2 * Copyright (c) 2017 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 #ifndef ARM_COMPUTE_FIXED_POINT_H
25 #define ARM_COMPUTE_FIXED_POINT_H
27 #define TYPE_ALIAS(type, alias) \
29 typedef type alias##x##1; \
30 typedef type##2 alias##x##2; \
31 typedef type##3 alias##x##3; \
32 typedef type##4 alias##x##4; \
33 typedef type##8 alias##x##8; \
34 typedef type##16 alias##x##16;
37 TYPE_ALIAS(short, qs16)
40 #define qs8_MIN ((char)CHAR_MIN)
41 #define qs8_MAX ((char)CHAR_MAX)
42 #define qs16_MIN ((short)SHRT_MIN)
43 #define qs16_MAX ((short)SHRT_MAX)
44 #define qs32_MIN ((int)INT_MIN)
45 #define qs32_MAX ((int)INT_MAX)
47 #define qu8_MIN ((uchar)0)
48 #define qu8_MAX ((uchar)UCHAR_MAX)
49 #define qu16_MIN ((ushort)0)
50 #define qu16_MAX ((ushort)USHRT_MAX)
51 #define qu32_MIN ((uint)0)
52 #define qu32_MAX ((uint)UINT_MAX)
55 #define qs8x1_TYPE char
56 #define qs8x2_TYPE char2
57 #define qs8x3_TYPE char3
58 #define qs8x4_TYPE char4
59 #define qs8x8_TYPE char8
60 #define qs8x16_TYPE char16
62 #define qs16_TYPE short
63 #define qs16x1_TYPE short
64 #define qs16x2_TYPE short2
65 #define qs16x3_TYPE short3
66 #define qs16x4_TYPE short4
67 #define qs16x8_TYPE short8
68 #define qs16x16_TYPE short16
71 #define qs32x1_TYPE int
72 #define qs32x2_TYPE int2
73 #define qs32x3_TYPE int3
74 #define qs32x4_TYPE int4
75 #define qs32x8_TYPE int8
76 #define qs32x16_TYPE int16
78 /* All internal constants are represented in the maximum supported fixed point format (QS16),
79 * thus we define an additional shift parameter required to convert the constant
80 * from the maximum supported format to the require one.
85 #undef VEC_DATA_TYPE_STR
89 #undef CONVERT_SAT_STR
92 #define VEC_DATA_TYPE_STR(type, size) type##x##size
93 #define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
95 #define CONVERT_STR3(x, type, rtype) (convert_##rtype((x)))
96 #define CONVERT_STR2(x, type, rtype) CONVERT_STR3(x, type, rtype)
97 #define CONVERT_STR(x, type) CONVERT_STR2(x, type, type##_TYPE)
98 #define CONVERT(x, type) CONVERT_STR(x, type)
100 #define CONVERT_SAT_STR3(x, type, rtype) (convert_##rtype##_sat((x)))
101 #define CONVERT_SAT_STR2(x, type, rtype) CONVERT_SAT_STR3(x, type, rtype)
102 #define CONVERT_SAT_STR(x, type) CONVERT_SAT_STR2(x, type, type##_TYPE)
103 #define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
105 /** Computes saturating absolute value of fixed point vector.
107 * @param[in] type the actual data type.
109 * @return The result of the fixed point absolute value.
111 #define ABSQ_SAT_IMPL(type) \
112 inline type abs_##type##_sat(type VopA) \
114 return CONVERT_SAT(abs(VopA), type); \
117 ABSQ_SAT_IMPL(qs8x16)
118 ABSQ_SAT_IMPL(qs16x8)
120 #define ABS_SAT_OP_EXPAND_STR(a, type, size) abs_##type##x##size##_sat((a))
121 #define ABS_SAT_OP_EXPAND(a, type, size) ABS_SAT_OP_EXPAND_STR(a, type, size)
123 /** Computes max of fixed point types.
125 * @param[in] type the actual data type.
127 * @return The result of the fixed point maximum.
