2 * Copyright (c) 2016, 2017 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 #if defined(FIXED_POINT_POSITION)
27 #include "fixed_point.h"
29 #define ADD_OP(a, b) ADD_SAT_OP_EXPAND((a), (b), DATA_TYPE_PROMOTED, 8)
30 #define MUL_OP(a, b) MUL_SAT_OP_EXPAND(CONVERT((a), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)), CONVERT((b), VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)), DATA_TYPE_PROMOTED, 8, FIXED_POINT_POSITION)
32 // There is no need to have a larger intermediate type for qs32 because all the arguments are already promoted
33 MULQ_SAT_IMPL(qs32x8, qs32x8)
35 #else /* FIXED_POINT_POSITION */
38 #define ADD_OP(a, b) ((a) + (b))
39 #define MUL_OP(a, b) ((a) * (b))
40 #define CONVERT_SAT(a, b) ((a))
42 #endif /* FIXED_POINT_POSITION */
44 #if defined(DATA_TYPE) && defined(DATA_SIZE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
47 #define INPUT_PIXEL_STR(data_size) extract_input_stride3_##data_size
48 #define INPUT_PIXEL(data_size) INPUT_PIXEL_STR(data_size)
50 #define INPUT_PIXEL(data_size) extract_input_stride2
52 #define INPUT_PIXEL(data_size) extract_input_stride1
53 #else /* STRIDE_X not equals 1, 2 or 3 */
54 #error "Only support strides 1, 2 and 3"
55 #endif /* STRIDE_X == 3 */
57 /** Extracts a 1D horizontal vector from the input tensor with stride as 1.
59 * @param[in] input_pixel Pointer to the first pixel.
61 * @return extracted input pixels.
63 inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride1(__global const DATA_TYPE *input_pixel)
65 return vload8(0, input_pixel);
68 /** Extracts a 1D horizontal vector from the input tensor with stride as 2.
70 * @param[in] input_pixel Pointer to the first pixel.
72 * @return extracted input pixels.
74 inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride2(__global const DATA_TYPE *input_pixel)
76 VEC_DATA_TYPE(DATA_TYPE, 16)
77 temp = vload16(0, input_pixel);
78 return temp.s02468ace;
81 /** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 32-bit data size.
83 * @param[in] input_pixel Pointer to the first pixel.
85 * @return extracted input pixels.
87 inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_32(__global const DATA_TYPE *input_pixel)
89 VEC_DATA_TYPE(DATA_TYPE, 4)
90 temp1 = vload4(0, input_pixel);
91 VEC_DATA_TYPE(DATA_TYPE, 4)
92 temp2 = vload4(0, input_pixel + 6);
93 VEC_DATA_TYPE(DATA_TYPE, 4)
94 temp3 = vload4(0, input_pixel + 12);
95 VEC_DATA_TYPE(DATA_TYPE, 4)
96 temp4 = vload4(0, input_pixel + 18);
97 return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s03, temp2.s03, temp3.s03, temp4.s03);
100 /** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 16-bit data size.
102 * @param[in] input_pixel Pointer to the first pixel.
104 * @return extracted input pixels.
106 inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_16(__global const DATA_TYPE *input_pixel)
108 VEC_DATA_TYPE(DATA_TYPE, 8)
109 temp1 = vload8(0, input_pixel);
110 VEC_DATA_TYPE(DATA_TYPE, 8)
111 temp2 = vload8(0, input_pixel + 8);
112 VEC_DATA_TYPE(DATA_TYPE, 8)
113 temp3 = vload8(0, input_pixel + 16);
114 return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s036, temp2.s147, temp3.s25);
117 /** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.
119 * @param[in] input_pixel Pointer to the first pixel.
121 * @return extracted input pixels.
123 inline VEC_DATA_TYPE(DATA_TYPE, 8) extract_input_stride3_8(__global const DATA_TYPE *input_pixel)
125 VEC_DATA_TYPE(DATA_TYPE, 16)
126 temp1 = vload16(0, input_pixel);
127 VEC_DATA_TYPE(DATA_TYPE, 16)
128 temp2 = vload16(0, input_pixel + 12);
129 return (VEC_DATA_TYPE(DATA_TYPE, 8))(temp1.s0369, temp2.s0369);
132 /** This kernel performs a direct convolution to convolve the low three dimensions.
