arm_compute v18.02
[platform/upstream/armcl.git] / src / core / CL / cl_kernels / helpers_asymm.h
1 /*
2  * Copyright (c) 2017-2018 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_HELPERS_ASYMM_H
25 #define ARM_COMPUTE_HELPERS_ASYMM_H
26
27 #include "helpers.h"
28
29 /** Correctly-rounded-to-nearest division by a power-of-two.
30  *
31  * @param[in] size Size of vector.
32  *
33  * @return Correctly-rounded-to-nearest division by a power-of-two.
34  */
35 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size)                                                                   \
36     inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, int exponent) \
37     {                                                                                                              \
38         VEC_DATA_TYPE(int, size)                                                                                   \
39         mask = (1 << exponent) - 1;                                                                                \
40         const VEC_DATA_TYPE(int, size) zero = 0;                                                                   \
41         const VEC_DATA_TYPE(int, size) one  = 1;                                                                   \
42         VEC_DATA_TYPE(int, size)                                                                                   \
43         threshold = (mask >> 1) + select(zero, one, x < 0);                                                        \
44         return (x >> exponent) + select(zero, one, (x & mask) > threshold);                                        \
45     }
46
47 /** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
48  * rounding to the nearest value, and saturating -1 * -1 to the maximum value.
49  *
50  * @param[in] size Size of vector.
51  *
52  * @return Product of two fixed-point numbers.
53  */
54 #define ASYMM_MULT_IMPL(size)                                                                                \
55     inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
56     {                                                                                                        \
57         VEC_DATA_TYPE(int, size)                                                                             \
58         overflow = a == b && a == INT_MIN;                                                                   \
59         VEC_DATA_TYPE(long, size)                                                                            \
60         a_64 = convert_long##size(a);                                                                        \
61         VEC_DATA_TYPE(long, size)                                                                            \
62         b_64 = convert_long##size(b);                                                                        \
63         VEC_DATA_TYPE(long, size)                                                                            \
64         ab_64 = a_64 * b_64;                                                                                 \
65         VEC_DATA_TYPE(int, size)                                                                             \
66         ab_x2_high32 = convert_int##size(((ab_64 + (1 << 30)) >> 31));                                       \
67         return select(ab_x2_high32, INT_MAX, overflow);                                                      \
68     }
69
70 /** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
71  *
72  * @param[in] size Size of vector.
73  *
74  * @return Result in fixed-point format Q0.
75  */
76 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size)                                                    \
77     inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
78     {                                                                                                                               \
79         const VEC_DATA_TYPE(int, size) constant_term     = 1895147668;                                                              \
80         const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883;                                                               \
81         const int k_fractional_bits = 31;                                                                                           \
82         VEC_DATA_TYPE(int, size)                                                                                                    \
83         x = a + (1 << (k_fractional_bits - 3));                                                                                     \
84         VEC_DATA_TYPE(int, size)                                                                                                    \
85         x2 = ASYMM_MULT(x, x, size);                                                                                                \
86         VEC_DATA_TYPE(int, size)                                                                                                    \
87         x3 = ASYMM_MULT(x2, x, size);                                                                                               \
88         VEC_DATA_TYPE(int, size)                                                                                                    \
89         x4 = ASYMM_MULT(x2, x2, size);                                                                                              \
90         VEC_DATA_TYPE(int, size)                                                                                                    \
91         x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size);                                                                     \
92         VEC_DATA_TYPE(int, size)                                                                                                    \
93         x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2;                             \
94         VEC_DATA_TYPE(int, size)                                                                                                    \
95         x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size);       \
96         return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size);                       \
97     }
98
99 /** Each bit of the result is set to the corresponding bit of either then_val or
100  * else_val depending on whether the corresponding bit of if_mask is set.
101  * Equivalent to the VBSL instruction in ARM NEON.
102  *
103  * @param[in] size Size of vector.
104  *
105  * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
106  */
107 #define ASYMM_SELECT_USING_MASK_IMPL(size)                                                                                                                                \
108     inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
109     {                                                                                                                                                                     \
110         return (if_mask & then_val) ^ (~if_mask & else_val);                                                                                                              \
111     }
112
113 /** For each element of input vector, the corresponding bits of the result item are set
114  * if the input item is zero.
115  *
116  * @param[in] size Size of vector.
117  *
118  * @returns Output vector with bits set when corresponding bit in @p a is zero.
119  */
120 #define ASYMM_MASK_IF_ZERO_IMPL(size)                                                    \
121     inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
122     {                                                                                    \
123         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                    \
124         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                   \
125         return select(all_zeros, all_ones, a == 0);                                      \
126     }
127
128 /** For each element of input vector, the corresponding bits of the result item are set
129  * if the input item is non-zero.
