2 * Copyright (c) 2017-2018 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 #if defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
27 /** This kernel applies dot product to each plane on the input tensor and the corrispective column of the reshaped weight tensor.
29 * @note Datatype and source width and height should be given as a preprocessor argument using -DDATA_TYPE=type, -DSRC_WIDTH=width and -DSRC_HEIGHT=height. e.g. -DDATA_TYPE=short
31 * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
32 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
33 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
34 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
35 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
36 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
37 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
38 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
39 * @param[in] weights_ptr Pointer to the weights tensor. Same as @p src_ptr
40 * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
41 * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
42 * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
43 * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
44 * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
45 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
46 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
47 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
48 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
50 __kernel void gemm_mv(TENSOR3D_DECLARATION(src), IMAGE_DECLARATION(weights), VECTOR_DECLARATION(dst))
52 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
54 int y = get_global_id(1) * 4;
55 int z = get_global_id(2);
57 __global uchar *current_weights = weights_ptr + weights_offset_first_element_in_bytes + z * weights_stride_y;
58 __global uchar *input_ptr = src.ptr;
60 DATA_TYPE acc0 = (DATA_TYPE)0;
61 DATA_TYPE acc1 = (DATA_TYPE)0;
62 DATA_TYPE acc2 = (DATA_TYPE)0;
63 DATA_TYPE acc3 = (DATA_TYPE)0;
65 // This kernel handle 4 rows in per thread so that it can reuse the weights
66 for(int i = 0; i < SRC_WIDTH; i += 4)
68 VEC_DATA_TYPE(DATA_TYPE, 4)
69 weights = vload4(0, (__global DATA_TYPE *)(current_weights + i * weights_stride_x));
71 int4 offset = (int4)i * (int4)src_stride_x + (int4)(0, 1, 2, 3) * (int4)src_stride_y;
73 VEC_DATA_TYPE(DATA_TYPE, 4)
74 tmp0 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
75 VEC_DATA_TYPE(DATA_TYPE, 4)
76 tmp1 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
77 VEC_DATA_TYPE(DATA_TYPE, 4)
78 tmp2 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
79 VEC_DATA_TYPE(DATA_TYPE, 4)
80 tmp3 = vload4(0, (__global DATA_TYPE *)(input_ptr + offset.s3));
82 acc0 += dot(weights, tmp0);
83 acc1 += dot(weights, tmp1);
84 acc2 += dot(weights, tmp2);
85 acc3 += dot(weights, tmp3);
88 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y + z * SRC_HEIGHT) * dst_stride_x;
90 int rows_left = SRC_HEIGHT - (y + 4);
92 // This if check is used to handle the last few rows when it can't be divided by the four
95 VEC_DATA_TYPE(DATA_TYPE, 4)
96 out = (VEC_DATA_TYPE(DATA_TYPE, 4))(acc0, acc1, acc2, acc3);
97 vstore4(out, 0, (__global DATA_TYPE *)output_ptr);
103 case -1: // three rows left; one is padding
104 *((__global DATA_TYPE *)(output_ptr + 2 * dst_stride_x)) = acc2;
105 case -2: // two rows left; two are padding
106 *((__global DATA_TYPE *)(output_ptr + 1 * dst_stride_x)) = acc1;
107 case -3: // one row left; three are padding
108 *((__global DATA_TYPE *)(output_ptr + 0 * dst_stride_x)) = acc0;
113 #endif /* defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) */
115 #if defined(SRC_WIDTH) && defined(SRC_HEIGHT)
116 /** This kernel applies dot product to each plane on the input tensor and the corresponding column of the reshaped weight tensor.
118 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8
119 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
120 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
121 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
122 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
123 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
124 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
125 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
126 * @param[in] weights_ptr Pointer to the weights tensor. Same as @p src_ptr
127 * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
128 * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
129 * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
130 * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
131 * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
132 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
133 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
134 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
135 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
136 * @param[in] input_offset Input's quantization offset
137 * @param[in] weights_offset Weights's quantization offset
139 __kernel void gemm_mv_quantized(TENSOR3D_DECLARATION(src),
140 IMAGE_DECLARATION(weights),
141 VECTOR_DECLARATION(dst),
142 const int input_offset,
143 const int weights_offset)
145 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
147 int y = get_global_id(1) * 4;
148 int z = get_global_id(2);
150 __global uchar *current_weights = weights_ptr + weights_offset_first_element_in_bytes + z * weights_stride_y;
151 __global uchar *input_ptr = src.ptr;
158 // This kernel handle 4 rows in per thread so that it can reuse the weights
159 for(int i = 0; i < SRC_WIDTH; i += 4)
161 int4 w = convert_int4(vload4(0, (__global uchar *)(current_weights + i * weights_stride_x))) + (int4)weights_offset;
163 int4 offset = (int4)i * (int4)src_stride_x + (int4)(0, 1, 2, 3) * (int4)src_stride_y;
165 int4 tmp0 = convert_int4(vload4(0, (__global uchar *)(input_ptr + offset.s0))) + (int4)input_offset;
166 int4 tmp1 = convert_int4(vload4(0, (__global uchar *)(input_ptr + offset.s1))) + (int4)input_offset;
167 int4 tmp2 = convert_int4(vload4(0, (__global uchar *)(input_ptr + offset.s2))) + (int4)input_offset;
168 int4 tmp3 = convert_int4(vload4(0, (__global uchar *)(input_ptr + offset.s3))) + (int4)input_offset;
171 acc0 += tmp0.s0 * w.s0 + tmp0.s1 * w.s1 + tmp0.s2 * w.s2 + tmp0.s3 * w.s3;
172 acc1 += tmp1.s0 * w.s0 + tmp1.s1 * w.s1 + tmp1.s2 * w.s2 + tmp1.s3 * w.s3;
173 acc2 += tmp2.s0 * w.s0 + tmp2.s1 * w.s1 + tmp2.s2 * w.s2 + tmp2.s3 * w.s3;
174 acc3 += tmp3.s0 * w.s0 + tmp3.s1 * w.s1 + tmp3.s2 * w.s2 + tmp3.s3 * w.s3;
177 __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y + z * SRC_HEIGHT) * dst_stride_x;
179 int rows_left = SRC_HEIGHT - (y + 4);
181 // This if check is used to handle the last few rows when it can't be divided by the four
184 vstore4((int4)(acc0, acc1, acc2, acc3), 0, (__global int *)output_ptr);
190 case -1: // three rows left; one is padding
191 *((__global int *)(output_ptr + 2 * dst_stride_x)) = acc2;
192 case -2: // two rows left; two are padding
193 *((__global int *)(output_ptr + 1 * dst_stride_x)) = acc1;
194 case -3: // one row left; three are padding
195 *((__global int *)(output_ptr + 0 * dst_stride_x)) = acc0;
200 #endif /* defined(SRC_WIDTH) && defined(SRC_HEIGHT) */