compare degenerates with tolerance
[platform/upstream/libSkiaSharp.git] / src / core / SkGeometry.cpp
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11
12 static SkVector to_vector(const Sk2s& x) {
13     SkVector vector;
14     x.store(&vector);
15     return vector;
16 }
17
18 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
19     involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
20     May also introduce overflow of fixed when we compute our setup.
21 */
22 //    #define DIRECT_EVAL_OF_POLYNOMIALS
23
24 ////////////////////////////////////////////////////////////////////////
25
26 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
27     SkScalar ab = a - b;
28     SkScalar bc = b - c;
29     if (ab < 0) {
30         bc = -bc;
31     }
32     return ab == 0 || bc < 0;
33 }
34
35 ////////////////////////////////////////////////////////////////////////
36
37 static bool is_unit_interval(SkScalar x) {
38     return x > 0 && x < SK_Scalar1;
39 }
40
41 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
42     SkASSERT(ratio);
43
44     if (numer < 0) {
45         numer = -numer;
46         denom = -denom;
47     }
48
49     if (denom == 0 || numer == 0 || numer >= denom) {
50         return 0;
51     }
52
53     SkScalar r = numer / denom;
54     if (SkScalarIsNaN(r)) {
55         return 0;
56     }
57     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
58     if (r == 0) { // catch underflow if numer <<<< denom
59         return 0;
60     }
61     *ratio = r;
62     return 1;
63 }
64
65 /** From Numerical Recipes in C.
66
67     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
68     x1 = Q / A
69     x2 = C / Q
70 */
71 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
72     SkASSERT(roots);
73
74     if (A == 0) {
75         return valid_unit_divide(-C, B, roots);
76     }
77
78     SkScalar* r = roots;
79
80     SkScalar R = B*B - 4*A*C;
81     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
82         // if R is infinite, it's possible that it may still produce
83         // useful results if the operation was repeated in doubles
84         // the flipside is determining if the more precise answer
85         // isn't useful because surrounding machinery (e.g., subtracting
86         // the axis offset from C) already discards the extra precision
87         // more investigation and unit tests required...
88         return 0;
89     }
90     R = SkScalarSqrt(R);
91
92     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
93     r += valid_unit_divide(Q, A, r);
94     r += valid_unit_divide(C, Q, r);
95     if (r - roots == 2) {
96         if (roots[0] > roots[1])
97             SkTSwap<SkScalar>(roots[0], roots[1]);
98         else if (roots[0] == roots[1])  // nearly-equal?
99             r -= 1; // skip the double root
100     }
101     return (int)(r - roots);
102 }
103
104 ///////////////////////////////////////////////////////////////////////////////
105 ///////////////////////////////////////////////////////////////////////////////
106
107 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
108     SkASSERT(src);
109     SkASSERT(t >= 0 && t <= SK_Scalar1);
110
111     if (pt) {
112         *pt = SkEvalQuadAt(src, t);
113     }
114     if (tangent) {
115         *tangent = SkEvalQuadTangentAt(src, t);
116     }
117 }
118
119 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
120     return to_point(SkQuadCoeff(src).eval(t));
121 }
122
123 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
124     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
125     // zero tangent vector when t is 0 or 1, and the control point is equal
126     // to the end point. In this case, use the quad end points to compute the tangent.
127     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
128         return src[2] - src[0];
129     }
130     SkASSERT(src);
131     SkASSERT(t >= 0 && t <= SK_Scalar1);
132
133     Sk2s P0 = from_point(src[0]);
134     Sk2s P1 = from_point(src[1]);
135     Sk2s P2 = from_point(src[2]);
136
137     Sk2s B = P1 - P0;
138     Sk2s A = P2 - P1 - B;
139     Sk2s T = A * Sk2s(t) + B;
140
141     return to_vector(T + T);
142 }
143
144 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
145     return v0 + (v1 - v0) * t;
146 }
147
148 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
149     SkASSERT(t > 0 && t < SK_Scalar1);
150
151     Sk2s p0 = from_point(src[0]);
152     Sk2s p1 = from_point(src[1]);
153     Sk2s p2 = from_point(src[2]);
154     Sk2s tt(t);
155
156     Sk2s p01 = interp(p0, p1, tt);
157     Sk2s p12 = interp(p1, p2, tt);
158
159     dst[0] = to_point(p0);
160     dst[1] = to_point(p01);
161     dst[2] = to_point(interp(p01, p12, tt));
162     dst[3] = to_point(p12);
163     dst[4] = to_point(p2);
164 }
165
166 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
167     SkChopQuadAt(src, dst, 0.5f);
168 }
169
170 /** Quad'(t) = At + B, where
171     A = 2(a - 2b + c)
172     B = 2(b - a)
173     Solve for t, only if it fits between 0 < t < 1
174 */
175 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
176     /*  At + B == 0
177         t = -B / A
178     */
179     return valid_unit_divide(a - b, a - b - b + c, tValue);
180 }
181
182 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
183     coords[2] = coords[6] = coords[4];
184 }
185
186 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
187  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
188  */
189 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
190     SkASSERT(src);
191     SkASSERT(dst);
192
193     SkScalar a = src[0].fY;
194     SkScalar b = src[1].fY;
195     SkScalar c = src[2].fY;
196
197     if (is_not_monotonic(a, b, c)) {
198         SkScalar    tValue;
199         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
200             SkChopQuadAt(src, dst, tValue);
201             flatten_double_quad_extrema(&dst[0].fY);
202             return 1;
203         }
204         // if we get here, we need to force dst to be monotonic, even though
205         // we couldn't compute a unit_divide value (probably underflow).