130  *
131  * @param[in] size Size of vector.
132  *
133  * @returns Output vector with bits set when corresponding bit in @p a is non zero.
134  */
135 #define ASYMM_MASK_IF_NON_ZERO_IMPL(size)                                                    \
136     inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
137     {                                                                                        \
138         const VEC_DATA_TYPE(int, size) all_zeros = 0;                                        \
139         const VEC_DATA_TYPE(int, size) all_ones  = ~0;                                       \
140         return select(all_zeros, all_ones, a != 0);                                          \
141     }
142
143 #define EXP_BARREL_SHIFTER_IMPL(size)                                                                                                                                                                         \
144     inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
145     {                                                                                                                                                                                                         \
146         if(k_integer_bits > exponent)                                                                                                                                                                         \
147         {                                                                                                                                                                                                     \
148             const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0;                                                                                                          \
149             return ASYMM_SELECT_USING_MASK(                                                                                                                                                                   \
150                     ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size),                                                                                                                              \
151                     ASYMM_MULT(result, fp_multiplier, size), result, size);                                                                                                                                       \
152         }                                                                                                                                                                                                     \
153         \
154         return result;                                                                                                                                                                                        \
155     }
156
157 /** Calculates \f$ exp(x) \f$ for x < 0.
158  *
159  * @param[in] size Size of vector.
160  *
161  * @return Result in fixed-point format Q0.
162  */
163 #define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size)                                                                               \
164     inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits)        \
165     {                                                                                                                         \
166         const int k_fractional_bits = 31 - k_integer_bits;                                                                    \
167         VEC_DATA_TYPE(int, size)                                                                                              \
168         k_one_quarter = 1 << (k_fractional_bits - 2);                                                                         \
169         VEC_DATA_TYPE(int, size)                                                                                              \
170         mask = k_one_quarter - 1;                                                                                             \
171         VEC_DATA_TYPE(int, size)                                                                                              \
172         a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter;                                                         \
173         VEC_DATA_TYPE(int, size)                                                                                              \
174         a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits;                           \
175         VEC_DATA_TYPE(int, size)                                                                                              \
176         result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
177         VEC_DATA_TYPE(int, size)                                                                                              \
178         remainder = a_mod_quarter_minus_one_quarter - a;                                                                      \
179         \
180         result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size);              \
181         result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size);              \
182         result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size);               \
183         result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size);               \
184         result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size);                \
185         result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size);                  \
186         result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size);                     \
187         \
188         if(k_integer_bits > 5)                                                                                                \
189         {                                                                                                                     \
190             const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5));                                           \
191             result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size);                       \
192         }                                                                                                                     \
193         \
194         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                                      \
195         return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size);                                    \
196     }
197
198 /** Calculates the product of a integer value by a power of two, with either a positive exponent
199  * (equivalent to an arithmetic left shift, saturating) or a negative exponent
200  * (equivalent to an arithmetic right shift, rounding to nearest).
201  *
202  * @param[in] size Size of vector.
203  *
204  * @return Arithmetic left or right shift.
205  */
206 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size)                                                                  \
207     inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
208     {                                                                                                                      \
209         if(exponent < 0)                                                                                                   \
210         {                                                                                                                  \
211             return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size);                                                      \
212         }                                                                                                                  \
213         \
214         const VEC_DATA_TYPE(int, size) min = INT_MIN;                                                                      \
215         const VEC_DATA_TYPE(int, size) max = INT_MAX;                                                                      \
216         int threshold = ((1 << (31 - exponent)) - 1);                                                                      \
217         VEC_DATA_TYPE(int, size)                                                                                           \
218         positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size);                                                       \
219         VEC_DATA_TYPE(int, size)                                                                                           \
220         negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size);                                                      \
221         VEC_DATA_TYPE(int, size)                                                                                           \
222         result = x << exponent;                                                                                            \
223         result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size);                                                \
224         result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size);                                                \
225         return result;                                                                                                     \
226     }
227
228 /** Calculates (a+b)/2, rounded to the nearest integer.
229  * Equivalent to VRHADD in the ARM NEON instruction set.
230  *
231  * @param[in] size Size of vector.
232  *
233  * @return (a+b)/2, rounded to the nearest integer.
