAL);
644 DEFINE_LSPTR_TYPE(class DebuggerStepper, LSPTR_STEPPER);
646 // Need to be careful not to annoy the compiler here since DT_CONTEXT is a typedef, not a struct.
647 #if defined(RIGHT_SIDE_COMPILE)
648 typedef LsPointer<DT_CONTEXT> LSPTR_CONTEXT;
649 #else // RIGHT_SIDE_COMPILE
650 typedef LsPointer<DT_CONTEXT> LSPTR_CONTEXT;
651 #endif // RIGHT_SIDE_COMPILE
653 DEFINE_LSPTR_TYPE(struct OBJECTHANDLE__, LSPTR_OBJECTHANDLE);
654 DEFINE_LSPTR_TYPE(class TypeHandleDummyPtr, LSPTR_TYPEHANDLE); // TypeHandle in the LS is not a direct pointer.
656 //-----------------------------------------------------------------------------
657 // Definitions for Right-Side ptrs.
658 //-----------------------------------------------------------------------------
659 DEFINE_RSPTR_TYPE(CordbEval, RSPTR_CORDBEVAL);
662 //---------------------------------------------------------------------------------------
663 // VMPTR_Base is the base type for an abstraction over pointers into the VM so
664 // that DBI can treat them as opaque handles. Classes will derive from it to
665 // provide type-safe Target pointers, which ICD will view as opaque handles.
668 // VMPTR_ objects survive across flushing the DAC cache. Therefore, the underlying
669 // storage must be a target-pointer (and not a marshalled host pointer).
670 // The RS must ensure they're still in sync with the LS (eg, by
671 // tracking unload events).
675 // These handles are TADDR pointers and must not require any cleanup from DAC/DBI.
676 // For direct untyped pointers into the VM, use CORDB_ADDRESS.
679 // 1. This helps enforce that DBI goes through the primitives interface
680 // for all access (and that it doesn't accidentally start calling
681 // dac-ized methods on the objects)
682 // 2. This isolates DBI from VM headers.
683 // 3. This isolates DBI from the dac implementation (of DAC_Ptr)
684 // 4. This is distinct from LSPTR because LSPTRs are truly opaque handles, whereas VMPtrs
685 // move across VM, DAC, and DBI, exposing proper functionality in each component.
686 // 5. VMPTRs are blittable because they are Target Addresses which act as opaque
687 // handles outside of the Target / Dac-marshaller.
689 //---------------------------------------------------------------------------------------
692 template <typename TTargetPtr, typename TDacPtr>
693 class MSLAYOUT VMPTR_Base
695 // Underlying pointer into Target address space.
696 // Target pointers are blittable.
697 // - In Target: can be used as normal local pointers.
698 // - In DAC: must be marshalled to a host-pointer and then they can be used via DAC
699 // - In RS: opaque handles.
704 typedef VMPTR_Base<TTargetPtr,TDacPtr> VMPTR_This;
706 // For DBI, VMPTRs are opaque handles.
707 // But the DAC side is allowed to inspect the handles to get at the raw pointer.
708 #if defined(ALLOW_VMPTR_ACCESS)
710 // Case 1: Using in DAcDbi implementation
714 TDacPtr GetDacPtr() const
717 return TDacPtr(m_addr);
721 // This will initialize the handle to a given target-pointer.
722 // We choose TADDR to make it explicit that it's a target pointer and avoid the risk
723 // of it accidentally getting marshalled to a host pointer.
724 void SetDacTargetPtr(TADDR addr)
730 void SetHostPtr(const TTargetPtr * pObject)
733 m_addr = PTR_HOST_TO_TADDR(pObject);
737 #elif !defined(RIGHT_SIDE_COMPILE)
739 // Case 2: Used in Left-side. Can get/set from local pointers.
742 // This will set initialize from a Target pointer. Since this is happening in the
743 // Left-side (Target), the pointer is local.
744 // This is commonly used by the Left-side to create a VMPTR_ for a notification event.
745 void SetRawPtr(TTargetPtr * ptr)
747 m_addr = reinterpret_cast<TADDR>(ptr);
750 // This will get the raw underlying target pointer.
751 // This can be used by inproc Left-side code to unwrap a VMPTR (Eg, for a func-eval
752 // hijack or in-proc worker threads)
753 TTargetPtr * GetRawPtr()
755 return reinterpret_cast<TTargetPtr*>(m_addr);
758 // Convenience for converting TTargetPtr --> VMPTR
759 static VMPTR_This MakePtr(TTargetPtr * ptr)
762 #pragma warning(push)
763 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
778 // Case 3: Used in RS. Opaque handles only.
783 #ifndef DACCESS_COMPILE
784 // For compatibility, these can be converted to LSPTRs on the RS or LS (case 2 and 3). We don't allow
785 // this in the DAC case because it's a cast between address spaces which we're trying to eliminate
787 // @dbgtodo inspection: LSPTRs will go away entirely once we've moved completely over to DAC
788 LsPointer<TTargetPtr> ToLsPtr()
790 return LsPointer<TTargetPtr>::MakePtr( reinterpret_cast<TTargetPtr *>(m_addr));
795 // Operators to emulate Pointer semantics.
797 bool IsNull() { SUPPORTS_DAC; return m_addr == NULL; }
799 static VMPTR_This NullPtr()
804 #pragma warning(push)
805 #pragma warning(disable:6001) // PREfast warning: Using uninitialize memory 't'
817 bool operator!= (VMPTR_This vmOther) const { SUPPORTS_DAC; return this->m_addr != vmOther.m_addr; }
818 bool operator== (VMPTR_This vmOther) const { SUPPORTS_DAC; return this->m_addr == vmOther.m_addr; }
821 #if defined(ALLOW_VMPTR_ACCESS)
822 // Helper macro to define a VMPTR.
823 // This is used in the DAC case, so this definition connects the pointers up to their DAC values.
824 #define DEFINE_VMPTR(ls_type, dac_ptr_type, ptr_name) \
826 typedef VMPTR_Base<ls_type, dac_ptr_type> ptr_name;
829 // Helper macro to define a VMPTR.
830 // This is used in the Right-side and Left-side (but not DAC) case.
831 // This definition explicitly ignores dac_ptr_type to prevent accidental DAC usage.
832 #define DEFINE_VMPTR(ls_type, dac_ptr_type, ptr_name) \
834 typedef VMPTR_Base<ls_type, void> ptr_name;
839 // The naming convention for instantiating a VMPTR is a 'vm' prefix.
