arm_compute v18.05
[platform/upstream/armcl.git] / src / core / Helpers.cpp
1 /*
2  * Copyright (c) 2016-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Helpers.h"
25
26 using namespace arm_compute;
27
28 Window arm_compute::calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
29 {
30     if(!skip_border)
31     {
32         border_size = BorderSize(0);
33     }
34
35     const Coordinates &anchor = valid_region.anchor;
36     const TensorShape &shape  = valid_region.shape;
37
38     Window window;
39
40     window.set(0, Window::Dimension(
41                    // Skip the border left of the image
42                    anchor[0] + border_size.left,
43                    // Skip the border right of the image
44                    // Make sure the window width is a multiple of the step size
45                    anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
46                    steps[0]));
47
48     size_t n = 1;
49
50     if(anchor.num_dimensions() > 1)
51     {
52         window.set(1, Window::Dimension(
53                        // Skip the border above the image
54                        anchor[1] + border_size.top,
55                        // Skip the border below the image
56                        anchor[1] + border_size.top + ceil_to_multiple(std::max(0, static_cast<int>(shape[1]) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom)), steps[1]),
57                        steps[1]));
58
59         ++n;
60     }
61
62     for(; n < anchor.num_dimensions(); ++n)
63     {
64         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
65     }
66
67     for(; n < Coordinates::num_max_dimensions; ++n)
68     {
69         window.set(n, Window::Dimension(0, 1));
70     }
71
72     return window;
73 }
74
75 Window arm_compute::calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps, BorderSize border_size)
76 {
77     const Coordinates &anchor = valid_region.anchor;
78     const TensorShape &shape  = valid_region.shape;
79
80     Window window;
81
82     window.set(0, Window::Dimension(
83                    // move the anchor to the start from the border
84                    anchor[0] - border_size.left,
85                    // move the anchor to include the right end border
86                    // Make sure the window width is a multiple of the step size
87                    anchor[0] - border_size.left + ceil_to_multiple(shape[0] + border_size.left + border_size.right, steps[0]),
88                    steps[0]));
89
90     size_t n = 1;
91
92     if(anchor.num_dimensions() > 1)
93     {
94         window.set(1, Window::Dimension(
95                        // Include the border above the image
96                        anchor[1] - border_size.top,
97                        // Include the border below the image
98                        anchor[1] - border_size.top + ceil_to_multiple(shape[1] + border_size.top + border_size.bottom, steps[1]),
99                        steps[1]));
100
101         ++n;
102     }
103
104     if(anchor.num_dimensions() > 2)
105     {
106         window.set(2, Window::Dimension(0, std::max<size_t>(1, shape[n]), steps[2]));
107
108         ++n;
109     }
110
111     for(; n < anchor.num_dimensions(); ++n)
112     {
113         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
114     }
115
116     for(; n < Coordinates::num_max_dimensions; ++n)
117     {
118         window.set(n, Window::Dimension(0, 1));
119     }
120
121     return window;
122 }
123
124 Window arm_compute::calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
125 {
126     if(skip_border)
127     {
128         border_size.top    = 0;
129         border_size.bottom = 0;
130     }
131     else
132     {
133         border_size.left  = 0;
134         border_size.right = 0;
135     }
136
137     const Coordinates &anchor = valid_region.anchor;
138     const TensorShape &shape  = valid_region.shape;
139
140     Window window;
141
142     window.set(0, Window::Dimension(
143                    // Skip the border left of the image
144                    anchor[0] + border_size.left,
145                    // Skip the border right of the image
146                    // Make sure the window width is a multiple of the step size
147                    anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
148                    steps[0]));
149
150     size_t n = 1;
151
152     if(anchor.num_dimensions() > 1)
153     {
154         window.set(1, Window::Dimension(
155                        // Skip the border above the image
156                        anchor[1] - border_size.top,
157                        // Skip the border below the image
158                        anchor[1] + shape[1] + border_size.bottom,
159                        1));
160
161         ++n;
162     }
163
