arm_compute v18.05
[platform/upstream/armcl.git] / src / core / CL / cl_kernels / helpers_asymm.h
1 /*
2  * Copyright (c) 2017-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_HELPERS_ASYMM_H
25 #define ARM_COMPUTE_HELPERS_ASYMM_H
26
27 #include "helpers.h"
28
29 /** Correctly-rounded-to-nearest division by a power-of-two.
30  *
31  * @param[in] size Size of vector.
32  *
33  * @return Correctly-rounded-to-nearest division by a power-of-two.
34  */
35 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size)                                                                   \
36     inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, int exponent) \
37     {                                                                                                              \
38         VEC_DATA_TYPE(int, size)                                                                                   \
39         mask = (1 << exponent) - 1;                                                                                \
40         const VEC_DATA_TYPE(int, size) zero = 0;                                                                   \
41         const VEC_DATA_TYPE(int, size) one  = 1;                                                                   \
42         VEC_DATA_TYPE(int, size)                                                                                   \
43         threshold = (mask >> 1) + select(zero, one, x < 0);                                                        \
44         return (x >> exponent) + select(zero, one, (x & mask) > threshold);                                        \
45     }
46
47 /** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
48  * rounding to the nearest value, and saturating -1 * -1 to the maximum value.
49  *
50  * @param[in] size Size of vector.
51  *
52  * @return Product of two fixed-point numbers.
53  */
54 #define ASYMM_MULT_IMPL(size)                                                                                \
55     inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
56     {                                                                                                        \
57         VEC_DATA_TYPE(int, size)                                                                             \
58         overflow = a == b && a == INT_MIN;                                                                   \
59         VEC_DATA_TYPE(long, size)                                                                            \
60         a_64 = convert_long##size(a);                                                                        \
61         VEC_DATA_TYPE(long, size)                                                                            \
62         b_64 = convert_long##size(b);                                                                        \
63         VEC_DATA_TYPE(long, size)                                                                            \
64         ab_64 = a_64 * b_64;                                                                                 \
65         /* COMPMID-907 */                                                                                    \
66         VEC_DATA_TYPE(int, size)                                                                             \
67         ab_x2_high32 = convert_int##size(((ab_64 + (1 << 30)) >> 31));                                       \
68         return select(ab_x2_high32, INT_MAX, overflow);                                                      \
69     }
70
71 /** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
72  *
73  * @param[in] size Size of vector.
74  *
75  * @return Result in fixed-point format Q0.
76  */
77 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size)                                                    \
78     inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
79     {                                                                                                                               \
80         const VEC_DATA_TYPE(int, size) constant_term     = 1895147668;                                                              \
81         const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883;                                                               \
82         const int k_fractional_bits = 31;                                                                                           \
83         VEC_DATA_TYPE(int, size)                                                                                                    \
84         x = a + (1 << (k_fractional_bits - 3));                                                                                     \
85         VEC_DATA_TYPE(int, size)                                                                                                    \
86         x2 = ASYMM_MULT(x, x, size);                                                                                                \
87         VEC_DATA_TYPE(int, size)                                                                                                    \
88         x3 = ASYMM_MULT(x2, x, size);                                                                                               \
89         VEC_DATA_TYPE(int, size)                                                                                                    \
90         x4 = ASYMM_MULT(x2, x2, size);                                                                                              \
91         VEC_DATA_TYPE(int, size)                                                                                                    \
92         x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size);                                                                     \
93         VEC_DATA_TYPE(int, size)                                                                                                    \
94         x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2;                             \
95         VEC_DATA_TYPE(int, size)                                                                                                    \
96         x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size);       \
97         return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size);                       \
98     }
99
100 /** Each bit of the result is set to the corresponding bit of either then_val or
101  * else_val depending on whether the corresponding bit of if_mask is set.
102  * Equivalent to the VBSL instruction in ARM NEON.
103  *
104  * @param[in] size Size of vector.
105  *
106  * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
107  */
108 #define ASYMM_SELECT_USING_MASK_IMPL(size)                                                                                                                                \
109     inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
110     {                                                                                                                                                                     \
111         return (if_mask & then_val) ^ (~if_mask & else_val);                                                                                                              \
112     }
113
114 /** For each element of input vector, the corresponding bits of the result item are set
115  * if the input item is zero.
116  *
117  * @param[in] size Size of vector.
118  *
119  * @returns Output vector with bits set when corresponding bit in @p a is zero.
