2 * Copyright (c) 2017-2018 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27 #if defined(CELL_WIDTH) && defined(CELL_HEIGHT) && defined(NUM_BINS) && defined(PHASE_SCALE)
29 /** This OpenCL kernel computes the HOG orientation binning
31 * @attention The following variables must be passed at compile time:
33 * -# -DCELL_WIDTH = Width of the cell
34 * -# -DCELL_HEIGHT = height of the cell
35 * -# -DNUM_BINS = Number of bins for each cell
36 * -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
38 * @note Each work-item computes a single cell
40 * @param[in] mag_ptr Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
41 * @param[in] mag_stride_x Stride of the magnitude image in X dimension (in bytes)
42 * @param[in] mag_step_x mag_stride_x * number of elements along X processed per workitem(in bytes)
43 * @param[in] mag_stride_y Stride of the magnitude image in Y dimension (in bytes)
44 * @param[in] mag_step_y mag_stride_y * number of elements along Y processed per workitem(in bytes)
45 * @param[in] mag_offset_first_element_in_bytes The offset of the first element in the magnitude image
46 * @param[in] phase_ptr Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
47 * @param[in] phase_stride_x Stride of the phase image in X dimension (in bytes)
48 * @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
49 * @param[in] phase_stride_y Stride of the the phase image in Y dimension (in bytes)
50 * @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
51 * @param[in] phase_offset_first_element_in_bytes The offset of the first element in the the phase image
52 * @param[out] dst_ptr Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
53 * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
54 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
55 * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
56 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
57 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
59 __kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
60 IMAGE_DECLARATION(phase),
61 IMAGE_DECLARATION(dst))
63 float bins[NUM_BINS] = { 0 };
65 // Compute address for the magnitude and phase images
66 Image mag = CONVERT_TO_IMAGE_STRUCT(mag);
67 Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
69 __global uchar *mag_row_ptr = mag.ptr;
70 __global uchar *phase_row_ptr = phase.ptr;
72 for(int yc = 0; yc < CELL_HEIGHT; ++yc)
75 for(; xc <= (CELL_WIDTH - 4); xc += 4)
77 // Load magnitude and phase values
78 const float4 mag_f32 = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
79 float4 phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
81 // Scale phase: phase * scale + 0.5f
82 phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
84 // Compute histogram index.
85 int4 hidx_s32 = convert_int4(phase_f32);
87 // Compute magnitude weights (w0 and w1)
88 const float4 hidx_f32 = convert_float4(hidx_s32);
90 // w1 = phase_f32 - hidx_s32
91 const float4 w1_f32 = phase_f32 - hidx_f32;
94 const float4 w0_f32 = (float4)1.0f - w1_f32;
96 // Calculate the weights for splitting vote
97 const float4 mag_w0_f32 = mag_f32 * w0_f32;
98 const float4 mag_w1_f32 = mag_f32 * w1_f32;
100 // Weighted vote between 2 bins
102 // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
103 hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
106 bins[hidx_s32.s0] += mag_w0_f32.s0;
107 bins[hidx_s32.s1] += mag_w0_f32.s1;
108 bins[hidx_s32.s2] += mag_w0_f32.s2;
109 bins[hidx_s32.s3] += mag_w0_f32.s3;
113 // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
114 hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
117 bins[hidx_s32.s0] += mag_w1_f32.s0;
118 bins[hidx_s32.s1] += mag_w1_f32.s1;
119 bins[hidx_s32.s2] += mag_w1_f32.s2;
120 bins[hidx_s32.s3] += mag_w1_f32.s3;
123 // Left over computation
124 for(; xc < CELL_WIDTH; xc++)
126 const float mag_value = *((__global short *)mag_row_ptr + xc);
127 const float phase_value = *(phase_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
128 const float w1 = phase_value - floor(phase_value);
130 // The quantised phase is the histogram index [0, NUM_BINS - 1]
131 // Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
132 const uint hidx = (uint)(phase_value) % NUM_BINS;
134 // Weighted vote between 2 bins
135 bins[hidx] += mag_value * (1.0f - w1);
136 bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
139 // Point to the next row of magnitude and phase images
140 mag_row_ptr += mag_stride_y;
141 phase_row_ptr += phase_stride_y;
144 // Compute address for the destination image
145 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
147 // Store the local HOG in the global memory
149 for(; xc <= (NUM_BINS - 4); xc += 4)
151 float4 values = vload4(0, bins + xc);
153 vstore4(values, 0, ((__global float *)dst.ptr) + xc);
157 for(; xc < NUM_BINS; ++xc)
159 ((__global float *)dst.ptr)[xc] = bins[xc];
162 #endif /* CELL_WIDTH and CELL_HEIGHT and NUM_BINS and PHASE_SCALE */
164 #if defined(NUM_CELLS_PER_BLOCK_HEIGHT) && defined(NUM_BINS_PER_BLOCK_X) && defined(NUM_BINS_PER_BLOCK) && defined(HOG_NORM_TYPE) && defined(L2_HYST_THRESHOLD)
