2 * Copyright (c) 2017 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 /** This kernel applies dot product to each plane on the input tensor and the corrispective column of the reshaped weight tensor.
28 * @note Datatype and source width and height should be given as a preprocessor argument using -DDATA_TYPE=type, -DSRC_WIDTH=width and -DSRC_HEIGHT=height. e.g. -DDATA_TYPE=short
30 * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
31 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
32 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
33 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
34 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
35 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
36 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
37 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
38 * @param[in] weights_ptr Pointer to the weights tensor. Same as @p src_ptr
39 * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
40 * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
41 * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
42 * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
43 * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
44 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
45 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
46 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
47 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
49 __kernel void gemm_mv(TENSOR3D_DECLARATION(src), IMAGE_DECLARATION(weights), VECTOR_DECLARATION(dst))
51 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
53 int y = get_global_id(1) * 4;
54 int z = get_global_id(2);
56 __global uchar *current_weights = weights_ptr + weights_offset_first_element_in_bytes + z * weights_stride_y;
57 __global uchar *input_ptr = src.ptr;
59 DATA_TYPE acc0 = (DATA_TYPE)0;
60 DATA_TYPE acc1 = (DATA_TYPE)0;
61 DATA_TYPE acc2 = (DATA_TYPE)0;
62 DATA_TYPE acc3 = (DATA_TYPE)0;
64 // This kernel handle 4 rows in per thread so that it can reuse the weights
65 for(int i = 0; i < SRC_WIDTH; i += 4)
67 VEC_DATA_TYPE(DATA_TYPE, 4)
68 weights = vload4(0, (__global DATA_TYPE *)(current_weights + i * weights_stride_x));
70 int4 offset = (int4)i * (int4)src_stride_x + (int4)(0, 1, 2, 3) * (int4)src_stride_y;
72 VEC_DATA_TYPE(DATA_TYPE, 4)
73 tmp0 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
74 VEC_DATA_TYPE(DATA_TYPE, 4)
75 tmp1 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
76 VEC_DATA_TYPE(DATA_TYPE, 4)
77 tmp2 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
78 VEC_DATA_TYPE(DATA_TYPE, 4)
79 tmp3 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s3));
81 acc0 += dot(weights, tmp0);
82 acc1 += dot(weights, tmp1);
83 acc2 += dot(weights, tmp2);
84 acc3 += dot(weights, tmp3);
87 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y + z * SRC_HEIGHT) * dst_stride_x;
89 int rows_left = SRC_HEIGHT - (y + 4);
91 // This if check is used to handle the last few rows when it can't be divided by the four
94 VEC_DATA_TYPE(DATA_TYPE, 4)
95 out = (VEC_DATA_TYPE(DATA_TYPE, 4))(acc0, acc1, acc2, acc3);
96 vstore4(out, 0, (__global DATA_TYPE *)output_ptr);
102 case -1: // three rows left; one is padding
103 *((__global DATA_TYPE *)(output_ptr + 2 * dst_stride_x)) = acc2;
104 case -2: // two rows left; two are padding
105 *((__global DATA_TYPE *)(output_ptr + 1 * dst_stride_x)) = acc1;
106 case -3: // one row left; three are padding
107 *((__global DATA_TYPE *)(output_ptr + 0 * dst_stride_x)) = acc0;