arm_compute v18.02
[platform/upstream/armcl.git] / src / core / CL / cl_kernels / direct_convolution5x5.cl
1 /*
2  * Copyright (c) 2016, 2017 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "helpers.h"
25
26 #undef CONVERT_SAT
27
28 #if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
29
30 #if STRIDE_X == 1
31 #define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr)
32 #elif STRIDE_X == 2 /* STRIDE_X == 1 */
33 #define CONVOLUTION1x5(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr)
34 #else /* STRIDE_X not equals 1 or 2 */
35 #error "STRIDE_X larger than 2 is not supported"
36 #endif /* STRIDE_X == 2 */
37
38 #define CONVOLUTION1x5_STRIDE1(acc, src_row_ptr, weights_row_ptr)                                                               \
39     ({                                                                                                                          \
40         VEC_DATA_TYPE(DATA_TYPE, 4)                                                                                             \
41         weights_values0          = vload4(0, weights_row_ptr);                                                                  \
42         DATA_TYPE weights_value1 = *(weights_row_ptr + 4);                                                                      \
43         VEC_DATA_TYPE(DATA_TYPE, 8)                                                                                             \
44         src0 = vload8(0, src_row_ptr);                                                                                          \
45         VEC_DATA_TYPE(DATA_TYPE, 4)                                                                                             \
46         src1 = vload4(0, src_row_ptr + 8);                                                                                      \
47         \
48         acc += src0 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0;                                                          \
49         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \
50         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
51         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s345, src0.s67, src1.s012) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
52         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s45, src0.s67, src1.s0123) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1;     \
53     })
54
55 #define CONVOLUTION1x5_STRIDE2(acc, src_row_ptr, weights_row_ptr)                                                               \
56     ({                                                                                                                          \
57         VEC_DATA_TYPE(DATA_TYPE, 4)                                                                                             \
58         weights_values0          = vload4(0, weights_row_ptr);                                                                  \
59         DATA_TYPE weights_value1 = *(weights_row_ptr + 4);                                                                      \
60         VEC_DATA_TYPE(DATA_TYPE, 16)                                                                                            \
61         src0 = vload16(0, src_row_ptr);                                                                                         \
62         VEC_DATA_TYPE(DATA_TYPE, 4)                                                                                             \
63         src1 = vload4(0, src_row_ptr + 16);                                                                                     \
64         acc += src0.even * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0;                                                     \
65         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1;         \
66         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
67         \
68         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s3579, src0.sBDF, src1.s1) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
69         acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s468a, src0.sCE, src1.s02) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1;     \
70     })
71
72 /** This kernel performs a direct convolution to convolve the low three dimensions.
73  *
74  * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
75  * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
76  * @note If biases are used then -DHAS_BIAS has to be passed at compile time
77  *
78  * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32
79  * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
80  * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
81  * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
82  * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
83  * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
84  * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
85  * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
86  * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
87  * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
88  * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
89  * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
90  * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)
91  * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
92  * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
93  * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
94  * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr
95  * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
96  * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
97  * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
98  * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)
99  * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
100  * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)
101  * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
102  * @param[in]  biases_ptr                            Pointer to the biases tensor. Same as @p src_ptr
103  * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)
104  * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)
105  * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor
106  * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension
107  */
108 __kernel void direct_convolution5x5(
109     TENSOR3D_DECLARATION(src),
110     TENSOR3D_DECLARATION(dst),
111     TENSOR3D_DECLARATION(weights),
112 #ifdef HAS_BIAS
113     VECTOR_DECLARATION(biases),
114 #endif /* defined(HAS_BIAS) */
115     unsigned int weights_stride_w)
116 {
117     Image    src     = CONVERT_TO_IMAGE_STRUCT(src);
118     Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
119     Tensor3D dst     = CONVERT_TO_TENSOR3D_STRUCT(dst);
120
121     VEC_DATA_TYPE(DATA_TYPE, 8)
122     pixels0 = 0;
123
124     __global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
125     __global uchar *src_addr     = (__global uchar *)offset(&src, 0, 0);
126
127     const int kernel_index = get_global_id(2);
128     weights_addr += kernel_index * weights_stride_w;
129
130     for(volatile int d = 0; d < WEIGHTS_DEPTH; ++d)
131     {
132         CONVOLUTION1x5(pixels0, (__global DATA_TYPE *)src_addr, (__global DATA_TYPE *)weights_addr);
133         CONVOLUTION1x5(pixels0, (__global DATA_TYPE *)(src_addr + 1 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 1 * weights_stride_y));
134         CONVOLUTION1x5(pixels0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 2 * weights_stride_y));
135         CONVOLUTION1x5(pixels0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 3 * weights_stride_y));
136         CONVOLUTION1x5(pixels0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_y), (__global DATA_TYPE *)(weights_addr + 4 * weights_stride_y));
137
138         src_addr += src_stride_z;
139         weights_addr += weights_stride_z;
140     }
141
142 #ifdef HAS_BIAS
143     Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
144
145     pixels0 += (VEC_DATA_TYPE(DATA_TYPE, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, kernel_index)));
146 #endif /* defined(HAS_BIAS) */
147
148     vstore8(pixels0, 0, (__global DATA_TYPE *)dst.ptr);
149 }
150 #endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
151
152 #if defined(WEIGHTS_DEPTH)
153
154 #define CONVOLUTION1x5_BIFROST(acc, src0, weights_row00, weights_row01) \
155     ({                                                                  \
156         acc.s0 = mad(src0.s0, weights_row00.s0, acc.s0);                \
157         acc.s1 = mad(src0.s1, weights_row00.s0, acc.s1);                \
158         acc.s2 = mad(src0.s2, weights_row00.s0, acc.s2);                \
159         acc.s3 = mad(src0.s3, weights_row00.s0, acc.s3);                \
160         acc.s0 = mad(src0.s1, weights_row00.s1, acc.s0);                \
161         acc.s1 = mad(src0.s2, weights_row00.s1, acc.s1);                \
162         acc.s2 = mad(src0.s3, weights_row00.s1, acc.s2);                \
163         acc.s3 = mad(src0.s4, weights_row00.s1, acc.s3);                \
164         acc.s0 = mad(src0.s2, weights_row00.s2, acc.s0);                \
165         acc.s1 = mad(src0.s3, weights_row00.s2, acc.s1);                \
166         acc.s2 = mad(src0.s4, weights_row00.s2, acc.s2);                \
167         acc.s3 = mad(src0.s5, weights_row00.s2, acc.s3);                \
168         acc.s0 = mad(src0.s3, weights_row00.s3, acc.s0);                \
169         acc.s1 = mad(src0.s4, weights_row00.s3, acc.s1);                \
170         acc.s2 = mad(src0.s5, weights_row00.s3, acc.s2);                \
171         acc.s3 = mad(src0.s6, weights_row00.s3, acc.s3);                \
172         acc.s0 = mad(src0.s4, weights_row01, acc.s0);                   \
173         acc.s1 = mad(src0.s5, weights_row01, acc.s1);                   \
174         acc.s2 = mad(src0.s6, weights_row01, acc.s2);                   \
175         acc.s3 = mad(src0.s7, weights_row01, acc.s3);                   \
176     })
177
178 /** An optimized direct convolution 5x5 OpenCL kernel for Bifrost architectures when the data type is F32
179  *
180  * @note This OpenCL kernel works only with stride_x and stride_y equal to 1
181  * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
182  * @note If biases are used then -DHAS_BIAS has to be passed at compile time
183  *
184  * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F32
185  * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
186  * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
187  * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
188  * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
189  * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
190  * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
191  * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
192  * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
193  * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
194  * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
195  * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