841 // VM definition, DAC definition, pretty name for VMPTR
842 DEFINE_VMPTR(class AppDomain, PTR_AppDomain, VMPTR_AppDomain);
844 // Need to be careful not to annoy the compiler here since DT_CONTEXT is a typedef, not a struct.
845 // DEFINE_VMPTR(struct _CONTEXT, PTR_CONTEXT, VMPTR_CONTEXT);
846 #if defined(ALLOW_VMPTR_ACCESS)
847 typedef VMPTR_Base<DT_CONTEXT, PTR_CONTEXT> VMPTR_CONTEXT;
849 typedef VMPTR_Base<DT_CONTEXT, void > VMPTR_CONTEXT;
852 // DomainFile is a base-class for a CLR module, with app-domain affinity.
853 // For domain-neutral modules (like mscorlib), there is a DomainFile instance
854 // for each appdomain the module lives in.
855 // This is the canonical handle ICorDebug uses to a CLR module.
856 DEFINE_VMPTR(class DomainFile, PTR_DomainFile, VMPTR_DomainFile);
857 DEFINE_VMPTR(class Module, PTR_Module, VMPTR_Module);
859 // DomainAssembly derives from DomainFile and represents a manifest module.
860 DEFINE_VMPTR(class DomainAssembly, PTR_DomainAssembly, VMPTR_DomainAssembly);
861 DEFINE_VMPTR(class Assembly, PTR_Assembly, VMPTR_Assembly);
863 DEFINE_VMPTR(class PEFile, PTR_PEFile, VMPTR_PEFile);
864 DEFINE_VMPTR(class MethodDesc, PTR_MethodDesc, VMPTR_MethodDesc);
865 DEFINE_VMPTR(class FieldDesc, PTR_FieldDesc, VMPTR_FieldDesc);
867 // ObjectHandle is a safe way to represent an object into the GC heap. It gets updated
869 DEFINE_VMPTR(struct OBJECTHANDLE__, TADDR, VMPTR_OBJECTHANDLE);
871 DEFINE_VMPTR(class TypeHandle, PTR_TypeHandle, VMPTR_TypeHandle);
873 // A VMPTR_Thread represents a thread that has entered the runtime at some point.
874 // It may or may not have executed managed code yet; and it may or may not have managed code
876 DEFINE_VMPTR(class Thread, PTR_Thread, VMPTR_Thread);
878 DEFINE_VMPTR(class Object, PTR_Object, VMPTR_Object);
880 DEFINE_VMPTR(class CrstBase, PTR_Crst, VMPTR_Crst);
881 DEFINE_VMPTR(class SimpleRWLock, PTR_SimpleRWLock, VMPTR_SimpleRWLock);
882 DEFINE_VMPTR(class SimpleRWLock, PTR_SimpleRWLock, VMPTR_RWLock);
883 DEFINE_VMPTR(struct ReJitInfo, PTR_ReJitInfo, VMPTR_ReJitInfo);
884 DEFINE_VMPTR(struct SharedReJitInfo, PTR_SharedReJitInfo, VMPTR_SharedReJitInfo);
885 DEFINE_VMPTR(class NativeCodeVersionNode, PTR_NativeCodeVersionNode, VMPTR_NativeCodeVersionNode);
886 DEFINE_VMPTR(class ILCodeVersionNode, PTR_ILCodeVersionNode, VMPTR_ILCodeVersionNode);
888 typedef CORDB_ADDRESS GENERICS_TYPE_TOKEN;
891 //-----------------------------------------------------------------------------
892 // We pass some fixed size strings in the IPC block.
893 // Helper class to wrap the buffer and protect against buffer overflows.
894 // This should be binary compatible w/ a wchar[] array.
895 //-----------------------------------------------------------------------------
897 template <int nMaxLengthIncludingNull>
898 class MSLAYOUT EmbeddedIPCString
901 // Set, caller responsibility that wcslen(pData) < nMaxLengthIncludingNull
902 void SetString(const WCHAR * pData)
904 // If the string doesn't fit into the buffer, that's an issue (and so this is a real
905 // assert, not just a simplifying assumption). To fix it, either:
906 // - make the buffer larger
907 // - don't pass the string as an embedded string in the IPC block.
908 // This will truncate (rather than AV on the RS).
910 ret = SafeCopy(pData);
912 // See comment above - caller should guarantee that buffer is large enough.
913 _ASSERTE(ret != STRUNCATE);
916 // Set a string from a substring. This will truncate if necessary.
917 void SetStringTruncate(const WCHAR * pData)
919 // ignore return value because truncation is ok.
923 const WCHAR * GetString()
925 // For a null-termination just in case an issue in the debuggee process
926 // yields a malformed string.
927 m_data[nMaxLengthIncludingNull - 1] = W('\0');
930 int GetMaxSize() const { return nMaxLengthIncludingNull; }
933 int SafeCopy(const WCHAR * pData)
936 m_data, nMaxLengthIncludingNull,
939 WCHAR m_data[nMaxLengthIncludingNull];
943 // Types of events that can be sent between the Runtime Controller and
944 // the Debugger Interface. Some of these events are one way only, while
945 // others go both ways. The grouping of the event numbers is an attempt
946 // to show this distinction and perhaps even allow generic operations
947 // based on the type of the event.
949 enum DebuggerIPCEventType
951 #define IPC_EVENT_TYPE0(type, val) type = val,
952 #define IPC_EVENT_TYPE1(type, val) type = val,
953 #define IPC_EVENT_TYPE2(type, val) type = val,
954 #include "dbgipceventtypes.h"
955 #undef IPC_EVENT_TYPE2
956 #undef IPC_EVENT_TYPE1
957 #undef IPC_EVENT_TYPE0
962 // This is a static debugging structure to help breaking at the right place.
963 // Debug only. This is to track the number of events that have been happened so far.
964 // User can choose to set break point base on the number of events.
965 // Variables are named as the event name with prefix m_iDebugCount. For example
966 // m_iDebugCount_DB_IPCE_BREAKPOINT if for event DB_IPCE_BREAKPOINT.