129 #define MAXQ_IMPL(type) \
130 inline type max_##type(type VopA, type VopB) \
132 return max(VopA, VopB); \
146 #define MAX_OP_EXPAND_STR(a, b, type, size) max_##type##x##size((a), (b))
147 #define MAX_OP_EXPAND(a, b, type, size) MAX_OP_EXPAND_STR(a, b, type, size)
149 /** Computes saturated addition of fixed point types.
151 * @param[in] type the actual data type.
153 * @return The result of the fixed point addition. The result is saturated in case of overflow
155 #define ADDQ_SAT_IMPL(type) \
156 inline type add_sat_##type(type VopA, type VopB) \
158 return add_sat(VopA, VopB); \
165 ADDQ_SAT_IMPL(qs8x16)
166 ADDQ_SAT_IMPL(qs16x1)
167 ADDQ_SAT_IMPL(qs16x2)
168 ADDQ_SAT_IMPL(qs16x4)
169 ADDQ_SAT_IMPL(qs16x8)
170 ADDQ_SAT_IMPL(qs16x16)
171 ADDQ_SAT_IMPL(qs32x1)
172 ADDQ_SAT_IMPL(qs32x2)
173 ADDQ_SAT_IMPL(qs32x4)
174 ADDQ_SAT_IMPL(qs32x8)
175 ADDQ_SAT_IMPL(qs32x16)
177 #define ADD_SAT_OP_EXPAND_STR(a, b, type, size) add_sat_##type##x##size((a), (b))
178 #define ADD_SAT_OP_EXPAND(a, b, type, size) ADD_SAT_OP_EXPAND_STR(a, b, type, size)
180 /** Computes saturated subtraction of fixed point types.
182 * @param[in] type the actual data type.
184 * @return The result of the fixed point subtraction. The result is saturated in case of overflow
186 #define SUBQ_SAT_IMPL(type) \
187 inline type sub_sat_##type(type VopA, type VopB) \
189 return sub_sat(VopA, VopB); \
196 SUBQ_SAT_IMPL(qs8x16)
197 SUBQ_SAT_IMPL(qs16x1)
198 SUBQ_SAT_IMPL(qs16x2)
199 SUBQ_SAT_IMPL(qs16x4)
200 SUBQ_SAT_IMPL(qs16x8)
201 SUBQ_SAT_IMPL(qs16x16)
203 #define SUB_SAT_OP_EXPAND_STR(a, b, type, size) sub_sat_##type##x##size((a), (b))
204 #define SUB_SAT_OP_EXPAND(a, b, type, size) SUB_SAT_OP_EXPAND_STR(a, b, type, size)
206 /* Multiply of two fixed point numbers
208 * @param[in] type the actual data type.
209 * @param[in] itype the intermediate data type.
211 * @return The result of the fixed point multiplication.
213 #define MULQ_IMPL(type, itype) \
214 inline type mul_##type(type VopA, type VopB, int fixed_point_position) \
216 itype round_val = (itype)(1 << (fixed_point_position - 1)); \
217 itype res = CONVERT((VopA), itype) * CONVERT((VopB), itype) + round_val; \
218 return CONVERT((res >> (itype)fixed_point_position), type); \
221 MULQ_IMPL(qs8x8, qs16x8)
222 MULQ_IMPL(qs16x8, qs32x8)
223 MULQ_IMPL(qs8x16, qs16x16)
224 MULQ_IMPL(qs16x16, qs32x16)
226 #define MUL_OP_EXPAND_STR(a, b, type, size, position) mul_##type##x##size((a), (b), (position))
227 #define MUL_OP_EXPAND(a, b, type, size, position) MUL_OP_EXPAND_STR(a, b, type, size, position)
229 /* Saturate multiply of two fixed point numbers
231 * @param[in] type the actual data type.
232 * @param[in] itype the intermediate data type.