134 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
135 * @note The data size must be passed at compile time using -DDATA_SIZE e.g. -DDATA_SIZE=32
136 * @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1
137 * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
138 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
140 * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
141 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
142 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
143 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
144 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
145 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
146 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
147 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
148 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
149 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
150 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
151 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
152 * @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
153 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
154 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
155 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
156 * @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p weights_ptr
157 * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
158 * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
159 * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
160 * @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
161 * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
162 * @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
163 * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
164 * @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
165 * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
166 * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
167 * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
168 * @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
170 __kernel void direct_convolution1x1(
171 TENSOR3D_DECLARATION(src),
172 TENSOR3D_DECLARATION(dst),
173 TENSOR3D_DECLARATION(weights),
175 VECTOR_DECLARATION(biases),
176 #endif /* defined(HAS_BIAS) */
177 unsigned int weights_stride_w)
179 Image src = CONVERT_TO_IMAGE_STRUCT(src);
180 Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
181 Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
184 Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
185 #endif /* defined(HAS_BIAS) */
187 VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)
190 const uint z_index = get_global_id(2);
192 weights.ptr += z_index * weights_stride_w;
194 for(int d = 0; d < WEIGHTS_DEPTH; ++d)
196 DATA_TYPE weight = *(__global DATA_TYPE *)weights.ptr;
197 VEC_DATA_TYPE(DATA_TYPE, 8)
198 input_pixel = INPUT_PIXEL(DATA_SIZE)((__global DATA_TYPE *)src.ptr);
199 pixels = ADD_OP(pixels, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))weight, input_pixel));
200 src.ptr += src_stride_z;
201 weights.ptr += weights_stride_z;
205 pixels = ADD_OP(pixels, (VEC_DATA_TYPE(DATA_TYPE_PROMOTED, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, z_index))));
206 #endif /* defined(HAS_BIAS) */
208 vstore8(CONVERT_SAT(pixels, VEC_DATA_TYPE(DATA_TYPE, 8)), 0, (__global DATA_TYPE *)dst.ptr);
210 #endif // defined(DATA_TYPE) && defined(DATA_SIZE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)
212 #if defined(WEIGHTS_DEPTH)
214 #define CONVOLUTION1x1_BIFROST(acc, src, weight_value) \
216 acc.s0 = mad(src.s0, weight_value, acc.s0); \
217 acc.s1 = mad(src.s1, weight_value, acc.s1); \
218 acc.s2 = mad(src.s2, weight_value, acc.s2); \
219 acc.s3 = mad(src.s3, weight_value, acc.s3); \
222 /** An optimized direct convolution 1x1 OpenCL kernel for Bifrost architectures when the data type is F32
224 * @note This OpenCL kernel works only with stride_x and stride_y equal to 1
225 * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
226 * @note In case biases, -DHAS_BIAS must to be passed at compile
228 * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32
229 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
230 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
231 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
232 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
233 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
234 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
235 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
236 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
237 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
238 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
239 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
240 * @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
241 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
242 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
243 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
244 * @param[out] weights_ptr Pointer to the weights tensor. Supported data types: same as @p weights_ptr
245 * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
246 * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
247 * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
248 * @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
249 * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
250 * @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
251 * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
252 * @param[in] biases_ptr Pointer to the biases tensor. Same as @p src_ptr
253 * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
254 * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
255 * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
256 * @param[in] weights_stride_w Stride of the weights tensor in the 4th dimension
258 __kernel void direct_convolution1x1_f32_bifrost(
259 TENSOR3D_DECLARATION(src),
260 TENSOR3D_DECLARATION(dst),
261 TENSOR3D_DECLARATION(weights),
263 VECTOR_DECLARATION(biases),
264 #endif /* defined(HAS_BIAS) */
265 unsigned int weights_stride_w)
267 // Get the kernel index
268 const int kernel_index = get_global_id(2);
270 Image src = CONVERT_TO_IMAGE_STRUCT(src);
271 Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
278 __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);
279 __global uchar *src_addr = (__global uchar *)offset(&src, 0, 0);
281 for(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)
284 float weight = *((__global float *)weights_addr);
286 // Load values from row0 of input tensor
287 float4 src0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
288 float4 src1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
289 float4 src2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
290 float4 src3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
292 CONVOLUTION1x1_BIFROST(acc0, src0, weight);
293 CONVOLUTION1x1_BIFROST(acc1, src1, weight);
294 CONVOLUTION1x1_BIFROST(acc2, src2, weight);
295 CONVOLUTION1x1_BIFROST(acc3, src3, weight);
297 src_addr += src_stride_z;
298 weights_addr += weights_stride_z;
302 Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
304 float bias = (float) * ((__global float *)(vector_offset(&biases, kernel_index)));
322 #endif /* defined(HAS_BIAS) */
324 vstore4(acc0, 0, (__global float *)(dst.ptr + 0 * dst_stride_y));
325 vstore4(acc1, 0, (__global float *)(dst.ptr + 1 * dst_stride_y));
326 vstore4(acc2, 0, (__global float *)(dst.ptr + 2 * dst_stride_y));
327 vstore4(acc3, 0, (__global float *)(dst.ptr + 3 * dst_stride_y));
329 #endif // defined(WEIGHTS_DEPTH)