967 struct MSLAYOUT DebugEventCounter
969 // we don't need the event type 0
970 #define IPC_EVENT_TYPE0(type, val)
971 #define IPC_EVENT_TYPE1(type, val) int m_iDebugCount_##type;
972 #define IPC_EVENT_TYPE2(type, val) int m_iDebugCount_##type;
973 #include "dbgipceventtypes.h"
974 #undef IPC_EVENT_TYPE2
975 #undef IPC_EVENT_TYPE1
976 #undef IPC_EVENT_TYPE0
981 #if !defined(DACCESS_COMPILE)
983 struct MSLAYOUT IPCEventTypeNameMapping
985 DebuggerIPCEventType eventType;
986 const char * eventName;
989 extern const IPCEventTypeNameMapping DECLSPEC_SELECTANY DbgIPCEventTypeNames[] =
991 #define IPC_EVENT_TYPE0(type, val) { type, #type },
992 #define IPC_EVENT_TYPE1(type, val) { type, #type },
993 #define IPC_EVENT_TYPE2(type, val) { type, #type },
994 #include "dbgipceventtypes.h"
995 #undef IPC_EVENT_TYPE2
996 #undef IPC_EVENT_TYPE1
997 #undef IPC_EVENT_TYPE0
998 { DB_IPCE_INVALID_EVENT, "DB_IPCE_Error" }
1001 const size_t nameCount = sizeof(DbgIPCEventTypeNames) / sizeof(DbgIPCEventTypeNames[0]);
1004 struct MSLAYOUT IPCENames // We use a class/struct so that the function can remain in a shared header file
1006 static const DebuggerIPCEventType GetEventType(__in_z char * strEventType)
1008 // pass in the string of event name and find the matching enum value
1009 // This is a linear search which is pretty slow. However, this is only used
1010 // at startup time when debug assert is turn on and with registry key set. So it is not that bad.
1012 for (size_t i = 0; i < nameCount; i++)
1014 if (_stricmp(DbgIPCEventTypeNames[i].eventName, strEventType) == 0)
1015 return DbgIPCEventTypeNames[i].eventType;
1017 return DB_IPCE_INVALID_EVENT;
1019 static const char * GetName(DebuggerIPCEventType eventType)
1022 enum DbgIPCEventTypeNum
1024 #define IPC_EVENT_TYPE0(type, val) type##_Num,
1025 #define IPC_EVENT_TYPE1(type, val) type##_Num,
1026 #define IPC_EVENT_TYPE2(type, val) type##_Num,
1027 #include "dbgipceventtypes.h"
1028 #undef IPC_EVENT_TYPE2
1029 #undef IPC_EVENT_TYPE1
1030 #undef IPC_EVENT_TYPE0
1033 unsigned int i, lim;
1035 if (eventType < DB_IPCE_DEBUGGER_FIRST)
1037 i = DB_IPCE_RUNTIME_FIRST_Num + 1;
1038 lim = DB_IPCE_DEBUGGER_FIRST_Num;
1042 i = DB_IPCE_DEBUGGER_FIRST_Num + 1;
1046 for (/**/; i < lim; i++)
1048 if (DbgIPCEventTypeNames[i].eventType == eventType)
1049 return DbgIPCEventTypeNames[i].eventName;
1052 return DbgIPCEventTypeNames[nameCount - 1].eventName;
1056 #endif // !DACCESS_COMPILE
1059 // NOTE: CPU-specific values below!
1061 // DebuggerREGDISPLAY is very similar to the EE REGDISPLAY structure. It holds
1062 // register values that can be saved over calls for each frame in a stack
1065 // DebuggerIPCE_FloatCount is the number of doubles in the processor's
1066 // floating point stack.
1068 // <TODO>Note: We used to just pass the values of the registers for each frame to the Right Side, but I had to add in the
1069 // address of each register, too, to support using enregistered variables on non-leaf frames as args to a func eval. Its
1070 // very, very possible that we would rework the entire code base to just use the register's address instead of passing
1071 // both, but its way, way too late in V1 to undertake that, so I'm just using these addresses to suppport our one func
1072 // eval case. Clearly, this needs to be cleaned up post V1.
1074 // -- Fri Feb 09 11:21:24 2001</TODO>
1077 struct MSLAYOUT DebuggerREGDISPLAY
1079 #if defined(DBG_TARGET_X86)
1080 #define DebuggerIPCE_FloatCount 8
1099 #elif defined(DBG_TARGET_AMD64)
1100 #define DebuggerIPCE_FloatCount 16
1136 #elif defined(DBG_TARGET_ARM)
1137 #define DebuggerIPCE_FloatCount 32
1171 #elif defined(DBG_TARGET_ARM64)
1172 #define DebuggerIPCE_FloatCount 32
1180 #define DebuggerIPCE_FloatCount 1
1189 inline LPVOID GetSPAddress(const DebuggerREGDISPLAY * display)
1191 return (LPVOID)&display->SP;
1194 #if !defined(DBG_TARGET_AMD64) && !defined(DBG_TARGET_ARM)
1195 inline LPVOID GetFPAddress(const DebuggerREGDISPLAY * display)
1197 return (LPVOID)&display->FP;
1199 #endif // !DBG_TARGET_AMD64
1202 class MSLAYOUT FramePointer
1204 friend bool IsCloserToLeaf(FramePointer fp1, FramePointer fp2);
1205 friend bool IsCloserToRoot(FramePointer fp1, FramePointer fp2);
1206 friend bool IsEqualOrCloserToLeaf(FramePointer fp1, FramePointer fp2);
1207 friend bool IsEqualOrCloserToRoot(FramePointer fp1, FramePointer fp2);
1211 static FramePointer MakeFramePointer(LPVOID sp)
1213 LIMITED_METHOD_DAC_CONTRACT;
1219 static FramePointer MakeFramePointer(UINT_PTR sp)
1222 return MakeFramePointer((LPVOID)sp);
1225 inline bool operator==(FramePointer fp)
1227 return (m_sp == fp.m_sp);
1230 inline bool operator!=(FramePointer fp)
1232 return !(*this == fp);
1235 // This is needed because on the RS, the m_id values of CordbFrame and
1236 // CordbChain are really FramePointers.
1237 LPVOID GetSPValue() const
1244 // Declare some private constructors which signatures matching common usage of FramePointer
1245 // to prevent people from accidentally assigning a pointer to a FramePointer().
1246 FramePointer &operator=(LPVOID sp);
1247 FramePointer &operator=(BYTE* sp);
1248 FramePointer &operator=(const BYTE* sp);
1253 // For non-IA64 platforms, we use stack pointers as frame pointers.
1254 // (Stack grows towards smaller address.)