234 * @return The result of the fixed point multiplication. The result is saturated in case of overflow
236 #define MULQ_SAT_IMPL(type, itype) \
237 inline type mul_sat_##type(type VopA, type VopB, int fixed_point_position) \
239 itype round_val = (itype)(1 << (fixed_point_position - 1)); \
240 itype res = mad_sat(CONVERT((VopA), itype), CONVERT((VopB), itype), round_val); \
241 return CONVERT_SAT((res >> (itype)fixed_point_position), type); \
244 MULQ_SAT_IMPL(qs8x1, qs16x1)
245 MULQ_SAT_IMPL(qs8x2, qs16x2)
246 MULQ_SAT_IMPL(qs8x3, qs16x3)
247 MULQ_SAT_IMPL(qs8x4, qs16x4)
248 MULQ_SAT_IMPL(qs8x8, qs16x8)
249 MULQ_SAT_IMPL(qs8x16, qs16x16)
250 MULQ_SAT_IMPL(qs16x1, qs32x1)
251 MULQ_SAT_IMPL(qs16x2, qs32x2)
252 MULQ_SAT_IMPL(qs16x3, qs32x3)
253 MULQ_SAT_IMPL(qs16x4, qs32x4)
254 MULQ_SAT_IMPL(qs16x8, qs32x8)
255 MULQ_SAT_IMPL(qs16x16, qs32x16)
257 #define MUL_SAT_OP_EXPAND_STR(a, b, type, size, position) mul_sat_##type##x##size((a), (b), (position))
258 #define MUL_SAT_OP_EXPAND(a, b, type, size, position) MUL_SAT_OP_EXPAND_STR(a, b, type, size, position)
260 /** Saturate multiply-accumulate
262 * @param[in] type the actual data type.
263 * @param[in] itype the intermediate data type.
265 * @return The result of the fixed point multiply-accumulate. The result is saturated in case of overflow
267 #define MLAQ_SAT_IMPL(type, itype) \
268 type mla_sat_##type(type VopA, type VopB, type VopC, int fixed_point_position) \
270 itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \
271 return add_sat(VopA, CONVERT_SAT(res >> (itype)fixed_point_position, type)); \
274 MLAQ_SAT_IMPL(qs8x8, qs16x8)
275 MLAQ_SAT_IMPL(qs8x16, qs16x16)
276 MLAQ_SAT_IMPL(qs16x8, qs32x8)
278 #define MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mla_sat_##type##x##size((a), (b), (c), (position))
279 #define MLA_SAT_OP_EXPAND(a, b, c, type, size, position) MLA_SAT_OP_EXPAND_STR(a, b, c, type, size, position)
281 /** Saturate multiply-accumulate long
283 * @param[in] type the actual data type.
284 * @param[in] itype the intermediate data type.
286 * @return The result of the fixed point multiply-accumulate long. The result is saturated in case of overflow
288 #define MLALQ_SAT_IMPL(type, itype) \
289 itype mlal_sat_##type(itype VopA, type VopB, type VopC, int fixed_point_position) \
291 itype res = mad_sat(CONVERT(VopB, itype), CONVERT(VopC, itype), (itype)(1 << (fixed_point_position - 1))); \
292 return add_sat(VopA, res >> (itype)fixed_point_position); \
295 MLALQ_SAT_IMPL(qs8x8, qs16x8)
296 MLALQ_SAT_IMPL(qs16x8, qs32x8)
298 #define MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position) mlal_sat_##type##x##size((a), (b), (c), (position))
299 #define MLAL_SAT_OP_EXPAND(a, b, c, type, size, position) MLAL_SAT_OP_EXPAND_STR(a, b, c, type, size, position)
301 /** Saturate division of two fixed point vectors
303 * @param[in] stype the actual scalar data type.
304 * @param[in] type the actual data type.
305 * @param[in] itype the intermediate data type.
