2 * Copyright (c) 2016, 2017 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 #define VATOMIC_INC16(histogram, win_pos) \
28 atomic_inc(histogram + win_pos.s0); \
29 atomic_inc(histogram + win_pos.s1); \
30 atomic_inc(histogram + win_pos.s2); \
31 atomic_inc(histogram + win_pos.s3); \
32 atomic_inc(histogram + win_pos.s4); \
33 atomic_inc(histogram + win_pos.s5); \
34 atomic_inc(histogram + win_pos.s6); \
35 atomic_inc(histogram + win_pos.s7); \
36 atomic_inc(histogram + win_pos.s8); \
37 atomic_inc(histogram + win_pos.s9); \
38 atomic_inc(histogram + win_pos.sa); \
39 atomic_inc(histogram + win_pos.sb); \
40 atomic_inc(histogram + win_pos.sc); \
41 atomic_inc(histogram + win_pos.sd); \
42 atomic_inc(histogram + win_pos.se); \
43 atomic_inc(histogram + win_pos.sf); \
46 /** Calculate the histogram of an 8 bit grayscale image.
48 * Each thread will process 16 pixels and use one local atomic operation per pixel.
49 * When all work items in a work group are done the resulting local histograms are
50 * added to the global histogram using global atomics.
52 * @note The input image is represented as a two-dimensional array of type uchar.
53 * The output is represented as a one-dimensional uint array of length of num_bins
55 * @param[in] input_ptr Pointer to the first source image. Supported data types: U8
56 * @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
57 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
58 * @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
59 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
60 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
61 * @param[in] histogram_local The local buffer to hold histogram result in per workgroup. Supported data types: U32
62 * @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
63 * @param[out] num_bins The number of bins
64 * @param[out] offset The start of values to use (inclusive)
65 * @param[out] range The range of a bin
66 * @param[out] offrange The maximum value (exclusive)
68 __kernel void hist_local_kernel(IMAGE_DECLARATION(input),
69 __local uint *histogram_local,
70 __global uint *restrict histogram,
76 Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
77 uint local_id_x = get_local_id(0);
79 uint local_x_size = get_local_size(0);
81 if(num_bins > local_x_size)
83 for(int i = local_id_x; i < num_bins; i += local_x_size)
85 histogram_local[i] = 0;
90 if(local_id_x <= num_bins)
92 histogram_local[local_id_x] = 0;
96 uint16 vals = convert_uint16(vload16(0, input_buffer.ptr));
98 uint16 win_pos = select(num_bins, ((vals - offset) * num_bins) / range, (vals >= offset && vals < offrange));
100 barrier(CLK_LOCAL_MEM_FENCE);
101 VATOMIC_INC16(histogram_local, win_pos);
102 barrier(CLK_LOCAL_MEM_FENCE);
104 if(num_bins > local_x_size)
106 for(int i = local_id_x; i < num_bins; i += local_x_size)
108 atomic_add(histogram + i, histogram_local[i]);
113 if(local_id_x <= num_bins)
115 atomic_add(histogram + local_id_x, histogram_local[local_id_x]);
120 /** Calculate the histogram of an 8 bit grayscale image's border.
122 * Each thread will process one pixel using global atomic.
123 * When all work items in a work group are done the resulting local histograms are
124 * added to the global histogram using global atomics.
126 * @note The input image is represented as a two-dimensional array of type uchar.
127 * The output is represented as a one-dimensional uint array of length of num_bins
129 * @param[in] input_ptr Pointer to the first source image. Supported data types: U8
130 * @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
131 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
132 * @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
133 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
134 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
135 * @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
136 * @param[out] num_bins The number of bins
137 * @param[out] offset The start of values to use (inclusive)
138 * @param[out] range The range of a bin
139 * @param[out] offrange The maximum value (exclusive)
141 __kernel void hist_border_kernel(IMAGE_DECLARATION(input),
142 __global uint *restrict histogram,
148 Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
150 uint val = (uint)(*input_buffer.ptr);
152 uint win_pos = (val >= offset) ? (((val - offset) * num_bins) / range) : 0;
154 if(val >= offset && (val < offrange))
156 atomic_inc(histogram + win_pos);
160 /** Calculate the histogram of an 8 bit grayscale image with bin size of 256 and window size of 1.
162 * Each thread will process 16 pixels and use one local atomic operation per pixel.
163 * When all work items in a work group are done the resulting local histograms are
164 * added to the global histogram using global atomics.
166 * @note The input image is represented as a two-dimensional array of type uchar.
167 * The output is represented as a one-dimensional uint array of 256 elements
169 * @param[in] input_ptr Pointer to the first source image. Supported data types: U8
170 * @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
171 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
172 * @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
173 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
174 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
175 * @param[in] histogram_local The local buffer to hold histogram result in per workgroup. Supported data types: U32
176 * @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
178 __kernel void hist_local_kernel_fixed(IMAGE_DECLARATION(input),
179 __local uint *histogram_local,
180 __global uint *restrict histogram)
182 Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
184 uint local_index = get_local_id(0);
185 uint local_x_size = get_local_size(0);
187 for(int i = local_index; i < 256; i += local_x_size)
189 histogram_local[i] = 0;
192 uint16 vals = convert_uint16(vload16(0, input_buffer.ptr));
194 barrier(CLK_LOCAL_MEM_FENCE);
196 atomic_inc(histogram_local + vals.s0);
197 atomic_inc(histogram_local + vals.s1);
198 atomic_inc(histogram_local + vals.s2);
199 atomic_inc(histogram_local + vals.s3);
200 atomic_inc(histogram_local + vals.s4);
201 atomic_inc(histogram_local + vals.s5);
202 atomic_inc(histogram_local + vals.s6);
203 atomic_inc(histogram_local + vals.s7);
204 atomic_inc(histogram_local + vals.s8);
205 atomic_inc(histogram_local + vals.s9);
206 atomic_inc(histogram_local + vals.sa);
207 atomic_inc(histogram_local + vals.sb);
208 atomic_inc(histogram_local + vals.sc);
209 atomic_inc(histogram_local + vals.sd);
210 atomic_inc(histogram_local + vals.se);
211 atomic_inc(histogram_local + vals.sf);
213 barrier(CLK_LOCAL_MEM_FENCE);
215 for(int i = local_index; i < 256; i += local_x_size)
217 atomic_add(histogram + i, histogram_local[i]);
221 /** Calculate the histogram of an 8 bit grayscale image with bin size as 256 and window size as 1.
223 * Each thread will process one pixel using global atomic.
224 * When all work items in a work group are done the resulting local histograms are
225 * added to the global histogram using global atomics.
227 * @note The input image is represented as a two-dimensional array of type uchar.
228 * The output is represented as a one-dimensional uint array of 256
230 * @param[in] input_ptr Pointer to the first source image. Supported data types: U8
231 * @param[in] input_stride_x Stride of the first source image in X dimension (in bytes)
232 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
233 * @param[in] input_stride_y Stride of the first source image in Y dimension (in bytes)
234 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
235 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source image
236 * @param[out] histogram The output buffer to hold histogram final result. Supported data types: U32
238 __kernel void hist_border_kernel_fixed(IMAGE_DECLARATION(input),
239 __global uint *restrict histogram)
241 Image input_buffer = CONVERT_TO_IMAGE_STRUCT(input);
242 atomic_inc(histogram + *input_buffer.ptr);