1255 #define LEAF_MOST_FRAME FramePointer::MakeFramePointer((LPVOID)NULL)
1256 #define ROOT_MOST_FRAME FramePointer::MakeFramePointer((LPVOID)-1)
1258 static_assert_no_msg(sizeof(FramePointer) == sizeof(void*));
1261 inline bool IsCloserToLeaf(FramePointer fp1, FramePointer fp2)
1263 return (fp1.m_sp < fp2.m_sp);
1266 inline bool IsCloserToRoot(FramePointer fp1, FramePointer fp2)
1268 return (fp1.m_sp > fp2.m_sp);
1271 inline bool IsEqualOrCloserToLeaf(FramePointer fp1, FramePointer fp2)
1273 return !IsCloserToRoot(fp1, fp2);
1276 inline bool IsEqualOrCloserToRoot(FramePointer fp1, FramePointer fp2)
1278 return !IsCloserToLeaf(fp1, fp2);
1282 // struct DebuggerIPCE_FuncData: DebuggerIPCE_FuncData holds data
1283 // to describe a given function, its
1284 // class, and a little bit about the code for the function. This is used
1285 // in the stack trace result data to pass function information back that
1286 // may be needed. Its also used when getting data about a specific function.
1288 // void* nativeStartAddressPtr: Ptr to CORDB_ADDRESS, which is
1289 // the address of the real start address of the native code.
1290 // This field will be NULL only if the method hasn't been JITted
1291 // yet (and thus no code is available). Otherwise, it will be
1292 // the adress of a CORDB_ADDRESS in the remote memory. This
1293 // CORDB_ADDRESS may be NULL, in which case the code is unavailable
1294 // has been pitched (return CORDBG_E_CODE_NOT_AVAILABLE)
1296 // SIZE_T nVersion: The version of the code that this instance of the
1297 // function is using.
1298 struct MSLAYOUT DebuggerIPCE_FuncData
1300 mdMethodDef funcMetadataToken;
1301 VMPTR_DomainFile vmDomainFile;
1303 mdTypeDef classMetadataToken;
1305 void* ilStartAddress;
1308 SIZE_T currentEnCVersion;
1310 mdSignature localVarSigToken;
1315 // struct DebuggerIPCE_JITFuncData: DebuggerIPCE_JITFuncData holds
1316 // a little bit about the JITted code for the function.
1318 // void* nativeStartAddressPtr: Ptr to CORDB_ADDRESS, which is
1319 // the address of the real start address of the native code.
1320 // This field will be NULL only if the method hasn't been JITted
1321 // yet (and thus no code is available). Otherwise, it will be
1322 // the address of a CORDB_ADDRESS in the remote memory. This
1323 // CORDB_ADDRESS may be NULL, in which case the code is unavailable
1324 // or has been pitched (return CORDBG_E_CODE_NOT_AVAILABLE)
1326 // SIZE_T nativeSize: Size of the native code.
1328 // SIZE_T nativeOffset: Offset from the beginning of the function,
1329 // in bytes. This may be non-zero even when nativeStartAddressPtr
1331 // void * nativeCodeJITInfoToken: An opaque value to hand back to the left
1332 // side when fetching the JITInfo for the native code, i.e. the
1333 // IL->native maps for the variables. This may be NULL if no JITInfo is available.
1334 // void * nativeCodeMethodDescToken: An opaque value to hand back to the left
1335 // side when fetching the code. In addition this token can act as the
1336 // unique identity for the native code in the case where there are
1337 // multiple blobs of native code per IL method (i.e. if the method is
1338 // generic code of some kind)
1339 // BOOL isInstantiatedGeneric: Indicates if the method is
1340 // generic code of some kind.
1341 // BOOL jsutAfterILThrow: indicates that code just threw a software exception and
1342 // nativeOffset points to an instruction just after [call IL_Throw].
1343 // This is being used to figure out a real offset of the exception origin.
1344 // By subtracting STACKWALK_CONTROLPC_ADJUST_OFFSET from nativeOffset you can get
1345 // an address somewhere inside [call IL_Throw] instruction.
1346 // void *ilToNativeMapAddr etc.: If nativeCodeJITInfoToken is not NULL then these
1347 // specify the table giving the mapping of IPs.
1348 struct MSLAYOUT DebuggerIPCE_JITFuncData
1350 TADDR nativeStartAddressPtr;
1351 SIZE_T nativeHotSize;
1353 // If we have a cold region, need its size & the pointer to where starts.
1354 TADDR nativeStartAddressColdPtr;
1355 SIZE_T nativeColdSize;
1358 SIZE_T nativeOffset;
1359 LSPTR_DJI nativeCodeJITInfoToken;
1360 VMPTR_MethodDesc vmNativeCodeMethodDescToken;
1362 #ifdef WIN64EXCEPTIONS
1363 BOOL fIsFilterFrame;
1364 SIZE_T parentNativeOffset;
1365 FramePointer fpParentOrSelf;
1366 #endif // WIN64EXCEPTIONS
1368 // indicates if the MethodDesc is a generic function or a method inside a generic class (or
1370 BOOL isInstantiatedGeneric;
1372 // this is the version of the jitted code
1375 BOOL jsutAfterILThrow;
1379 // DebuggerIPCE_STRData holds data for each stack frame or chain. This data is passed
1380 // from the RC to the DI during a stack walk.
1382 #if defined(_MSC_VER)
1383 #pragma warning( push )
1384 #pragma warning( disable:4324 ) // the compiler pads a structure to comply with alignment requirements
1385 #endif // ARM context structures have a 16-byte alignment requirement
1386 struct MSLAYOUT DebuggerIPCE_STRData
1389 // @dbgtodo stackwalker/shim- Ideally we should be able to get rid of the DebuggerREGDISPLAY and just use the CONTEXT.
1391 DebuggerREGDISPLAY rd;
1392 bool quicklyUnwound;
1394 VMPTR_AppDomain vmCurrentAppDomainToken;
1410 CorDebugChainReason chainReason;
1414 // Data for a Method
1417 struct DebuggerIPCE_FuncData funcData;
1418 struct DebuggerIPCE_JITFuncData jitFuncData;
1420 CorDebugMappingResult mapping;
1424 // Indicates whether the managed method has any metadata.
1425 // Some dynamic methods such as IL stubs and LCG methods don't have any metadata.
1426 // This is used only by the V3 stackwalker, not the V2 one, because we only
1427 // expose dynamic methods as real stack frames in V3.
1432 GENERICS_TYPE_TOKEN exactGenericArgsToken;
1433 DWORD dwExactGenericArgsTokenIndex;
1437 // Data for an Stub Frame.