307 * @return The result of the fixed point division. The result is saturated in case of overflow
309 #define DIVQ_SAT_IMPL(stype, type, itype) \
310 inline type div_sat_##type(type VopA, type VopB, int fixed_point_position) \
312 itype conv_a = CONVERT((VopA), itype); \
313 itype denominator = CONVERT((VopB), itype); \
314 itype numerator = conv_a << (itype)(fixed_point_position); \
315 itype res = select((itype)(numerator / denominator), select((itype)stype##_MAX, (itype)stype##_MIN, (itype)(conv_a < (itype)0)), (itype)(denominator == (itype)0)); \
316 return CONVERT_SAT((res), type); \
319 DIVQ_SAT_IMPL(qs8, qs8x16, qs16x16)
320 DIVQ_SAT_IMPL(qs16, qs16x8, qs32x8)
321 DIVQ_SAT_IMPL(qs16, qs16x16, qs32x16)
322 DIVQ_SAT_IMPL(qs8, qs8, qs16)
323 DIVQ_SAT_IMPL(qs16, qs16, qs32)
325 #define DIV_SAT_OP_EXPAND_STR(a, b, type, position) div_sat_##type((a), (b), (position))
326 #define DIV_SAT_OP_EXPAND(a, b, type, position) DIV_SAT_OP_EXPAND_STR(a, b, type, position)
328 #define DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position) div_sat_##type##x##size((a), (b), (position))
329 #define DIV_SAT_OP_VEC_EXPAND(a, b, type, size, position) DIV_SAT_OP_VEC_EXPAND_STR(a, b, type, size, position)
331 /** Saturate exponential of a fixed point vector
333 * @note Implemented approach uses taylor polynomial to approximate the exponential function.
335 * @param[in] stype the actual scalar data type.
336 * @param[in] type the actual data type.
337 * @param[in] size the number of the calculated elements.
339 * @return The result of the fixed point exponential. The result is saturated in case of overflow
341 #define EXPQ_IMPL(stype, type, size) \
342 inline type exp_sat_##type(type VopA, int fixed_point_position) \
344 type const_one = (type)(1 << (fixed_point_position)); \
345 type ln2 = (type)((((0x58B9 >> (14 - fixed_point_position))) + 1) >> 1); \
346 type inv_ln2 = (type)((((0x38AA >> (14 - fixed_point_position)) + 1) >> 1)) | const_one; \
347 type A = (type)(((0x7FBA >> (14 - fixed_point_position)) + 1) >> 1); \
348 type B = (type)(((0x3FE9 >> (14 - fixed_point_position)) + 1) >> 1); \
349 type C = (type)(((0x1693 >> (14 - fixed_point_position)) + 1) >> 1); \
350 type D = (type)(((0x0592 >> (14 - fixed_point_position)) + 1) >> 1); \
351 type m = MUL_SAT_OP_EXPAND(VopA, inv_ln2, stype, size, fixed_point_position); \
352 type dec_m = m >> (type)fixed_point_position; \
353 type alpha = MUL_SAT_OP_EXPAND(dec_m << (type)fixed_point_position, ln2, stype, size, fixed_point_position); \
354 alpha = CONVERT(abs_diff(VopA, alpha), type); \
355 type sum = add_sat(MUL_SAT_OP_EXPAND(alpha, D, stype, size, fixed_point_position), C); \
356 sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), B); \
357 sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), A); \
358 sum = add_sat(MUL_SAT_OP_EXPAND(alpha, sum, stype, size, fixed_point_position), const_one); \
359 return select((type)stype##_MAX, select(sum << dec_m, sum >> -dec_m, dec_m < (type)0), clz(sum) > dec_m); /* Saturate result if needed */ \
362 EXPQ_IMPL(qs8, qs8x16, 16)
363 EXPQ_IMPL(qs16, qs16x8, 8)
364 EXPQ_IMPL(qs16, qs16x16, 16)
366 #define EXP_OP_EXPAND_STR(a, type, size, position) exp_sat_##type##x##size((a), (position))
367 #define EXP_OP_EXPAND(a, type, size, position) EXP_OP_EXPAND_STR(a, type, size, position)
369 /** Saturate logarithm of a fixed point vector
371 * @note Implemented approach uses taylor polynomial to approximate the logarithm function.
373 * @param[in] stype the actual scalar data type.
374 * @param[in] type the actual data type.
375 * @param[in] size the number of the calculated elements.