120  */
121 #define ASYMM_MASK_IF_ZERO_IMPL(size)                                                    \
122     inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
123     {                                                                                    \
124         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                    \
125         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                   \
126         return select(all_zeros, all_ones, a == 0);                                      \
127     }
128
129 /** For each element of input vector, the corresponding bits of the result item are set
130  * if the input item is non-zero.
131  *
132  * @param[in] size Size of vector.
133  *
134  * @returns Output vector with bits set when corresponding bit in @p a is non zero.
135  */
136 #define ASYMM_MASK_IF_NON_ZERO_IMPL(size)                                                    \
137     inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
138     {                                                                                        \
139         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                        \
140         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                       \
141         return select(all_zeros, all_ones, a != 0);                                          \
142     }
143
144 #define EXP_BARREL_SHIFTER_IMPL(size)                                                                                                                                                                         \
145     inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
146     {                                                                                                                                                                                                         \
147         if(k_integer_bits > exponent)                                                                                                                                                                         \
148         {                                                                                                                                                                                                     \
149             const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0;                                                                                                          \
150             return ASYMM_SELECT_USING_MASK(                                                                                                                                                                   \
151                     ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size),                                                                                                                              \
152                     ASYMM_MULT(result, fp_multiplier, size), result, size);                                                                                                                                       \
153         }                                                                                                                                                                                                     \
154         \
155         return result;                                                                                                                                                                                        \
156     }
157
158 /** Calculates \f$ exp(x) \f$ for x < 0.
159  *
160  * @param[in] size Size of vector.
161  *
162  * @return Result in fixed-point format Q0.
163  */
164 #define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size)                                                                               \
165     inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits)        \
166     {                                                                                                                         \
167         const int k_fractional_bits = 31 - k_integer_bits;                                                                    \
168         VEC_DATA_TYPE(int, size)                                                                                              \
169         k_one_quarter = 1 << (k_fractional_bits - 2);                                                                         \
170         VEC_DATA_TYPE(int, size)                                                                                              \
171         mask = k_one_quarter - 1;                                                                                             \
172         VEC_DATA_TYPE(int, size)                                                                                              \
173         a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter;                                                         \
174         VEC_DATA_TYPE(int, size)                                                                                              \
175         a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits;                           \
176         VEC_DATA_TYPE(int, size)                                                                                              \
177         result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
178         VEC_DATA_TYPE(int, size)                                                                                              \
179         remainder = a_mod_quarter_minus_one_quarter - a;                                                                      \
180         \
181         result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size);              \
182         result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size);              \
183         result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size);               \
184         result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size);               \
185         result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size);                \
186         result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size);                  \
187         result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size);                     \
188         \
189         if(k_integer_bits > 5)                                                                                                \
190         {                                                                                                                     \
191             const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5));                                           \
192             result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size);                       \
193         }                                                                                                                     \
194         \
195         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                                      \
196         return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size);                                    \
197     }
198
199 /** Calculates the product of a integer value by a power of two, with either a positive exponent
200  * (equivalent to an arithmetic left shift, saturating) or a negative exponent
201  * (equivalent to an arithmetic right shift, rounding to nearest).
202  *
203  * @param[in] size Size of vector.
204  *
205  * @return Arithmetic left or right shift.
206  */
207 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size)                                                                  \
208     inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
209     {                                                                                                                      \
210         if(exponent < 0)                                                                                                   \
211         {                                                                                                                  \
212             return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size);                                                      \
213         }                                                                                                                  \
214         \
215         const VEC_DATA_TYPE(int, size) min = INT_MIN;                                                                      \
216         const VEC_DATA_TYPE(int, size) max = INT_MAX;                                                                      \
217         int threshold = ((1 << (31 - exponent)) - 1);                                                                      \
218         VEC_DATA_TYPE(int, size)                                                                                           \
219         positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size);                                                       \
220         VEC_DATA_TYPE(int, size)                                                                                           \
221         negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size);                                                      \
222         VEC_DATA_TYPE(int, size)                                                                                           \
223         result = x << exponent;                                                                                            \
224         result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size);                                                \
225         result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size);                                                \
226         return result;                                                                                                     \
227     }
228
229 /** Calculates (a+b)/2, rounded to the nearest integer.
230  * Equivalent to VRHADD in the ARM NEON instruction set.
231  *
232  * @param[in] size Size of vector.
233  *
234  * @return (a+b)/2, rounded to the nearest integer.