234  */
235 #define ASYMM_ROUNDING_HALF_SUM_IMPL(size)                                                                                \
236     inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
237     {                                                                                                                     \
238         VEC_DATA_TYPE(long, size)                                                                                         \
239         a64 = convert_long##size(a);                                                                                      \
240         VEC_DATA_TYPE(long, size)                                                                                         \
241         b64 = convert_long##size(b);                                                                                      \
242         VEC_DATA_TYPE(long, size)                                                                                         \
243         sum = a64 + b64;                                                                                                  \
244         const VEC_DATA_TYPE(long, size) one       = 1;                                                                    \
245         const VEC_DATA_TYPE(long, size) minus_one = -1;                                                                   \
246         VEC_DATA_TYPE(long, size)                                                                                         \
247         sign = select(minus_one, one, sum >= 0);                                                                          \
248         return convert_int##size((sum + sign) / 2);                                                                       \
249     }
250
251 /** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
252  *
253  * @param[in] size Size of vector.
254  *
255  * @return Result in fixed-point format Q0.
256  */
257 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size)                                                    \
258     inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
259     {                                                                                                        \
260         const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX;                                                     \
261         const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2);                                               \
262         VEC_DATA_TYPE(int, size)                                                                             \
263         half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size);                                         \
264         const VEC_DATA_TYPE(int, size) Q2_48_over_17     = 1515870810;                                       \
265         const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540;                                      \
266         VEC_DATA_TYPE(int, size)                                                                             \
267         x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size);                           \
268         for(int i = 0; i < 3; i++)                                                                           \
269         {                                                                                                    \
270             VEC_DATA_TYPE(int, size)                                                                         \
271             half_denominator_times_x = ASYMM_MULT(half_denominator, x, size);                                \
272             VEC_DATA_TYPE(int, size)                                                                         \
273             one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x;                          \
274             VEC_DATA_TYPE(int, size)                                                                         \
275             tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size);                                   \
276             x   = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size);                                  \
277         }                                                                                                    \
278         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size);                                           \
279     }
280
281 /** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
282  *
283  * @param[in] size Size of vector.
284  *
285  * @return Rescaled value.
286  */
287 #define ASYMM_RESCALE_IMPL(size)                                                                                                    \
288     inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
289     {                                                                                                                               \
290         int exponent = src_integer_bits - dst_integer_bits;                                                                         \
291         return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size);                                                       \
292     }
293
294 #define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
295 #define ASYMM_MULT(a, b, size) asymm_mult##size(a, b)
296 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
297     ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
298 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
299 #define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
300 #define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
301 #define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
302 #define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
303 #define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
304 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
305 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
306 #define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
307 #define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
308
309 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
310 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
311 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
312 ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
313
314 ASYMM_MULT_IMPL(2)
315 ASYMM_MULT_IMPL(4)
316 ASYMM_MULT_IMPL(8)
317 ASYMM_MULT_IMPL(16)
318
319 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
320 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
321 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
322 ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
323
324 ASYMM_SELECT_USING_MASK_IMPL(2)
325 ASYMM_SELECT_USING_MASK_IMPL(4)
326 ASYMM_SELECT_USING_MASK_IMPL(8)
327 ASYMM_SELECT_USING_MASK_IMPL(16)
328
329 ASYMM_MASK_IF_ZERO_IMPL(2)
330 ASYMM_MASK_IF_ZERO_IMPL(4)
331 ASYMM_MASK_IF_ZERO_IMPL(8)
332 ASYMM_MASK_IF_ZERO_IMPL(16)
333
334 ASYMM_MASK_IF_NON_ZERO_IMPL(2)
335 ASYMM_MASK_IF_NON_ZERO_IMPL(4)
336 ASYMM_MASK_IF_NON_ZERO_IMPL(8)
337 ASYMM_MASK_IF_NON_ZERO_IMPL(16)
338
339 EXP_BARREL_SHIFTER_IMPL(2)
340 EXP_BARREL_SHIFTER_IMPL(4)
341 EXP_BARREL_SHIFTER_IMPL(8)
342 EXP_BARREL_SHIFTER_IMPL(16)
343
344 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
345 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
346 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
347 ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
348
349 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
350 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
351 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
352 ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
353
354 ASYMM_ROUNDING_HALF_SUM_IMPL(2)
355 ASYMM_ROUNDING_HALF_SUM_IMPL(4)
356 ASYMM_ROUNDING_HALF_SUM_IMPL(8)
357 ASYMM_ROUNDING_HALF_SUM_IMPL(16)
358
359 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
360 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
361 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
362 ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
363
364 ASYMM_RESCALE_IMPL(2)
365 ASYMM_RESCALE_IMPL(4)
366 ASYMM_RESCALE_IMPL(8)
367 ASYMM_RESCALE_IMPL(16)
368
369 #endif // ARM_COMPUTE_HELPERS_ASYMM_H