377 * @return The result of the fixed point logarithm. The result is saturated in case of overflow
379 #define LOGQ_IMPL(stype, type, size) \
380 inline type log_sat_##type(type VopA, int fixed_point_position) \
382 type const_one = (type)(1 << (fixed_point_position)); \
383 type ln2 = (type)(0x58B9 >> (15 - fixed_point_position)); /* 1.4384189 */ \
384 type A = (type)(0x5C0F >> (14 - fixed_point_position)); /* 1.4384189 */ \
385 type B = -(type)(0x56AE >> (15 - fixed_point_position)); /* -0.6771900 */ \
386 type C = (type)(0x2933 >> (15 - fixed_point_position)); /* 0.3218538 */ \
387 type D = -(type)(0x0AA7 >> (15 - fixed_point_position)); /* -0.0832229 */ \
388 type inter_a = select(VopA, DIV_SAT_OP_VEC_EXPAND(const_one, VopA, stype, size, fixed_point_position), VopA < const_one); \
389 type shift_val = (type)(15 - stype##_SHIFT) - clz(inter_a >> (type)fixed_point_position); \
390 inter_a = inter_a >> shift_val; \
391 inter_a = sub_sat(inter_a, const_one); \
392 type sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, D, stype, size, fixed_point_position), C); \
393 sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), B); \
394 sum = add_sat(MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position), A); \
395 sum = MUL_SAT_OP_EXPAND(inter_a, sum, stype, size, fixed_point_position); \
396 sum = MUL_SAT_OP_EXPAND(add_sat(sum, shift_val << (type)fixed_point_position), ln2, stype, size, fixed_point_position); \
397 return select(select(sum, -sum, VopA < const_one), (type)0, VopA < (type)0); /* Saturate result if needed */ \
400 LOGQ_IMPL(qs8, qs8x16, 16)
401 LOGQ_IMPL(qs16, qs16x8, 8)
402 LOGQ_IMPL(qs16, qs16x16, 16)
404 #define LOG_OP_EXPAND_STR(a, type, size, position) log_sat_##type##x##size((a), (position))
405 #define LOG_OP_EXPAND(a, type, size, position) LOG_OP_EXPAND_STR(a, type, size, position)
407 /** Saturate inverse square root of a fixed point vector
409 * @note Implemented approach uses Newton's method to approximate the inverse square root function.
411 * @param[in] stype the actual scalar data type.
412 * @param[in] type the actual data type.
413 * @param[in] size the number of the calculated elements.
415 * @return The result of the fixed point inverse square root. The result is saturated in case of overflow
417 #define INVSQRTQ_IMPL(stype, type, size) \
418 inline type invsqrt_sat_##type(type VopA, int fixed_point_position) \
420 type const_three = (type)(3 << (fixed_point_position)); \
421 type shift_value = (type)(16 - stype##_SHIFT) - (clz(VopA) + (type)fixed_point_position); \
422 type temp = select((type)(VopA >> shift_value), select((type)stype##_MAX, (type)(VopA << (-shift_value)), (type)(clz(VopA) > (-shift_value))), (type)(shift_value < (type)0)); \
424 x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
425 x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
426 x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
427 if(sizeof((stype)(1)) > 1) /* Perform more iterations if datatype is QS16 */ \
429 x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
430 x = MUL_SAT_OP_EXPAND(x, sub_sat(const_three, MUL_SAT_OP_EXPAND(MUL_SAT_OP_EXPAND(x, x, stype, size, fixed_point_position), temp, stype, size, fixed_point_position)), stype, size, fixed_point_position) >> 1; \
432 type shift_value2 = select(shift_value >> 1, (-shift_value) >> 1, shift_value < (type)0); \
433 return select((type)(x >> shift_value2), select((type)stype##_MAX, (type)(x << shift_value2), (type)(clz(x) > shift_value2)), (type)(shift_value < (type)0)); /* Saturate result if needed */ \
436 INVSQRTQ_IMPL(qs8, qs8x1, 1)
437 INVSQRTQ_IMPL(qs16, qs16x1, 1)
438 INVSQRTQ_IMPL(qs8, qs8x16, 16)
439 INVSQRTQ_IMPL(qs16, qs16x8, 8)
441 #define INVSQRT_OP_EXPAND_STR(a, type, size, position) invsqrt_sat_##type##x##size((a), (position))
442 #define INVSQRT_OP_EXPAND(a, type, size, position) INVSQRT_OP_EXPAND_STR(a, type, size, position)
444 /** Saturate hyperbolic tangent of a fixed point vector
446 * tanh(x) = (e^2x - 1)/(e^2x + 1)
448 * @param[in] stype the actual scalar data type.