1440 mdMethodDef funcMetadataToken;
1441 VMPTR_DomainFile vmDomainFile;
1442 VMPTR_MethodDesc vmMethodDesc;
1443 CorDebugInternalFrameType frameType;
1448 #if defined(_MSC_VER)
1449 #pragma warning( pop )
1453 // DebuggerIPCE_BasicTypeData and DebuggerIPCE_ExpandedTypeData
1454 // hold data for each type sent across the
1455 // boundary, whether it be a constructed type List<String> or a non-constructed
1456 // type such as String, Foo or Object.
1458 // Logically speaking DebuggerIPCE_BasicTypeData might just be "typeHandle", as
1459 // we could then send further events to ask what the elementtype, typeToken and moduleToken
1460 // are for the type handle. But as
1461 // nearly all types are non-generic we send across even the basic type information in
1462 // the slightly expanded form shown below, sending the element type and the
1463 // tokens with the type handle itself. The fields debuggerModuleToken, metadataToken and typeHandle
1464 // are only used as follows:
1465 // elementType debuggerModuleToken metadataToken typeHandle
1466 // E_T_INT8 : E_T_INT8 No No No
1467 // Boxed E_T_INT8: E_T_CLASS No No No
1468 // E_T_CLASS, non-generic class: E_T_CLASS Yes Yes No
1469 // E_T_VALUETYPE, non-generic: E_T_VALUETYPE Yes Yes No
1470 // E_T_CLASS, generic class: E_T_CLASS Yes Yes Yes
1471 // E_T_VALUETYPE, generic class: E_T_VALUETYPE Yes Yes Yes
1472 // E_T_BYREF : E_T_BYREF No No Yes
1473 // E_T_PTR : E_T_PTR No No Yes
1474 // E_T_ARRAY etc. : E_T_ARRAY No No Yes
1475 // E_T_FNPTR etc. : E_T_FNPTR No No Yes
1476 // This allows us to always set "typeHandle" to NULL except when dealing with highly nested
1477 // types or function-pointer types (the latter are too complexe to transfer over in one hit).
1480 struct MSLAYOUT DebuggerIPCE_BasicTypeData
1482 CorElementType elementType;
1483 mdTypeDef metadataToken;
1484 VMPTR_Module vmModule;
1485 VMPTR_DomainFile vmDomainFile;
1486 VMPTR_TypeHandle vmTypeHandle;
1489 // DebuggerIPCE_ExpandedTypeData contains more information showing further
1490 // details for array types, byref types etc.
1491 // Whenever you fetch type information from the left-side
1492 // you get back one of these. These in turn contain further
1493 // DebuggerIPCE_BasicTypeData's and typeHandles which you can
1494 // then query to get further information about the type parameters.
1495 // This copes with the nested cases, e.g. jagged arrays,
1496 // String ****, &(String*), Pair<String,Pair<String>>
1499 // So this type information is not "fully expanded", it's just a little
1500 // more detail then DebuggerIPCE_BasicTypeData. For type
1501 // instantiatons (e.g. List<int>) and
1502 // function pointer types you will need to make further requests for
1503 // information about the type parameters.
1504 // For array types there is always only one type parameter so
1505 // we include that as part of the expanded data.
1508 struct MSLAYOUT DebuggerIPCE_ExpandedTypeData
1510 CorElementType elementType; // Note this is _never_ E_T_VAR, E_T_WITH or E_T_MVAR
1513 // used for E_T_CLASS and E_T_VALUECLASS, E_T_PTR, E_T_BYREF etc.
1514 // For non-constructed E_T_CLASS or E_T_VALUECLASS the tokens will be set and the typeHandle will be NULL
1515 // For constructed E_T_CLASS or E_T_VALUECLASS the tokens will be set and the typeHandle will be non-NULL
1516 // For E_T_PTR etc. the tokens will be NULL and the typeHandle will be non-NULL.
1519 mdTypeDef metadataToken;
1520 VMPTR_Module vmModule;
1521 VMPTR_DomainFile vmDomainFile;
1522 VMPTR_TypeHandle typeHandle; // if non-null then further fetches will be needed to get type arguments
1525 // used for E_T_PTR, E_T_BYREF etc.
1528 DebuggerIPCE_BasicTypeData unaryTypeArg; // used only when sending back to debugger
1532 // used for E_T_ARRAY etc.
1535 DebuggerIPCE_BasicTypeData arrayTypeArg; // used only when sending back to debugger
1539 // used for E_T_FNPTR
1542 VMPTR_TypeHandle typeHandle; // if non-null then further fetches needed to get type arguments
1548 // DebuggerIPCE_TypeArgData is used when sending type arguments
1549 // across to a funceval. It contains the DebuggerIPCE_ExpandedTypeData describing the
1550 // essence of the type, but the typeHandle and other
1551 // BasicTypeData fields should be zero and will be ignored.
1552 // The DebuggerIPCE_ExpandedTypeData is then followed
1553 // by the required number of type arguments, each of which
1554 // will be a further DebuggerIPCE_TypeArgData record in the stream of
1555 // flattened type argument data.
1556 struct MSLAYOUT DebuggerIPCE_TypeArgData
1558 DebuggerIPCE_ExpandedTypeData data;
1559 unsigned int numTypeArgs; // number of immediate children on the type tree
1564 // DebuggerIPCE_ObjectData holds the results of a
1565 // GetAndSendObjectInfo, i.e., all the info about an object that the
1566 // Right Side would need to access it. (This include array, string,
1567 // and nstruct info.)
1569 struct MSLAYOUT DebuggerIPCE_ObjectData
1575 // Offset from the beginning of the object to the beginning of the first field
1576 SIZE_T objOffsetToVars;
1578 // The type of the object....
1579 struct DebuggerIPCE_ExpandedTypeData objTypeData;
1586 SIZE_T offsetToStringBase;
1592 SIZE_T offsetToArrayBase;
1593 SIZE_T offsetToLowerBounds; // 0 if not present
1594 SIZE_T offsetToUpperBounds; // 0 if not present
1595 SIZE_T componentCount;
1601 struct DebuggerIPCE_BasicTypeData typedByrefType; // the type of the thing contained in a typedByref...
1607 // Remote enregistered info used by CordbValues and for passing
1608 // variable homes between the left and right sides during a func eval.