206         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
207     }
208     dst[0].set(src[0].fX, a);
209     dst[1].set(src[1].fX, b);
210     dst[2].set(src[2].fX, c);
211     return 0;
212 }
213
214 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
215     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
216  */
217 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
218     SkASSERT(src);
219     SkASSERT(dst);
220
221     SkScalar a = src[0].fX;
222     SkScalar b = src[1].fX;
223     SkScalar c = src[2].fX;
224
225     if (is_not_monotonic(a, b, c)) {
226         SkScalar tValue;
227         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
228             SkChopQuadAt(src, dst, tValue);
229             flatten_double_quad_extrema(&dst[0].fX);
230             return 1;
231         }
232         // if we get here, we need to force dst to be monotonic, even though
233         // we couldn't compute a unit_divide value (probably underflow).
234         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
235     }
236     dst[0].set(a, src[0].fY);
237     dst[1].set(b, src[1].fY);
238     dst[2].set(c, src[2].fY);
239     return 0;
240 }
241
242 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
243 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
244 //  F''(t)  = 2 (a - 2b + c)
245 //
246 //  A = 2 (b - a)
247 //  B = 2 (a - 2b + c)
248 //
249 //  Maximum curvature for a quadratic means solving
250 //  Fx' Fx'' + Fy' Fy'' = 0
251 //
252 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
253 //
254 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
255     SkScalar    Ax = src[1].fX - src[0].fX;
256     SkScalar    Ay = src[1].fY - src[0].fY;
257     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
258     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
259     SkScalar    t = 0;  // 0 means don't chop
260
261     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
262     return t;
263 }
264
265 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
266     SkScalar t = SkFindQuadMaxCurvature(src);
267     if (t == 0) {
268         memcpy(dst, src, 3 * sizeof(SkPoint));
269         return 1;
270     } else {
271         SkChopQuadAt(src, dst, t);
272         return 2;
273     }
274 }
275
276 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
277     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
278     Sk2s s0 = from_point(src[0]);
279     Sk2s s1 = from_point(src[1]);
280     Sk2s s2 = from_point(src[2]);
281
282     dst[0] = src[0];
283     dst[1] = to_point(s0 + (s1 - s0) * scale);
284     dst[2] = to_point(s2 + (s1 - s2) * scale);
285     dst[3] = src[2];
286 }
287
288 //////////////////////////////////////////////////////////////////////////////
289 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
290 //////////////////////////////////////////////////////////////////////////////
291
292 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
293 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
294     SkASSERT(src);
295     SkASSERT(t >= 0 && t <= SK_Scalar1);
296
297     if (t == 0) {
298         return src[0];
299     }
300
301 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
302     SkScalar D = src[0];
303     SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
304     SkScalar B = 3*(src[4] - src[2] - src[2] + D);
305     SkScalar C = 3*(src[2] - D);
306
307     return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
308 #else
309     SkScalar    ab = SkScalarInterp(src[0], src[2], t);
310     SkScalar    bc = SkScalarInterp(src[2], src[4], t);
311     SkScalar    cd = SkScalarInterp(src[4], src[6], t);
312     SkScalar    abc = SkScalarInterp(ab, bc, t);
313     SkScalar    bcd = SkScalarInterp(bc, cd, t);
314     return SkScalarInterp(abc, bcd, t);
315 #endif
316 }
317 #endif
318
319 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
320     SkQuadCoeff coeff;
321     Sk2s P0 = from_point(src[0]);
322     Sk2s P1 = from_point(src[1]);
323     Sk2s P2 = from_point(src[2]);
324     Sk2s P3 = from_point(src[3]);
325
326     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
327     coeff.fB = times_2(P2 - times_2(P1) + P0);
328     coeff.fC = P1 - P0;
329     return to_vector(coeff.eval(t));
330 }
331
332 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
333     Sk2s P0 = from_point(src[0]);
334     Sk2s P1 = from_point(src[1]);
335     Sk2s P2 = from_point(src[2]);
336     Sk2s P3 = from_point(src[3]);
337     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
338     Sk2s B = P2 - times_2(P1) + P0;
339
340     return to_vector(A * Sk2s(t) + B);
341 }
342
343 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
344                    SkVector* tangent, SkVector* curvature) {
345     SkASSERT(src);
346     SkASSERT(t >= 0 && t <= SK_Scalar1);
347
348     if (loc) {
349 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
350         loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
351 #else
352         *loc = to_point(SkCubicCoeff(src).eval(t));
353 #endif
354     }
355     if (tangent) {
356         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
357         // adjacent control point is equal to the end point. In this case, use the
358         // next control point or the end points to compute the tangent.