449 * @param[in] type the actual data type.
450 * @param[in] size the number of the calculated elements.
452 * @return The result of the fixed point hyperbolic tangent. The result is saturated in case of overflow
454 #define TANHQ_IMPL(stype, type, size) \
455 inline type tanh_sat_##type(type VopA, int fixed_point_position) \
457 type const_one = (type)(1 << (fixed_point_position)); \
458 type const_two = (type)(2 << (fixed_point_position)); \
459 type exp2x = EXP_OP_EXPAND(MUL_SAT_OP_EXPAND(const_two, VopA, stype, size, fixed_point_position), stype, size, fixed_point_position); \
460 type num = SUB_SAT_OP_EXPAND(exp2x, const_one, stype, size); \
461 type den = ADD_SAT_OP_EXPAND(exp2x, const_one, stype, size); \
462 return DIV_SAT_OP_VEC_EXPAND(num, den, stype, size, fixed_point_position); \
465 TANHQ_IMPL(qs8, qs8x16, 16)
466 TANHQ_IMPL(qs16, qs16x8, 8)
468 #define TANH_OP_EXPAND_STR(a, type, size, position) tanh_sat_##type##x##size((a), (position))
469 #define TANH_OP_EXPAND(a, type, size, position) TANH_OP_EXPAND_STR(a, type, size, position)
471 #define floatx16 float16
472 #define float16_TYPE float16
474 #define CONVERTQ_DOWN_IMPL(in_type, out_type) \
475 inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position) \
477 return CONVERT(a * (1 << fixed_point_position) + select((in_type)-0.5, (in_type)0.5, isgreater(a, (in_type)0)), out_type); \
480 CONVERTQ_DOWN_IMPL(float16, qs8x16)
481 CONVERTQ_DOWN_IMPL(float16, qs16x16)
483 #define CONVERTQ_DOWN_SAT_IMPL(in_type, out_type) \
484 inline out_type convert_##out_type##_##in_type##_sat(in_type a, int fixed_point_position) \
486 return CONVERT_SAT(a * (1 << fixed_point_position) + select((in_type)-0.5, (in_type)0.5, isgreater(a, (in_type)0)), out_type); \
489 CONVERTQ_DOWN_SAT_IMPL(float16, qs8x16)
490 CONVERTQ_DOWN_SAT_IMPL(float16, qs16x16)
492 #define CONVERTQ_UP_IMPL(in_type, out_type) \
493 inline out_type convert_##out_type##_##in_type(in_type a, int fixed_point_position) \
495 return CONVERT(a, out_type) / (1 << fixed_point_position); \
498 CONVERTQ_UP_IMPL(qs8x16, float16)
499 CONVERTQ_UP_IMPL(qs16x16, float16)
501 #define SQCVT_SAT_IMPL(type) \
502 inline type sqcvt_##type##_sat(float a, int fixed_point_position) \
504 return CONVERT_SAT((a * (1 << fixed_point_position) + ((a < 0) ? -0.5f : 0.5f)), type); \
510 #define SQCVT_SAT_OP_EXPAND_STR(a, type, position) sqcvt_##type##_sat((a), (position))
511 #define SQCVT_SAT_OP_EXPAND(a, type, position) SQCVT_SAT_OP_EXPAND_STR((a), type, position)
513 #endif // ARM_COMPUTE_FIXED_POINT_H