167 #error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
168 #endif /* not L2_NORM */
171 #error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
172 #endif /* not L2HYS_NORM */
175 #error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
176 #endif /* not L1_NORM */
178 /** This OpenCL kernel computes the HOG block normalization
180 * @attention The following variables must be passed at compile time:
182 * -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
183 * -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
184 * -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
185 * -# -DHOG_NORM_TYPE = Normalization type
186 * -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
187 * -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
188 * -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
189 * -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
191 * @note Each work-item computes a single block
193 * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
194 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
195 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
196 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
197 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
198 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
199 * @param[out] dst_ptr Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
200 * @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
201 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
202 * @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
203 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
204 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
206 __kernel void hog_block_normalization(IMAGE_DECLARATION(src),
207 IMAGE_DECLARATION(dst))
210 float4 sum_f32 = (float4)(0.0f);
212 // Compute address for the source and destination tensor
213 Image src = CONVERT_TO_IMAGE_STRUCT(src);
214 Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
216 for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
218 const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
221 for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
223 const float4 val0 = vload4(0, hist_ptr + xc + 0);
224 const float4 val1 = vload4(0, hist_ptr + xc + 4);
225 const float4 val2 = vload4(0, hist_ptr + xc + 8);
226 const float4 val3 = vload4(0, hist_ptr + xc + 12);
228 #if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
229 // Compute val^2 for L2_NORM or L2HYS_NORM
230 sum_f32 += val0 * val0;
231 sum_f32 += val1 * val1;
232 sum_f32 += val2 * val2;
233 sum_f32 += val3 * val3;
234 #else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
235 // Compute |val| for L1_NORM
236 sum_f32 += fabs(val0);
237 sum_f32 += fabs(val1);
238 sum_f32 += fabs(val2);
239 sum_f32 += fabs(val3);
240 #endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
242 // Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
243 // This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
244 // will be accessed consecutively
245 vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
246 vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
247 vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
248 vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
252 for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
254 const float val = hist_ptr[xc];
256 #if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
258 #else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
260 #endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
262 ((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
266 sum += dot(sum_f32, (float4)1.0f);
268 float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
270 #if(HOG_NORM_TYPE == L2HYS_NORM)
272 sum_f32 = (float4)0.0f;
276 for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
278 float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
279 float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
280 float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
281 float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
284 val0 = val0 * (float4)scale;
285 val1 = val1 * (float4)scale;
286 val2 = val2 * (float4)scale;
287 val3 = val3 * (float4)scale;
289 // Clip val if over _threshold_l2hys
290 val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
291 val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
292 val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
293 val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
296 sum_f32 += val0 * val0;
297 sum_f32 += val1 * val1;
298 sum_f32 += val2 * val2;
299 sum_f32 += val3 * val3;
301 vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
302 vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
303 vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
304 vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
308 for(; k < NUM_BINS_PER_BLOCK; ++k)
310 float val = ((__global float *)dst.ptr)[k] * scale;
312 // Clip scaled input_value if over L2_HYST_THRESHOLD