359         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
360             if (t == 0) {
361                 *tangent = src[2] - src[0];
362             } else {
363                 *tangent = src[3] - src[1];
364             }
365             if (!tangent->fX && !tangent->fY) {
366                 *tangent = src[3] - src[0];
367             }
368         } else {
369             *tangent = eval_cubic_derivative(src, t);
370         }
371     }
372     if (curvature) {
373         *curvature = eval_cubic_2ndDerivative(src, t);
374     }
375 }
376
377 /** Cubic'(t) = At^2 + Bt + C, where
378     A = 3(-a + 3(b - c) + d)
379     B = 6(a - 2b + c)
380     C = 3(b - a)
381     Solve for t, keeping only those that fit betwee 0 < t < 1
382 */
383 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
384                        SkScalar tValues[2]) {
385     // we divide A,B,C by 3 to simplify
386     SkScalar A = d - a + 3*(b - c);
387     SkScalar B = 2*(a - b - b + c);
388     SkScalar C = b - a;
389
390     return SkFindUnitQuadRoots(A, B, C, tValues);
391 }
392
393 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
394     SkASSERT(t > 0 && t < SK_Scalar1);
395
396     Sk2s    p0 = from_point(src[0]);
397     Sk2s    p1 = from_point(src[1]);
398     Sk2s    p2 = from_point(src[2]);
399     Sk2s    p3 = from_point(src[3]);
400     Sk2s    tt(t);
401
402     Sk2s    ab = interp(p0, p1, tt);
403     Sk2s    bc = interp(p1, p2, tt);
404     Sk2s    cd = interp(p2, p3, tt);
405     Sk2s    abc = interp(ab, bc, tt);
406     Sk2s    bcd = interp(bc, cd, tt);
407     Sk2s    abcd = interp(abc, bcd, tt);
408
409     dst[0] = src[0];
410     dst[1] = to_point(ab);
411     dst[2] = to_point(abc);
412     dst[3] = to_point(abcd);
413     dst[4] = to_point(bcd);
414     dst[5] = to_point(cd);
415     dst[6] = src[3];
416 }
417
418 /*  http://code.google.com/p/skia/issues/detail?id=32
419
420     This test code would fail when we didn't check the return result of
421     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
422     that after the first chop, the parameters to valid_unit_divide are equal
423     (thanks to finite float precision and rounding in the subtracts). Thus
424     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
425     up with 1.0, hence the need to check and just return the last cubic as
426     a degenerate clump of 4 points in the sampe place.
427
428     static void test_cubic() {
429         SkPoint src[4] = {
430             { 556.25000, 523.03003 },
431             { 556.23999, 522.96002 },
432             { 556.21997, 522.89001 },
433             { 556.21997, 522.82001 }
434         };
435         SkPoint dst[10];
436         SkScalar tval[] = { 0.33333334f, 0.99999994f };
437         SkChopCubicAt(src, dst, tval, 2);
438     }
439  */
440
441 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
442                    const SkScalar tValues[], int roots) {
443 #ifdef SK_DEBUG
444     {
445         for (int i = 0; i < roots - 1; i++)
446         {
447             SkASSERT(is_unit_interval(tValues[i]));
448             SkASSERT(is_unit_interval(tValues[i+1]));
449             SkASSERT(tValues[i] < tValues[i+1]);
450         }
451     }
452 #endif
453
454     if (dst) {
455         if (roots == 0) { // nothing to chop
456             memcpy(dst, src, 4*sizeof(SkPoint));
457         } else {
458             SkScalar    t = tValues[0];
459             SkPoint     tmp[4];
460
461             for (int i = 0; i < roots; i++) {
462                 SkChopCubicAt(src, dst, t);
463                 if (i == roots - 1) {
464                     break;
465                 }
466
467                 dst += 3;
468                 // have src point to the remaining cubic (after the chop)
469                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
470                 src = tmp;
471
472                 // watch out in case the renormalized t isn't in range
473                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
474                                        SK_Scalar1 - tValues[i], &t)) {
475                     // if we can't, just create a degenerate cubic
476                     dst[4] = dst[5] = dst[6] = src[3];
477                     break;
478                 }
479             }
480         }
481     }
482 }
483
484 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
485     SkChopCubicAt(src, dst, 0.5f);
486 }
487
488 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
489     coords[4] = coords[8] = coords[6];
490 }
491
492 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
493     the resulting beziers are monotonic in Y. This is called by the scan
494     converter.  Depending on what is returned, dst[] is treated as follows:
495     0   dst[0..3] is the original cubic
496     1   dst[0..3] and dst[3..6] are the two new cubics
497     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
498     If dst == null, it is ignored and only the count is returned.
499 */
500 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
501     SkScalar    tValues[2];
502     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
503                                            src[3].fY, tValues);
504
505     SkChopCubicAt(src, dst, tValues, roots);
506     if (dst && roots > 0) {
507         // we do some cleanup to ensure our Y extrema are flat
508         flatten_double_cubic_extrema(&dst[0].fY);
509         if (roots == 2) {
510             flatten_double_cubic_extrema(&dst[3].fY);
511         }
512     }
513     return roots;
514 }
515
516 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
517     SkScalar    tValues[2];
518     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
519                                            src[3].fX, tValues);
520
521     SkChopCubicAt(src, dst, tValues, roots);
522     if (dst && roots > 0) {
523         // we do some cleanup to ensure our Y extrema are flat
524         flatten_double_cubic_extrema(&dst[0].fX);
525         if (roots == 2) {
526             flatten_double_cubic_extrema(&dst[3].fX);
527         }
528     }
529     return roots;