235  */
236 #define ASYMM_ROUNDING_HALF_SUM_IMPL(size)                                                                                \
237     inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
238     {                                                                                                                     \
239         VEC_DATA_TYPE(long, size)                                                                                         \
240         a64 = convert_long##size(a);                                                                                      \
241         VEC_DATA_TYPE(long, size)                                                                                         \
242         b64 = convert_long##size(b);                                                                                      \
243         VEC_DATA_TYPE(long, size)                                                                                         \
244         sum = a64 + b64;                                                                                                  \
245         const VEC_DATA_TYPE(long, size) one       = 1;                                                                    \
246         const VEC_DATA_TYPE(long, size) minus_one = -1;                                                                   \
247         VEC_DATA_TYPE(long, size)                                                                                         \
248         sign = select(minus_one, one, sum >= 0);                                                                          \
249         return convert_int##size((sum + sign) / 2);                                                                       \
250     }
251
252 /** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
253  *
254  * @param[in] size Size of vector.
255  *
256  * @return Result in fixed-point format Q0.
257  */
258 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size)                                                    \
259     inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
260     {                                                                                                        \
261         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                     \
262         const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2);                                               \
263         VEC_DATA_TYPE(int, size)                                                                             \
264         half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size);                                         \
265         const VEC_DATA_TYPE(int, size) Q2_48_over_17     = 1515870810;                                       \
266         const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540;                                      \
267         VEC_DATA_TYPE(int, size)                                                                             \
268         x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size);                           \
269         for(int i = 0; i < 3; i++)                                                                           \
270         {                                                                                                    \
271             VEC_DATA_TYPE(int, size)                                                                         \
272             half_denominator_times_x = ASYMM_MULT(half_denominator, x, size);                                \
273             VEC_DATA_TYPE(int, size)                                                                         \
274             one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x;                          \
275             VEC_DATA_TYPE(int, size)                                                                         \
276             tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size);                                   \
277             x   = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size);                                  \
278         }                                                                                                    \
279         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size);                                           \
280     }
281
282 /** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
283  *
284  * @param[in] size Size of vector.
285  *
286  * @return Rescaled value.
287  */
288 #define ASYMM_RESCALE_IMPL(size)                                                                                                    \
289     inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
290     {                                                                                                                               \
291         int exponent = src_integer_bits - dst_integer_bits;                                                                         \
292         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size);                                                       \
293     }
294
295 #define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
296 #define ASYMM_MULT(a, b, size) asymm_mult##size(a, b)
297 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
298     ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
299 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
300 #define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
301 #define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
302 #define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
303 #define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
304 #define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
305 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
306 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
307 #define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
308 #define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
309
310 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
311 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
312 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
313 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
314
315 ASYMM_MULT_IMPL(2)
316 ASYMM_MULT_IMPL(4)
317 ASYMM_MULT_IMPL(8)
318 ASYMM_MULT_IMPL(16)
319
320 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
321 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
322 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
323 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
324
325 ASYMM_SELECT_USING_MASK_IMPL(2)
326 ASYMM_SELECT_USING_MASK_IMPL(4)
327 ASYMM_SELECT_USING_MASK_IMPL(8)
328 ASYMM_SELECT_USING_MASK_IMPL(16)
329
330 ASYMM_MASK_IF_ZERO_IMPL(2)
331 ASYMM_MASK_IF_ZERO_IMPL(4)
332 ASYMM_MASK_IF_ZERO_IMPL(8)
333 ASYMM_MASK_IF_ZERO_IMPL(16)
334
335 ASYMM_MASK_IF_NON_ZERO_IMPL(2)
336 ASYMM_MASK_IF_NON_ZERO_IMPL(4)
337 ASYMM_MASK_IF_NON_ZERO_IMPL(8)
338 ASYMM_MASK_IF_NON_ZERO_IMPL(16)
339
340 EXP_BARREL_SHIFTER_IMPL(2)
341 EXP_BARREL_SHIFTER_IMPL(4)
342 EXP_BARREL_SHIFTER_IMPL(8)
343 EXP_BARREL_SHIFTER_IMPL(16)
344
345 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
346 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
347 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
348 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
349
350 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
351 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
352 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
353 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
354
355 ASYMM_ROUNDING_HALF_SUM_IMPL(2)
356 ASYMM_ROUNDING_HALF_SUM_IMPL(4)
357 ASYMM_ROUNDING_HALF_SUM_IMPL(8)
358 ASYMM_ROUNDING_HALF_SUM_IMPL(16)
359
360 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
361 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
362 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
363 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
364
365 ASYMM_RESCALE_IMPL(2)
366 ASYMM_RESCALE_IMPL(4)
367 ASYMM_RESCALE_IMPL(8)
368 ASYMM_RESCALE_IMPL(16)
369
370 #endif // ARM_COMPUTE_HELPERS_ASYMM_H