313 val = fmin(val, (float)L2_HYST_THRESHOLD);
317 ((__global float *)dst.ptr)[k] = val;
320 sum += dot(sum_f32, (float4)1.0f);
322 // We use the same constants of OpenCV
323 scale = 1.0f / (sqrt(sum) + 1e-3f);
325 #endif /* (HOG_NORM_TYPE == L2HYS_NORM) */
328 for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
330 float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
331 float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
332 float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
333 float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
335 // Multiply val by the normalization scale factor
336 val0 = val0 * (float4)scale;
337 val1 = val1 * (float4)scale;
338 val2 = val2 * (float4)scale;
339 val3 = val3 * (float4)scale;
341 vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
342 vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
343 vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
344 vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
347 for(; i < NUM_BINS_PER_BLOCK; ++i)
349 ((__global float *)dst.ptr)[i] *= scale;
352 #endif /* NUM_CELLS_PER_BLOCK_HEIGHT and NUM_BINS_PER_BLOCK_X and NUM_BINS_PER_BLOCK and HOG_NORM_TYPE and L2_HYST_THRESHOLD */
354 #if defined(NUM_BLOCKS_PER_DESCRIPTOR_Y) && defined(NUM_BINS_PER_DESCRIPTOR_X) && defined(THRESHOLD) && defined(MAX_NUM_DETECTION_WINDOWS) && defined(IDX_CLASS) && defined(DETECTION_WINDOW_STRIDE_WIDTH) && defined(DETECTION_WINDOW_STRIDE_HEIGHT) && defined(DETECTION_WINDOW_WIDTH) && defined(DETECTION_WINDOW_HEIGHT)
356 /** This OpenCL kernel computes the HOG detector using linear SVM
358 * @attention The following variables must be passed at compile time:
360 * -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
361 * -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
362 * -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
363 * -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
364 * -# -DIDX_CLASS = Index of the class to detect
365 * -# -DDETECTION_WINDOW_STRIDE_WIDTH = Detection window stride for the X direction
366 * -# -DDETECTION_WINDOW_STRIDE_HEIGHT = Detection window stride for the Y direction
367 * -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
368 * -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
370 * @note Each work-item computes a single detection window
372 * @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
373 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
374 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
375 * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
376 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
377 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
378 * @param[in] hog_descriptor Pointer to HOG descriptor. Supported data types: F32
379 * @param[out] dst Pointer to DetectionWindow array
380 * @param[out] num_detection_windows Number of objects detected
382 __kernel void hog_detector(IMAGE_DECLARATION(src),
383 __global float *hog_descriptor,
384 __global DetectionWindow *dst,
385 __global uint *num_detection_windows)
387 // Check if the DetectionWindow array is full
388 if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
393 Image src = CONVERT_TO_IMAGE_STRUCT(src);
395 const int src_step_y_f32 = src_stride_y / sizeof(float);
397 // Init score_f32 with 0
398 float4 score_f32 = (float4)0.0f;
403 __global float *src_row_ptr = (__global float *)src.ptr;
405 // Compute Linear SVM
406 for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
410 const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
412 for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
414 // Load descriptor values
415 float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
416 float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
418 float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
419 float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
421 // Multiply accumulate
422 score_f32 += a0_f32 * b0_f32;
423 score_f32 += a1_f32 * b1_f32;
426 for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
428 const float a = src_row_ptr[xb];
429 const float b = hog_descriptor[xb + offset_y];
435 score += dot(score_f32, (float4)1.0f);
437 // Add the bias. The bias is located at the position (descriptor_size() - 1)
438 // (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
439 score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
441 if(score > (float)THRESHOLD)
443 int id = atomic_inc(num_detection_windows);
444 if(id < MAX_NUM_DETECTION_WINDOWS)
446 dst[id].x = get_global_id(0) * DETECTION_WINDOW_STRIDE_WIDTH;
447 dst[id].y = get_global_id(1) * DETECTION_WINDOW_STRIDE_HEIGHT;
448 dst[id].width = DETECTION_WINDOW_WIDTH;
449 dst[id].height = DETECTION_WINDOW_HEIGHT;
450 dst[id].idx_class = IDX_CLASS;
451 dst[id].score = score;
455 #endif /* NUM_BLOCKS_PER_DESCRIPTOR_Y && NUM_BINS_PER_DESCRIPTOR_X && THRESHOLD && MAX_NUM_DETECTION_WINDOWS && IDX_CLASS &&
456 * DETECTION_WINDOW_STRIDE_WIDTH && DETECTION_WINDOW_STRIDE_HEIGHT && DETECTION_WINDOW_WIDTH && DETECTION_WINDOW_HEIGHT */