530 }
531
532 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
533
534     Inflection means that curvature is zero.
535     Curvature is [F' x F''] / [F'^3]
536     So we solve F'x X F''y - F'y X F''y == 0
537     After some canceling of the cubic term, we get
538     A = b - a
539     B = c - 2b + a
540     C = d - 3c + 3b - a
541     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
542 */
543 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
544     SkScalar    Ax = src[1].fX - src[0].fX;
545     SkScalar    Ay = src[1].fY - src[0].fY;
546     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
547     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
548     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
549     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
550
551     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
552                                Ax*Cy - Ay*Cx,
553                                Ax*By - Ay*Bx,
554                                tValues);
555 }
556
557 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
558     SkScalar    tValues[2];
559     int         count = SkFindCubicInflections(src, tValues);
560
561     if (dst) {
562         if (count == 0) {
563             memcpy(dst, src, 4 * sizeof(SkPoint));
564         } else {
565             SkChopCubicAt(src, dst, tValues, count);
566         }
567     }
568     return count + 1;
569 }
570
571 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
572 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
573 // Classification:
574 // discr(I) > 0        Serpentine
575 // discr(I) = 0        Cusp
576 // discr(I) < 0        Loop
577 // d0 = d1 = 0         Quadratic
578 // d0 = d1 = d2 = 0    Line
579 // p0 = p1 = p2 = p3   Point
580 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
581     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
582         return kPoint_SkCubicType;
583     }
584     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
585     if (discr > SK_ScalarNearlyZero) {
586         return kSerpentine_SkCubicType;
587     } else if (discr < -SK_ScalarNearlyZero) {
588         return kLoop_SkCubicType;
589     } else {
590         if (0.f == d[0] && 0.f == d[1]) {
591             return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
592         } else {
593             return kCusp_SkCubicType;
594         }
595     }
596 }
597
598 // Assumes the third component of points is 1.
599 // Calcs p0 . (p1 x p2)
600 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
601     const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
602     const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
603     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
604     return (xComp + yComp + wComp);
605 }
606
607 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
608 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
609 // d0 = a1 - 2*a2+3*a3
610 // d1 = -a2 + 3*a3
611 // d2 = 3*a3
612 // a1 = p0 . (p3 x p2)
613 // a2 = p1 . (p0 x p3)
614 // a3 = p2 . (p1 x p0)
615 // Places the values of d1, d2, d3 in array d passed in
616 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
617     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
618     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
619     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
620
621     // need to scale a's or values in later calculations will grow to high
622     SkScalar max = SkScalarAbs(a1);
623     max = SkMaxScalar(max, SkScalarAbs(a2));
624     max = SkMaxScalar(max, SkScalarAbs(a3));
625     max = 1.f/max;
626     a1 = a1 * max;
627     a2 = a2 * max;
628     a3 = a3 * max;
629
630     d[2] = 3.f * a3;
631     d[1] = d[2] - a2;
632     d[0] = d[1] - a2 + a1;
633 }
634
635 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
636     calc_cubic_inflection_func(src, d);
637     return classify_cubic(src, d);
638 }
639
640 template <typename T> void bubble_sort(T array[], int count) {
641     for (int i = count - 1; i > 0; --i)
642         for (int j = i; j > 0; --j)
643             if (array[j] < array[j-1])
644             {
645                 T   tmp(array[j]);
646                 array[j] = array[j-1];
647                 array[j-1] = tmp;
648             }
649 }
650
651 /**
652  *  Given an array and count, remove all pair-wise duplicates from the array,
653  *  keeping the existing sorting, and return the new count
654  */
655 static int collaps_duplicates(SkScalar array[], int count) {
656     for (int n = count; n > 1; --n) {
657         if (array[0] == array[1]) {
658             for (int i = 1; i < n; ++i) {
659                 array[i - 1] = array[i];
660             }
661             count -= 1;
662         } else {
663             array += 1;
664         }
665     }
666     return count;
667 }
668
669 #ifdef SK_DEBUG
670
671 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
672
673 static void test_collaps_duplicates() {
674     static bool gOnce;
675     if (gOnce) { return; }
676     gOnce = true;
677     const SkScalar src0[] = { 0 };
678     const SkScalar src1[] = { 0, 0 };
679     const SkScalar src2[] = { 0, 1 };
680     const SkScalar src3[] = { 0, 0, 0 };
681     const SkScalar src4[] = { 0, 0, 1 };
682     const SkScalar src5[] = { 0, 1, 1 };
683     const SkScalar src6[] = { 0, 1, 2 };
684     const struct {
685         const SkScalar* fData;
686         int fCount;
687         int fCollapsedCount;
688     } data[] = {
689         { TEST_COLLAPS_ENTRY(src0), 1 },
690         { TEST_COLLAPS_ENTRY(src1), 1 },
691         { TEST_COLLAPS_ENTRY(src2), 2 },
692         { TEST_COLLAPS_ENTRY(src3), 1 },
693         { TEST_COLLAPS_ENTRY(src4), 2 },
694         { TEST_COLLAPS_ENTRY(src5), 2 },
695         { TEST_COLLAPS_ENTRY(src6), 3 },
696     };
697     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
698         SkScalar dst[3];
699         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
700         int count = collaps_duplicates(dst, data[i].fCount);
701         SkASSERT(data[i].fCollapsedCount == count);
702         for (int j = 1; j < count; ++j) {
703             SkASSERT(dst[j-1] < dst[j]);
704         }
705     }
706 }
707 #endif
708
709 static SkScalar SkScalarCubeRoot(SkScalar x) {
710     return SkScalarPow(x, 0.3333333f);
711 }
712
713 /*  Solve coeff(t) == 0, returning the number of roots that
714     lie withing 0 < t < 1.