196  * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)
197  * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)
198  * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
199  * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
200  * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr
201  * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)
202  * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)
203  * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
204  * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)
205  * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
206  * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)
207  * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
208  * @param[in]  biases_ptr                            Pointer to the biases tensor. Same as @p src_ptr
209  * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)
210  * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)
211  * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor
212  * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension
213  */
214 __kernel void direct_convolution5x5_f32_bifrost(
215     TENSOR3D_DECLARATION(src),
216     TENSOR3D_DECLARATION(dst),
217     TENSOR3D_DECLARATION(weights),
218 #ifdef HAS_BIAS
219     VECTOR_DECLARATION(biases),
220 #endif /* defined(HAS_BIAS) */
221     unsigned int weights_stride_w)
222 {
223     // Get the kernel index
224     const int kernel_index = get_global_id(2);
225
226     Image    src = CONVERT_TO_IMAGE_STRUCT(src);
227     Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
228
229     float4 pixels0 = 0.0f;
230     float4 pixels1 = 0.0f;
231
232     __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);
233     __global uchar *src_addr     = (__global uchar *)offset(&src, 0, 0);
234
235     // Note: Since each work-item computes 4x2 elements, we need to load 6 rows from the input tensor
236
237     for(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)
238     {
239         // Load the weights from row0 and row1
240         float4 weights_row00 = vload4(0, (__global float *)(weights_addr + 0 * weights_stride_y));
241         float  weights_row01 = *((__global float *)(weights_addr + 0 * weights_stride_y) + 4);
242         float4 weights_row10 = vload4(0, (__global float *)(weights_addr + 1 * weights_stride_y));
243         float  weights_row11 = *((__global float *)(weights_addr + 1 * weights_stride_y) + 4);
244         float8 src0;
245
246         // Load values from row0 of input tensor
247         src0 = vload8(0, (__global float *)(src_addr + 0 * src_stride_y));
248
249         // Accumulate
250         CONVOLUTION1x5_BIFROST(pixels0, src0, weights_row00, weights_row01);
251
252         // Load values from row1 of input tensor
253         src0 = vload8(0, (__global float *)(src_addr + 1 * src_stride_y));
254
255         // Accumulate
256         CONVOLUTION1x5_BIFROST(pixels0, src0, weights_row10, weights_row11);
257         CONVOLUTION1x5_BIFROST(pixels1, src0, weights_row00, weights_row01);
258
259         // Load values from row2 of input tensor
260         src0 = vload8(0, (__global float *)(src_addr + 2 * src_stride_y));
261
262         // Load weights from row2
263         weights_row00 = vload4(0, (__global float *)(weights_addr + 2 * weights_stride_y));
264         weights_row01 = *((__global float *)(weights_addr + 2 * weights_stride_y) + 4);
265
266         // Accumulate
267         CONVOLUTION1x5_BIFROST(pixels0, src0, weights_row00, weights_row01);
268         CONVOLUTION1x5_BIFROST(pixels1, src0, weights_row10, weights_row11);
269
270         // Load values from row3 of input tensor
271         src0 = vload8(0, (__global float *)(src_addr + 3 * src_stride_y));
272
273         // Load weights from row3
274         weights_row10 = vload4(0, (__global float *)(weights_addr + 3 * weights_stride_y));
275         weights_row11 = *((__global float *)(weights_addr + 3 * weights_stride_y) + 4);
276
277         // Accumulate
278         CONVOLUTION1x5_BIFROST(pixels0, src0, weights_row10, weights_row11);
279         CONVOLUTION1x5_BIFROST(pixels1, src0, weights_row00, weights_row01);
280
281         // Load values from row4 of input tensor
282         src0 = vload8(0, (__global float *)(src_addr + 4 * src_stride_y));
283
284         // Load weights from row4
285         weights_row00 = vload4(0, (__global float *)(weights_addr + 4 * weights_stride_y));
286         weights_row01 = *((__global float *)(weights_addr + 4 * weights_stride_y) + 4);
287
288         CONVOLUTION1x5_BIFROST(pixels0, src0, weights_row00, weights_row01);
289         CONVOLUTION1x5_BIFROST(pixels1, src0, weights_row10, weights_row11);
290
291         // Load values from row5 of input tensor
292         src0 = vload8(0, (__global float *)(src_addr + 5 * src_stride_y));
293
294         // Accumulate
295         CONVOLUTION1x5_BIFROST(pixels1, src0, weights_row00, weights_row01);
296
297         src_addr += src_stride_z;
298         weights_addr += weights_stride_z;
299     }
300
301 #ifdef HAS_BIAS
302     Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
303
304     float4 bias = (float4) * ((__global float *)(vector_offset(&biases, kernel_index)));
305
306     pixels0 += bias;
307     pixels1 += bias;
308 #endif /* defined(HAS_BIAS) */
309
310     vstore4(pixels0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
311     vstore4(pixels1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
312 }
313 #endif // defined(WEIGHTS_DEPTH)