1611 enum RemoteAddressKind
1622 const CORDB_ADDRESS kLeafFrameRegAddr = 0;
1623 const CORDB_ADDRESS kNonLeafFrameRegAddr = (CORDB_ADDRESS)(-1);
1625 struct MSLAYOUT RemoteAddress
1627 RemoteAddressKind kind;
1630 CorDebugRegister reg1;
1632 SIZE_T reg1Value; // this is the actual value of the register
1638 CorDebugRegister reg2;
1640 SIZE_T reg2Value; // this is the actual value of the register
1649 // DebuggerIPCE_FuncEvalType specifies the type of a function
1650 // evaluation that will occur.
1652 enum DebuggerIPCE_FuncEvalType
1655 DB_IPCE_FET_NEW_OBJECT,
1656 DB_IPCE_FET_NEW_OBJECT_NC,
1657 DB_IPCE_FET_NEW_STRING,
1658 DB_IPCE_FET_NEW_ARRAY,
1659 DB_IPCE_FET_RE_ABORT
1665 APP_DOMAIN_NAME_CHANGE,
1670 // DebuggerIPCE_FuncEvalArgData holds data for each argument to a
1671 // function evaluation.
1673 struct MSLAYOUT DebuggerIPCE_FuncEvalArgData
1675 RemoteAddress argHome; // enregistered variable home
1676 void *argAddr; // address if not enregistered
1677 CorElementType argElementType;
1678 unsigned int fullArgTypeNodeCount; // Pointer to LS (DebuggerIPCE_TypeArgData *) buffer holding full description of the argument type (if needed - only needed for struct types)
1679 void *fullArgType; // Pointer to LS (DebuggerIPCE_TypeArgData *) buffer holding full description of the argument type (if needed - only needed for struct types)
1680 BYTE argLiteralData[8]; // copy of generic value data
1681 bool argIsLiteral; // true if value is in argLiteralData
1682 bool argIsHandleValue; // true if argAddr is OBJECTHANDLE
1687 // DebuggerIPCE_FuncEvalInfo holds info necessary to setup a func eval
1690 struct MSLAYOUT DebuggerIPCE_FuncEvalInfo
1692 VMPTR_Thread vmThreadToken;
1693 DebuggerIPCE_FuncEvalType funcEvalType;
1694 mdMethodDef funcMetadataToken;
1695 mdTypeDef funcClassMetadataToken;
1696 VMPTR_DomainFile vmDomainFile;
1697 RSPTR_CORDBEVAL funcEvalKey;
1698 bool evalDuringException;
1700 unsigned int argCount;
1701 unsigned int genericArgsCount;
1702 unsigned int genericArgsNodeCount;
1711 // Used in DebuggerIPCFirstChanceData. This tells the LS what action to take within the hijack
1715 HIJACK_ACTION_EXIT_UNHANDLED,
1716 HIJACK_ACTION_EXIT_HANDLED,
1721 // DebuggerIPCFirstChanceData holds info communicated from the LS to the RS when signaling that an exception does not
1722 // belong to the runtime from a first chance hijack. This is used when Win32 debugging only.
1724 struct MSLAYOUT DebuggerIPCFirstChanceData
1726 LSPTR_CONTEXT pLeftSideContext;
1727 HijackAction action;
1732 // DebuggerIPCSecondChanceData holds info communicated from the RS
1733 // to the LS when setting up a second chance exception hijack. This is
1734 // used when Win32 debugging only.
1736 struct MSLAYOUT DebuggerIPCSecondChanceData
1738 DT_CONTEXT threadContext;
1743 //-----------------------------------------------------------------------------
1744 // This struct holds pointer from the LS and needs to copy to
1745 // the RS. We have to free the memory on the RS.
1746 // The transfer function is called when the RS first reads the event. At this point,
1747 // the LS is stopped while sending the event. Thus the LS pointers only need to be
1748 // valid while the LS is in SendIPCEvent.
1750 // Since this data is in an IPC/Marshallable block, it can't have any Ctors (holders)
1752 //-----------------------------------------------------------------------------
1753 struct MSLAYOUT Ls_Rs_BaseBuffer
1755 #ifdef RIGHT_SIDE_COMPILE
1757 // copy data can happen on both LS and RS. In LS case,
1758 // ReadProcessMemory is really reading from its own process memory.
1760 void CopyLSDataToRSWorker(ICorDebugDataTarget * pTargethProcess);
1762 // retrieve the RS data and own it
1763 BYTE *TransferRSDataWorker()
1765 BYTE *pbRS = m_pbRS;
1782 // Only LS can call this API
1783 void SetLsData(BYTE *pbLS, DWORD cbSize)
1789 #endif // RIGHT_SIDE_COMPILE
1793 DWORD GetSize() { return m_cbSize; }
1798 // Size of data in bytes
1801 // If this is non-null, pointer into LS for buffer.
1802 // LS can free this after the debug event is continued.
1803 BYTE *m_pbLS; // @dbgtodo cross-plat- for cross-platform purposes, this should be a TADDR
1805 // If this is non-null, pointer into RS for buffer. RS must then free this.
1806 // This buffer was copied from the LS (via CopyLSDataToRSWorker).
1810 //-----------------------------------------------------------------------------
1811 // Byte wrapper around the buffer.
1812 //-----------------------------------------------------------------------------
1813 struct MSLAYOUT Ls_Rs_ByteBuffer : public Ls_Rs_BaseBuffer
1815 #ifdef RIGHT_SIDE_COMPILE
1816 BYTE *GetRSPointer()
1821 void CopyLSDataToRS(ICorDebugDataTarget * pTarget);
1822 BYTE *TransferRSData()
1824 return TransferRSDataWorker();
1829 //-----------------------------------------------------------------------------
1830 // Wrapper around a Ls_rS_Buffer to get it as a string.
1831 // This can also do some sanity checking.
1832 //-----------------------------------------------------------------------------
1833 struct MSLAYOUT Ls_Rs_StringBuffer : public Ls_Rs_BaseBuffer
1835 #ifdef RIGHT_SIDE_COMPILE
1836 const WCHAR * GetString()
1838 return reinterpret_cast<const WCHAR*> (m_pbRS);
1841 // Copy over the string.
1842 void CopyLSDataToRS(ICorDebugDataTarget * pTarget);
1844 // Caller will pick up ownership.
1845 // Since caller will delete this data, we can't give back a constant pointer.
1846 WCHAR * TransferStringData()
1848 return reinterpret_cast<WCHAR*> (TransferRSDataWorker());
1854 // Data for an Managed Debug Assistant Probe (MDA).