715     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
716
717     Eliminates repeated roots (so that all tValues are distinct, and are always
718     in increasing order.
719 */
720 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
721     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
722         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
723     }
724
725     SkScalar a, b, c, Q, R;
726
727     {
728         SkASSERT(coeff[0] != 0);
729
730         SkScalar inva = SkScalarInvert(coeff[0]);
731         a = coeff[1] * inva;
732         b = coeff[2] * inva;
733         c = coeff[3] * inva;
734     }
735     Q = (a*a - b*3) / 9;
736     R = (2*a*a*a - 9*a*b + 27*c) / 54;
737
738     SkScalar Q3 = Q * Q * Q;
739     SkScalar R2MinusQ3 = R * R - Q3;
740     SkScalar adiv3 = a / 3;
741
742     SkScalar*   roots = tValues;
743     SkScalar    r;
744
745     if (R2MinusQ3 < 0) { // we have 3 real roots
746         // the divide/root can, due to finite precisions, be slightly outside of -1...1
747         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
748         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
749
750         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
751         if (is_unit_interval(r)) {
752             *roots++ = r;
753         }
754         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
755         if (is_unit_interval(r)) {
756             *roots++ = r;
757         }
758         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
759         if (is_unit_interval(r)) {
760             *roots++ = r;
761         }
762         SkDEBUGCODE(test_collaps_duplicates();)
763
764         // now sort the roots
765         int count = (int)(roots - tValues);
766         SkASSERT((unsigned)count <= 3);
767         bubble_sort(tValues, count);
768         count = collaps_duplicates(tValues, count);
769         roots = tValues + count;    // so we compute the proper count below
770     } else {              // we have 1 real root
771         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
772         A = SkScalarCubeRoot(A);
773         if (R > 0) {
774             A = -A;
775         }
776         if (A != 0) {
777             A += Q / A;
778         }
779         r = A - adiv3;
780         if (is_unit_interval(r)) {
781             *roots++ = r;
782         }
783     }
784
785     return (int)(roots - tValues);
786 }
787
788 /*  Looking for F' dot F'' == 0
789
790     A = b - a
791     B = c - 2b + a
792     C = d - 3c + 3b - a
793
794     F' = 3Ct^2 + 6Bt + 3A
795     F'' = 6Ct + 6B
796
797     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
798 */
799 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
800     SkScalar    a = src[2] - src[0];
801     SkScalar    b = src[4] - 2 * src[2] + src[0];
802     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
803
804     coeff[0] = c * c;
805     coeff[1] = 3 * b * c;
806     coeff[2] = 2 * b * b + c * a;
807     coeff[3] = a * b;
808 }
809
810 /*  Looking for F' dot F'' == 0
811
812     A = b - a
813     B = c - 2b + a
814     C = d - 3c + 3b - a
815
816     F' = 3Ct^2 + 6Bt + 3A
817     F'' = 6Ct + 6B
818
819     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
820 */
821 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
822     SkScalar coeffX[4], coeffY[4];
823     int      i;
824
825     formulate_F1DotF2(&src[0].fX, coeffX);
826     formulate_F1DotF2(&src[0].fY, coeffY);
827
828     for (i = 0; i < 4; i++) {
829         coeffX[i] += coeffY[i];
830     }
831
832     SkScalar    t[3];
833     int         count = solve_cubic_poly(coeffX, t);
834     int         maxCount = 0;
835
836     // now remove extrema where the curvature is zero (mins)
837     // !!!! need a test for this !!!!