164     for(; n < anchor.num_dimensions(); ++n)
165     {
166         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
167     }
168
169     for(; n < Coordinates::num_max_dimensions; ++n)
170     {
171         window.set(n, Window::Dimension(0, 1));
172     }
173
174     return window;
175 }
176
177 ValidRegion arm_compute::calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape,
178                                                       InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined)
179 {
180     const DataLayout data_layout = src_info.data_layout();
181     const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
182     const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
183
184     const float scale_x        = static_cast<float>(dst_shape[idx_width]) / src_info.tensor_shape()[idx_width];
185     const float scale_y        = static_cast<float>(dst_shape[idx_height]) / src_info.tensor_shape()[idx_height];
186     const float sampling_point = (sampling_policy == SamplingPolicy::CENTER) ? 0.5f : 0.0f;
187
188     // Get input's valid region start and end points
189     const int valid_start_in_x = src_info.valid_region().anchor[idx_width];
190     const int valid_start_in_y = src_info.valid_region().anchor[idx_height];
191     const int valid_end_in_x   = src_info.valid_region().anchor[idx_width] + src_info.valid_region().shape[idx_width];
192     const int valid_end_in_y   = src_info.valid_region().anchor[idx_height] + src_info.valid_region().shape[idx_height];
193
194     // Initialize output's valid region start and end points
195     auto valid_start_out_x = static_cast<int>(valid_start_in_x * scale_x);
196     auto valid_start_out_y = static_cast<int>(valid_start_in_y * scale_y);
197     auto valid_end_out_x   = std::min<int>(std::ceil(valid_end_in_x * scale_x), dst_shape[idx_width]);
198     auto valid_end_out_y   = std::min<int>(std::ceil(valid_end_in_y * scale_y), dst_shape[idx_height]);
199
200     // Handle valid points in case of the bi-linear interpolation
201     if(border_undefined)
202     {
203         switch(interpolate_policy)
204         {
205             case InterpolationPolicy::NEAREST_NEIGHBOR:
206             {
207                 // (start_out + sampling_point) >= (start_in * scale)
208                 // start_out = ceil((start_in * scale) - sampling_point)
209                 valid_start_out_x = std::ceil(valid_start_in_x * scale_x - sampling_point);
210                 valid_start_out_y = std::ceil(valid_start_in_y * scale_y - sampling_point);
211
212                 // (end_out - 1 + sampling_point) < (end_in * scale)
213                 // end_out   = ceil((end_in * scale) - sampling_point); // <-- ceil(x - 1) strictly less
214                 valid_end_out_x = std::ceil(valid_end_in_x * scale_x - sampling_point);
215                 valid_end_out_y = std::ceil(valid_end_in_y * scale_y - sampling_point);
216                 break;
217             }
218             case InterpolationPolicy::BILINEAR:
219             {
220                 // (start_out + sampling_point) >= ((start_in + sampling_point) * scale)
221                 // start_out = ceil(((start_in + sampling_point) * scale) - sampling_point)
222                 valid_start_out_x = std::ceil((valid_start_in_x + sampling_point) * scale_x - sampling_point);
223                 valid_start_out_y = std::ceil((valid_start_in_y + sampling_point) * scale_y - sampling_point);
224
225                 // (end_out - 1 + sampling_point) <= ((end_in - 1 + sampling_point) * scale)
226                 // end_out   = floor(((end_in - 1 + sampling_point) * scale) - sampling_point + 1)
227                 valid_end_out_x = std::floor((valid_end_in_x - 1.f + sampling_point) * scale_x - sampling_point + 1.f);
228                 valid_end_out_y = std::floor((valid_end_in_y - 1.f + sampling_point) * scale_y - sampling_point + 1.f);
229                 break;
230             }
231             case InterpolationPolicy::AREA:
232                 break;
233             default:
234             {
235                 ARM_COMPUTE_ERROR("Invalid InterpolationPolicy");
236                 break;
237             }
238         }
239     }
240
241     // Setup output valid region
242     ValidRegion valid_region{ Coordinates(), dst_shape, src_info.tensor_shape().num_dimensions() };
243
244     valid_region.anchor.set(idx_width, std::max(0, valid_start_out_x));
245     valid_region.anchor.set(idx_height, std::max(0, valid_start_out_y));
246
247     valid_region.shape.set(idx_width, std::min<size_t>(valid_end_out_x - valid_start_out_x, dst_shape[idx_width]));
248     valid_region.shape.set(idx_height, std::min<size_t>(valid_end_out_y - valid_start_out_y, dst_shape[idx_height]));
249
250     return valid_region;
251 }