1855 struct MSLAYOUT DebuggerMDANotification
1857 Ls_Rs_StringBuffer szName;
1858 Ls_Rs_StringBuffer szDescription;
1859 Ls_Rs_StringBuffer szXml;
1861 CorDebugMDAFlags flags;
1865 // The only remaining problem is that register number mappings are different for each platform. It turns out
1866 // that the debugger only uses REGNUM_SP and REGNUM_AMBIENT_SP though, so we can just virtualize these two for
1867 // the target platform.
1868 // Keep this is sync with the definitions in inc/corinfo.h.
1869 #if defined(DBG_TARGET_X86)
1870 #define DBG_TARGET_REGNUM_SP 4
1871 #define DBG_TARGET_REGNUM_AMBIENT_SP 9
1873 static_assert_no_msg(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1874 static_assert_no_msg(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1875 #endif // _TARGET_X86_
1876 #elif defined(DBG_TARGET_AMD64)
1877 #define DBG_TARGET_REGNUM_SP 4
1878 #define DBG_TARGET_REGNUM_AMBIENT_SP 17
1879 #ifdef _TARGET_AMD64_
1880 static_assert_no_msg(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1881 static_assert_no_msg(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1882 #endif // _TARGET_AMD64_
1883 #elif defined(DBG_TARGET_ARM)
1884 #define DBG_TARGET_REGNUM_SP 13
1885 #define DBG_TARGET_REGNUM_AMBIENT_SP 17
1887 C_ASSERT(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1888 C_ASSERT(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1889 #endif // _TARGET_ARM_
1890 #elif defined(DBG_TARGET_ARM64)
1891 #define DBG_TARGET_REGNUM_SP 31
1892 #define DBG_TARGET_REGNUM_AMBIENT_SP 34
1893 #ifdef _TARGET_ARM64_
1894 C_ASSERT(DBG_TARGET_REGNUM_SP == ICorDebugInfo::REGNUM_SP);
1895 C_ASSERT(DBG_TARGET_REGNUM_AMBIENT_SP == ICorDebugInfo::REGNUM_AMBIENT_SP);
1896 #endif // _TARGET_ARM64_
1898 #error Target registers are not defined for this platform
1903 // Event structure that is passed between the Runtime Controller and the
1904 // Debugger Interface. Some types of events are a fixed size and have
1905 // entries in the main union, while others are variable length and have
1906 // more specialized data structures that are attached to the end of this
1909 struct MSLAYOUT DebuggerIPCEvent
1911 DebuggerIPCEvent* next;
1912 DebuggerIPCEventType type;
1914 VMPTR_AppDomain vmAppDomain;
1915 VMPTR_Thread vmThread;
1925 // Pointer to a BOOL in the target.
1926 CORDB_ADDRESS pfBeingDebugged;
1927 } LeftSideStartupData;
1931 // Module whos metadata is being updated
1932 // This tells the RS that the metadata for that module has become invalid.
1933 VMPTR_DomainFile vmDomainFile;
1935 } MetadataUpdateData;
1939 // Handle to CLR's internal appdomain object.
1940 VMPTR_AppDomain vmAppDomain;
1945 VMPTR_DomainAssembly vmDomainAssembly;
1948 #ifdef TEST_DATA_CONSISTENCY
1949 // information necessary for testing whether the LS holds a lock on data
1950 // the RS needs to inspect. See code:DataTest::TestDataSafety and
1951 // code:IDacDbiInterface::TestCrst for more information
1954 // the lock to be tested
1956 // indicates whether the LS holds the lock
1960 // information necessary for testing whether the LS holds a lock on data
1961 // the RS needs to inspect. See code:DataTest::TestDataSafety and
1962 // code:IDacDbiInterface::TestCrst for more information
1965 // the lock to be tested
1966 VMPTR_SimpleRWLock vmRWLock;
1967 // indicates whether the LS holds the lock
1970 #endif // TEST_DATA_CONSISTENCY
1972 // Debug event that a module has been loaded
1975 // Module that was just loaded.
1976 VMPTR_DomainFile vmDomainFile;
1982 VMPTR_DomainFile vmDomainFile;
1983 LSPTR_ASSEMBLY debuggerAssemblyToken;
1987 // The given module's pdb has been updated.
1988 // Queury PDB from OOP
1991 VMPTR_DomainFile vmDomainFile;
1992 } UpdateModuleSymsData;
1994 DebuggerMDANotification MDANotification;
1998 LSPTR_BREAKPOINT breakpointToken;
1999 mdMethodDef funcMetadataToken;
2000 VMPTR_DomainFile vmDomainFile;
2004 LSPTR_METHODDESC nativeCodeMethodDescToken; // points to the MethodDesc if !isIL
2009 LSPTR_BREAKPOINT breakpointToken;
2010 } BreakpointSetErrorData;
2014 LSPTR_STEPPER stepperToken;
2015 VMPTR_Thread vmThreadToken;
2016 FramePointer frameToken;
2020 unsigned int totalRangeCount;
2021 CorDebugStepReason reason;
2022 CorDebugUnmappedStop rgfMappingStop;
2023 CorDebugIntercept rgfInterceptStop;
2024 unsigned int rangeCount;
2025 COR_DEBUG_STEP_RANGE range; //note that this is an array
2030 // An unvalidated GC-handle
2031 VMPTR_OBJECTHANDLE GCHandle;
2036 // An unvalidated GC-handle for which we're returning the results
2037 LSPTR_OBJECTHANDLE GCHandle;
2039 // The following are initialized by the LS in response to our query:
2040 VMPTR_AppDomain vmAppDomain; // AD that handle is in (only applicable if fValid).
2041 bool fValid; // Did the LS determine the GC handle to be valid?