838     for (i = 0; i < count; i++) {
839         // if (not_min_curvature())
840         if (t[i] > 0 && t[i] < SK_Scalar1) {
841             tValues[maxCount++] = t[i];
842         }
843     }
844     return maxCount;
845 }
846
847 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
848                               SkScalar tValues[3]) {
849     SkScalar    t_storage[3];
850
851     if (tValues == nullptr) {
852         tValues = t_storage;
853     }
854
855     int count = SkFindCubicMaxCurvature(src, tValues);
856
857     if (dst) {
858         if (count == 0) {
859             memcpy(dst, src, 4 * sizeof(SkPoint));
860         } else {
861             SkChopCubicAt(src, dst, tValues, count);
862         }
863     }
864     return count + 1;
865 }
866
867 #include "../pathops/SkPathOpsCubic.h"
868
869 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
870
871 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
872                                      InterceptProc method) {
873     SkDCubic cubic;
874     double roots[3];
875     int count = (cubic.set(src).*method)(intercept, roots);
876     if (count > 0) {
877         SkDCubicPair pair = cubic.chopAt(roots[0]);
878         for (int i = 0; i < 7; ++i) {
879             dst[i] = pair.pts[i].asSkPoint();
880         }
881         return true;
882     }
883     return false;
884 }
885
886 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
887     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
888 }
889
890 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
891     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
892 }
893
894 ///////////////////////////////////////////////////////////////////////////////
895 //
896 // NURB representation for conics.  Helpful explanations at:
897 //
898 // http://citeseerx.ist.psu.edu/viewdoc/
899 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
900 // and
901 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
902 //
903 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
904 //     ------------------------------------------
905 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
906 //
907 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
908 //     ------------------------------------------------
909 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
910 //
911
912 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
913 //
914 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
915 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
916 //  t^0 : -2 P0 w + 2 P1 w
917 //
918 //  We disregard magnitude, so we can freely ignore the denominator of F', and
919 //  divide the numerator by 2
920 //
921 //    coeff[0] for t^2
922 //    coeff[1] for t^1
923 //    coeff[2] for t^0
924 //
925 static void conic_deriv_coeff(const SkScalar src[],
926                               SkScalar w,
927                               SkScalar coeff[3]) {
928     const SkScalar P20 = src[4] - src[0];
929     const SkScalar P10 = src[2] - src[0];
930     const SkScalar wP10 = w * P10;
931     coeff[0] = w * P20 - P20;
932     coeff[1] = P20 - 2 * wP10;
933     coeff[2] = wP10;
934 }
935
936 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
937     SkScalar coeff[3];
938     conic_deriv_coeff(src, w, coeff);
939
940     SkScalar tValues[2];
941     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
942     SkASSERT(0 == roots || 1 == roots);
943
944     if (1 == roots) {
945         *t = tValues[0];
946         return true;
947     }
948     return false;
949 }
950
951 struct SkP3D {
952     SkScalar fX, fY, fZ;
953
954     void set(SkScalar x, SkScalar y, SkScalar z) {
955         fX = x; fY = y; fZ = z;
956     }
957
958     void projectDown(SkPoint* dst) const {
959         dst->set(fX / fZ, fY / fZ);
960     }
961 };
962
963 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
964 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
965     SkScalar ab = SkScalarInterp(src[0], src[3], t);
966     SkScalar bc = SkScalarInterp(src[3], src[6], t);
967     dst[0] = ab;
968     dst[3] = SkScalarInterp(ab, bc, t);
969     dst[6] = bc;
970 }
971
972 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
973     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
974     dst[1].set(src[1].fX * w, src[1].fY * w, w);
975     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
976 }
977
978 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
979     SkP3D tmp[3], tmp2[3];
980
981     ratquad_mapTo3D(fPts, fW, tmp);
982
983     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
984     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
985     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
986
987     dst[0].fPts[0] = fPts[0];
988     tmp2[0].projectDown(&dst[0].fPts[1]);
989     tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
990     tmp2[2].projectDown(&dst[1].fPts[1]);
991     dst[1].fPts[2] = fPts[2];
992
993     // to put in "standard form", where w0 and w2 are both 1, we compute the
994     // new w1 as sqrt(w1*w1/w0*w2)
995     // or
996     // w1 /= sqrt(w0*w2)
997     //
998     // However, in our case, we know that for dst[0]:
999     //     w0 == 1, and for dst[1], w2 == 1
1000     //
1001     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1002     dst[0].fW = tmp2[0].fZ / root;
1003     dst[1].fW = tmp2[2].fZ / root;
1004 }
1005
1006 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1007     if (0 == t1 || 1 == t2) {
1008         if (0 == t1 && 1 == t2) {
1009             *dst = *this;
1010         } else {
1011             SkConic pair[2];
1012             this->chopAt(t1 ? t1 : t2, pair);
1013             *dst = pair[SkToBool(t1)];
1014         }
1015         return;
1016     }
1017     SkConicCoeff coeff(*this);
1018     Sk2s tt1(t1);
1019     Sk2s aXY = coeff.fNumer.eval(tt1);
1020     Sk2s aZZ = coeff.fDenom.eval(tt1);
1021     Sk2s midTT((t1 + t2) / 2);
1022     Sk2s dXY = coeff.fNumer.eval(midTT);
1023     Sk2s dZZ = coeff.fDenom.eval(midTT);
1024     Sk2s tt2(t2);
1025     Sk2s cXY = coeff.fNumer.eval(tt2);
1026     Sk2s cZZ = coeff.fDenom.eval(tt2);
1027     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1028     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1029     dst->fPts[0] = to_point(aXY / aZZ);
1030     dst->fPts[1] = to_point(bXY / bZZ);
1031     dst->fPts[2] = to_point(cXY / cZZ);
1032     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1033     dst->fW = ww[0];
1034 }
1035
1036 SkPoint SkConic::evalAt(SkScalar t) const {
1037     return to_point(SkConicCoeff(*this).eval(t));
1038 }
1039
1040 SkVector SkConic::evalTangentAt(SkScalar t) const {
1041     // The derivative equation returns a zero tangent vector when t is 0 or 1,
1042     // and the control point is equal to the end point.
1043     // In this case, use the conic endpoints to compute the tangent.
1044     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1045         return fPts[2] - fPts[0];
1046     }
1047     Sk2s p0 = from_point(fPts[0]);
1048     Sk2s p1 = from_point(fPts[1]);
1049     Sk2s p2 = from_point(fPts[2]);
1050     Sk2s ww(fW);
1051
1052     Sk2s p20 = p2 - p0;
1053     Sk2s p10 = p1 - p0;
1054
1055     Sk2s C = ww * p10;
1056     Sk2s A = ww * p20 - p20;
1057     Sk2s B = p20 - C - C;
1058
1059     return to_vector(SkQuadCoeff(A, B, C).eval(t));
1060 }
1061
1062 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1063     SkASSERT(t >= 0 && t <= SK_Scalar1);
1064
1065     if (pt) {
1066         *pt = this->evalAt(t);
1067     }
1068     if (tangent) {
1069         *tangent = this->evalTangentAt(t);
1070     }
1071 }
1072
1073 static SkScalar subdivide_w_value(SkScalar w) {
1074     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1075 }
1076
1077 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1078     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1079     SkScalar newW = subdivide_w_value(fW);
1080
1081     Sk2s p0 = from_point(fPts[0]);
1082     Sk2s p1 = from_point(fPts[1]);
1083     Sk2s p2 = from_point(fPts[2]);
1084     Sk2s ww(fW);
1085
1086     Sk2s wp1 = ww * p1;
1087     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1088
1089     dst[0].fPts[0] = fPts[0];
1090     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1091     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1092     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1093     dst[1].fPts[2] = fPts[2];
1094
1095     dst[0].fW = dst[1].fW = newW;
1096 }
1097
1098 /*
1099  *  "High order approximation of conic sections by quadratic splines"
1100  *      by Michael Floater, 1993
1101  */
1102 #define AS_QUAD_ERROR_SETUP                                         \
1103     SkScalar a = fW - 1;                                            \
1104     SkScalar k = a / (4 * (2 + a));                                 \
1105     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1106     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1107
1108 void SkConic::computeAsQuadError(SkVector* err) const {
1109     AS_QUAD_ERROR_SETUP
1110     err->set(x, y);
1111 }
1112
1113 bool SkConic::asQuadTol(SkScalar tol) const {
1114     AS_QUAD_ERROR_SETUP
1115     return (x * x + y * y) <= tol * tol;
1116 }
1117
1118 // Limit the number of suggested quads to approximate a conic
1119 #define kMaxConicToQuadPOW2     5
1120
1121 int SkConic::computeQuadPOW2(SkScalar tol) const {
1122     if (tol < 0 || !SkScalarIsFinite(tol)) {
1123         return 0;
1124     }
1125
1126     AS_QUAD_ERROR_SETUP
1127
1128     SkScalar error = SkScalarSqrt(x * x + y * y);
1129     int pow2;
1130     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1131         if (error <= tol) {
1132             break;
1133         }
1134         error *= 0.25f;
1135     }
1136     // float version -- using ceil gives the same results as the above.
1137     if (false) {
1138         SkScalar err = SkScalarSqrt(x * x + y * y);
1139         if (err <= tol) {
1140             return 0;
1141         }
1142         SkScalar tol2 = tol * tol;
1143         if (tol2 == 0) {
1144             return kMaxConicToQuadPOW2;
1145         }
1146         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1147         int altPow2 = SkScalarCeilToInt(fpow2);
1148         if (altPow2 != pow2) {
1149             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1150         }
1151         pow2 = altPow2;
1152     }
1153     return pow2;
1154 }
1155
1156 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1157     SkASSERT(level >= 0);
1158
1159     if (0 == level) {
1160         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1161         return pts + 2;
1162     } else {
1163         SkConic dst[2];
1164         src.chop(dst);
1165         --level;
1166         pts = subdivide(dst[0], pts, level);
1167         return subdivide(dst[1], pts, level);
1168     }
1169 }
1170
1171 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1172     SkASSERT(pow2 >= 0);
1173     *pts = fPts[0];
1174     SkDEBUGCODE(SkPoint* endPts);
1175     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
1176         SkConic dst[2];
1177         this->chop(dst);
1178         // check to see if the first chop generates a pair of lines
1179         if (dst[0].fPts[1].equalsWithinTolerance(dst[0].fPts[2])
1180                 && dst[1].fPts[0].equalsWithinTolerance(dst[1].fPts[1])) {
1181             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
1182             pts[4] = dst[1].fPts[2];
1183             pow2 = 1;
1184             SkDEBUGCODE(endPts = &pts[5]);
1185             goto commonFinitePtCheck;
1186         }
1187     }
1188     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1189 commonFinitePtCheck:
1190     const int quadCount = 1 << pow2;
1191     const int ptCount = 2 * quadCount + 1;
1192     SkASSERT(endPts - pts == ptCount);
1193     if (!SkPointsAreFinite(pts, ptCount)) {
1194         // if we generated a non-finite, pin ourselves to the middle of the hull,
1195         // as our first and last are already on the first/last pts of the hull.