2042 } GetGCHandleInfoResult;
2044 // Allocate memory on the left-side
2047 ULONG bufSize; // number of bytes to allocate
2050 // Memory allocated on the left-side
2053 void *pBuffer; // LS pointer to the buffer allocated
2054 HRESULT hr; // success / failure
2057 // Free a buffer allocated on the left-side with GetBuffer
2060 void *pBuffer; // Pointer previously returned in GetBufferResult
2066 } ReleaseBufferResult;
2068 // Apply an EnC edit
2071 VMPTR_DomainFile vmDomainFile; // Module to edit
2072 DWORD cbDeltaMetadata; // size of blob pointed to by pDeltaMetadata
2073 CORDB_ADDRESS pDeltaMetadata; // pointer to delta metadata in debuggee
2074 // it's the RS's responsibility to allocate and free
2075 // this (and pDeltaIL) using GetBuffer / ReleaseBuffer
2076 CORDB_ADDRESS pDeltaIL; // pointer to delta IL in debugee
2077 DWORD cbDeltaIL; // size of blob pointed to by pDeltaIL
2083 } ApplyChangesResult;
2087 mdTypeDef classMetadataToken;
2088 VMPTR_DomainFile vmDomainFile;
2089 LSPTR_ASSEMBLY classDebuggerAssemblyToken;
2094 mdTypeDef classMetadataToken;
2095 VMPTR_DomainFile vmDomainFile;
2096 LSPTR_ASSEMBLY classDebuggerAssemblyToken;
2101 VMPTR_DomainFile vmDomainFile;
2107 VMPTR_OBJECTHANDLE vmExceptionHandle;
2114 VMPTR_Thread vmThreadToken;
2125 } IsTransitionStubResult;
2129 CORDB_ADDRESS startAddress;
2131 VMPTR_Thread vmThreadToken;
2132 VMPTR_DomainFile vmDomainFile;
2133 mdMethodDef mdMethod;
2134 VMPTR_MethodDesc vmMethodDesc;
2137 void * firstExceptionHandler;
2138 } SetIP; // this is also used for CanSetIP
2144 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szCategory;
2145 Ls_Rs_StringBuffer szContent;
2153 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szSwitchName;
2154 EmbeddedIPCString<MAX_LOG_SWITCH_NAME_LEN + 1> szParentSwitchName;
2155 } LogSwitchSettingMessage;
2157 // information needed to send to the RS as part of a custom notification from the target
2160 // Domain file for the domain in which the notification occurred
2161 VMPTR_DomainFile vmDomainFile;
2163 // metadata token for the type of the CustomNotification object's type
2164 mdTypeDef classToken;
2165 } CustomNotification;
2169 VMPTR_Thread vmThreadToken;
2170 CorDebugThreadState debugState;
2173 DebuggerIPCE_FuncEvalInfo FuncEval;
2177 CORDB_ADDRESS argDataArea;
2178 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2179 } FuncEvalSetupComplete;
2183 RSPTR_CORDBEVAL funcEvalKey;
2188 // AppDomain that the result is in.
2189 VMPTR_AppDomain vmAppDomain;
2191 VMPTR_OBJECTHANDLE vmObjectHandle;
2192 DebuggerIPCE_ExpandedTypeData resultType;
2197 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2202 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2203 } FuncEvalRudeAbort;
2207 LSPTR_DEBUGGEREVAL debuggerEvalKey;
2212 void *objectRefAddress;
2213 VMPTR_OBJECTHANDLE vmObjectHandle;
2219 NameChangeType eventType;
2220 VMPTR_AppDomain vmAppDomain;
2221 VMPTR_Thread vmThread;
2226 VMPTR_DomainFile vmDomainFile;
2231 // EnC Remap opportunity
2234 VMPTR_DomainFile vmDomainFile;
2235 mdMethodDef funcMetadataToken ; // methodDef of function with remap opportunity
2236 SIZE_T currentVersionNumber; // version currently executing
2237 SIZE_T resumeVersionNumber; // latest version
2238 SIZE_T currentILOffset; // the IL offset of the current IP
2239 SIZE_T *resumeILOffset; // pointer into left-side where an offset to resume
2240 // to should be written if remap is desired.
2243 // EnC Remap has taken place
2246 VMPTR_DomainFile vmDomainFile;
2247 mdMethodDef funcMetadataToken; // methodDef of function that was remapped
2250 // Notification that the LS is about to update a CLR data structure to account for a
2251 // specific edit made by EnC (function add/update or field add).
2254 VMPTR_DomainFile vmDomainFile;
2255 mdToken memberMetadataToken; // Either a methodDef token indicating the function that
2256 // was updated/added, or a fieldDef token indicating the
2257 // field which was added.
2258 mdTypeDef classMetadataToken; // TypeDef token of the class in which the update was made
2259 SIZE_T newVersionNumber; // The new function/module version
2266 DebuggerIPCE_BasicTypeData type;
2270 // Event used to tell LS if a single function is user or non-user code.
2271 // Same structure used to get function status.
2272 // @todo - Perhaps we can bundle these up so we can set multiple funcs w/ 1 event?
2275 VMPTR_DomainFile vmDomainFile;
2276 mdMethodDef funcMetadataToken;
2278 } SetJMCFunctionStatus;
2283 } GetThreadForTaskId;
2287 VMPTR_Thread vmThreadToken;
2288 } GetThreadForTaskIdResult;
2292 CONNID connectionId;
2297 CONNID connectionId;
2298 EmbeddedIPCString<MAX_LONGPATH> wzConnectionName;
2309 VMPTR_OBJECTHANDLE vmObjectHandle;
2310 } CreateHandleResult;
2312 // used in DB_IPCE_DISPOSE_HANDLE event
2315 VMPTR_OBJECTHANDLE vmObjectHandle;
2321 FramePointer framePointer;
2323 CorDebugExceptionCallbackType eventType;
2325 VMPTR_OBJECTHANDLE vmExceptionHandle;
2326 } ExceptionCallback2;
2330 CorDebugExceptionUnwindCallbackType eventType;
2336 VMPTR_Thread vmThreadToken;
2337 FramePointer frameToken;
2338 } InterceptException;
2342 VMPTR_Module vmModule;
2343 void * pMetadataStart;
2344 ULONG nMetadataSize;
2345 } MetadataUpdateRequest;
2351 // When using a network transport rather than shared memory buffers CorDBIPC_BUFFER_SIZE is the upper bound
2352 // for a single DebuggerIPCEvent structure. This now relates to the maximal size of a network message and is
2353 // orthogonal to the host's page size. Round the buffer size up to a multiple of 8 since MSVC seems more
2354 // aggressive in this regard than gcc.
2355 #define CorDBIPC_TRANSPORT_BUFFER_SIZE (((sizeof(DebuggerIPCEvent) + 7) / 8) * 8)
2357 // A DebuggerIPCEvent must fit in the send & receive buffers, which are CorDBIPC_BUFFER_SIZE bytes.
2358 static_assert_no_msg(sizeof(DebuggerIPCEvent) <= CorDBIPC_BUFFER_SIZE);
2359 static_assert_no_msg(CorDBIPC_TRANSPORT_BUFFER_SIZE <= CorDBIPC_BUFFER_SIZE);
2361 // 2*sizeof(WCHAR) for the two string terminating characters in the FirstLogMessage
2362 #define LOG_MSG_PADDING 4
2364 #endif /* _DbgIPCEvents_h_ */