1196         for (int i = 1; i < ptCount - 1; ++i) {
1197             pts[i] = fPts[1];
1198         }
1199     }
1200     return 1 << pow2;
1201 }
1202
1203 bool SkConic::findXExtrema(SkScalar* t) const {
1204     return conic_find_extrema(&fPts[0].fX, fW, t);
1205 }
1206
1207 bool SkConic::findYExtrema(SkScalar* t) const {
1208     return conic_find_extrema(&fPts[0].fY, fW, t);
1209 }
1210
1211 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1212     SkScalar t;
1213     if (this->findXExtrema(&t)) {
1214         this->chopAt(t, dst);
1215         // now clean-up the middle, since we know t was meant to be at
1216         // an X-extrema
1217         SkScalar value = dst[0].fPts[2].fX;
1218         dst[0].fPts[1].fX = value;
1219         dst[1].fPts[0].fX = value;
1220         dst[1].fPts[1].fX = value;
1221         return true;
1222     }
1223     return false;
1224 }
1225
1226 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1227     SkScalar t;
1228     if (this->findYExtrema(&t)) {
1229         this->chopAt(t, dst);
1230         // now clean-up the middle, since we know t was meant to be at
1231         // an Y-extrema
1232         SkScalar value = dst[0].fPts[2].fY;
1233         dst[0].fPts[1].fY = value;
1234         dst[1].fPts[0].fY = value;
1235         dst[1].fPts[1].fY = value;
1236         return true;
1237     }
1238     return false;
1239 }
1240
1241 void SkConic::computeTightBounds(SkRect* bounds) const {
1242     SkPoint pts[4];
1243     pts[0] = fPts[0];
1244     pts[1] = fPts[2];
1245     int count = 2;
1246
1247     SkScalar t;
1248     if (this->findXExtrema(&t)) {
1249         this->evalAt(t, &pts[count++]);
1250     }
1251     if (this->findYExtrema(&t)) {
1252         this->evalAt(t, &pts[count++]);
1253     }
1254     bounds->set(pts, count);
1255 }
1256
1257 void SkConic::computeFastBounds(SkRect* bounds) const {
1258     bounds->set(fPts, 3);
1259 }
1260
1261 #if 0  // unimplemented
1262 bool SkConic::findMaxCurvature(SkScalar* t) const {
1263     // TODO: Implement me
1264     return false;
1265 }
1266 #endif
1267
1268 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1269                              const SkMatrix& matrix) {
1270     if (!matrix.hasPerspective()) {
1271         return w;
1272     }
1273
1274     SkP3D src[3], dst[3];
1275
1276     ratquad_mapTo3D(pts, w, src);
1277
1278     matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1279
1280     // w' = sqrt(w1*w1/w0*w2)
1281     SkScalar w0 = dst[0].fZ;
1282     SkScalar w1 = dst[1].fZ;
1283     SkScalar w2 = dst[2].fZ;
1284     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1285     return w;
1286 }
1287
1288 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1289                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1290     // rotate by x,y so that uStart is (1.0)
1291     SkScalar x = SkPoint::DotProduct(uStart, uStop);
1292     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1293
1294     SkScalar absY = SkScalarAbs(y);
1295
1296     // check for (effectively) coincident vectors
1297     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1298     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1299     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1300                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
1301         return 0;
1302     }
1303
1304     if (dir == kCCW_SkRotationDirection) {
1305         y = -y;
1306     }
1307
1308     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1309     //      0 == [0  .. 90)
1310     //      1 == [90 ..180)
1311     //      2 == [180..270)
1312     //      3 == [270..360)
1313     //
1314     int quadrant = 0;
1315     if (0 == y) {
1316         quadrant = 2;        // 180
1317         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1318     } else if (0 == x) {
1319         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1320         quadrant = y > 0 ? 1 : 3; // 90 : 270
1321     } else {
1322         if (y < 0) {
1323             quadrant += 2;
1324         }
1325         if ((x < 0) != (y < 0)) {
1326             quadrant += 1;
1327         }
1328     }
1329
1330     const SkPoint quadrantPts[] = {
1331         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1332     };
1333     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1334
1335     int conicCount = quadrant;
1336     for (int i = 0; i < conicCount; ++i) {
1337         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1338     }
1339
1340     // Now compute any remaing (sub-90-degree) arc for the last conic
1341     const SkPoint finalP = { x, y };
1342     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1343     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1344     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1345
1346     if (dot < 1) {
1347         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1348         // compute the bisector vector, and then rescale to be the off-curve point.
1349         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1350         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1351         // This is nice, since our computed weight is cos(theta/2) as well!
1352         //
1353         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1354         offCurve.setLength(SkScalarInvert(cosThetaOver2));
1355         dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1356         conicCount += 1;
1357     }
1358
1359     // now handle counter-clockwise and the initial unitStart rotation
1360     SkMatrix    matrix;
1361     matrix.setSinCos(uStart.fY, uStart.fX);
1362     if (dir == kCCW_SkRotationDirection) {
1363         matrix.preScale(SK_Scalar1, -SK_Scalar1);
1364     }
1365     if (userMatrix) {
1366         matrix.postConcat(*userMatrix);
1367     }
1368     for (int i = 0; i < conicCount; ++i) {
1369         matrix.mapPoints(dst[i].fPts, 3);
1370     }
1371     return conicCount;
1372 }