2 * Copyright (c) 2017 ARM Limited.
4 * SPDX-License-Identifier: MIT
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
26 #if defined(FIXED_POINT_POSITION)
27 #include "fixed_point.h"
28 #endif // FIXED_POINT_POSITION
30 /** This kernel reshapes the tensor's low three dimensions to single column
32 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
34 * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
35 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
36 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
37 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
38 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
39 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
40 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
41 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
42 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
43 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
44 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
45 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
46 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
47 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
48 * @param[in] bias_ptr Pointer to the bias tensor. Same as @p src_ptr
49 * @param[in] bias_stride_x Stride of the bias tensor in X dimension (in bytes)
50 * @param[in] bias_step_x bias_stride_x * number of elements along X processed per workitem(in bytes)
51 * @param[in] bias_offset_first_element_in_bytes The offset of the first element in the source tensor
52 * @param[in] width The width of the input tensor
53 * @param[in] height The height of the input tensor
54 * @param[in] depth The depth of the input tensor
55 * @param[in] total_filters Total number of filters. 4th dimension of the weights matrix
57 __kernel void reshape_to_columns(
58 TENSOR3D_DECLARATION(src),
59 IMAGE_DECLARATION(dst),
61 VECTOR_DECLARATION(bias),
63 uint width, uint height, uint depth, uint total_filters)
65 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
66 bool is_last_thread = (get_global_id(0) == (get_global_size(0) - 1) && get_global_id(1) == (get_global_size(1) - 1) && get_global_id(2) == (get_global_size(2) - 1));
68 __global uchar *tmp_src_ptr = src.ptr;
69 __global uchar *tmp_dst_ptr = dst_ptr + dst_offset_first_element_in_bytes + get_global_id(0) * dst_stride_y + get_global_id(1) * width * dst_stride_y + get_global_id(
70 2) * width * height * dst_stride_y;
72 __global uchar *tmp_bias_ptr = bias_ptr + bias_offset_first_element_in_bytes;
77 for(uint i = 0; i < total_filters; ++i)
79 *((__global DATA_TYPE *)tmp_dst_ptr) = *((__global DATA_TYPE *)tmp_src_ptr);
82 *((__global DATA_TYPE *)(tmp_dst_ptr + dst_stride_y)) = *((__global DATA_TYPE *)(tmp_bias_ptr));
83 tmp_bias_ptr += bias_stride_x;
85 tmp_src_ptr += depth * src_stride_z;
86 tmp_dst_ptr += dst_stride_x;
91 for(uint i = 0; i < total_filters; ++i)
93 *((__global DATA_TYPE *)tmp_dst_ptr) = *((__global DATA_TYPE *)tmp_src_ptr);
94 tmp_src_ptr += depth * src_stride_z;
95 tmp_dst_ptr += dst_stride_x;
100 #if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_X) && defined(PAD_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
101 /** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM.
103 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
104 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
106 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
107 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
108 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
109 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
110 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
111 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
112 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
113 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
114 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
115 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
116 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
117 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
118 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
119 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
120 * @param[in] filter_depth The depth of the used filter
121 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
122 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
124 __kernel void im2col_generic(
125 TENSOR3D_DECLARATION(src),
126 IMAGE_DECLARATION(dst),
131 const int xc = get_global_id(0); // x coordinate in the convolved tensor
132 const int yc = get_global_id(1); // y coordinate in the convolved tensor
133 const int ch = get_global_id(2) % filter_depth; // input feature map
134 const int batch = get_global_id(2) / filter_depth; // the batch
136 // Calculate input indeces
137 const int xi = xc * STRIDE_X - PAD_X;
138 const int yi = yc * STRIDE_Y - PAD_Y;
140 // Calculate output indeces
141 const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
142 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
144 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
145 __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
147 // Linearize convolution elements
148 for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
150 for(int x = xi, x_e = xi + KERNEL_WIDTH; x < x_e; ++x, ++output_ptr)
152 #if PAD_X == 0 && PAD_Y == 0
153 *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
154 #else // PAD_X == 0 && PAD_Y == 0
155 if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
161 *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
163 #endif // PAD_X == 0 && PAD_Y == 0
168 if(ch == (KERNEL_DEPTH - 1))
170 #ifdef FIXED_POINT_POSITION
171 *output_ptr = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
172 #else // FIXED_POINT_POSITION
174 #endif // FIXED_POINT_POSITION
179 /** This kernel performs a reshaping of the input tensor to a tensor used to perform convolution using GEMM when the kernel size is 3x3 and pad_x = pad_y = 0
181 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
182 * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
184 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
185 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
186 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
187 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
188 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
189 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
190 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
191 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
192 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
193 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
194 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
195 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
196 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
197 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
198 * @param[in] filter_depth The depth of the used filter
199 * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
200 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
202 __kernel void im2col_kernel3x3_padx0_pady0(
203 TENSOR3D_DECLARATION(src),
204 IMAGE_DECLARATION(dst),
209 const int xc = get_global_id(0); // x coordinate in the convolved tensor
210 const int yc = get_global_id(1); // y coordinate in the convolved tensor
211 const int ch = get_global_id(2) % filter_depth; // input feature map
212 const int batch = get_global_id(2) / filter_depth; // the batch
214 // Calculate input indeces
215 const int xi = xc * STRIDE_X;
216 const int yi = yc * STRIDE_Y;
218 // Calculate output indeces
219 const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
220 const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
222 // Get input and output address
223 __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
225 __global DATA_TYPE *output_ptr = (__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w) + xo;
227 VEC_DATA_TYPE(DATA_TYPE, 3)
228 row0 = vload3(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
229 VEC_DATA_TYPE(DATA_TYPE, 3)
230 row1 = vload3(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
231 VEC_DATA_TYPE(DATA_TYPE, 3)
232 row2 = vload3(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
234 vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, output_ptr);
235 *(output_ptr + 8) = row2.s2;
238 if(ch == (KERNEL_DEPTH - 1))
240 #ifdef FIXED_POINT_POSITION
241 *(output_ptr + 9) = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
242 #else // FIXED_POINT_POSITION
243 *(output_ptr + 9) = 1.0f;
244 #endif // FIXED_POINT_POSITION
248 #endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_X) && defined(PAD_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(KERNEL_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT)
250 #if defined(WIDTH_OUTPUT)
251 /** This kernel performs a reshaping of the output of the convolution layer.
253 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
255 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/QS16/F16/F32
256 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
257 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
258 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
259 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
260 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
261 * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
262 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
263 * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
264 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
265 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
266 * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
267 * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
268 * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
269 * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
270 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
271 * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
273 __kernel void col2im(
274 TENSOR3D_DECLARATION(src),
275 TENSOR3D_DECLARATION(dst),
278 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
279 Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(dst);
281 // Compute output offset
282 int idx = get_global_id(0) * dst.stride_z + (get_global_id(1) / WIDTH_OUTPUT) * dst_stride_y + (get_global_id(1) % WIDTH_OUTPUT) * dst_stride_x + get_global_id(2) * dst_stride_w;
285 *((__global DATA_TYPE *)(dst.ptr + idx)) = *((__global DATA_TYPE *)(src.ptr));
287 #endif // defined(WIDTH_OUTPUT)
289 /** This kernel reshapes the tensor's low three dimensions to single row for GEMM operation
291 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=float
292 * @note In case biases will be added in late stage, -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
294 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QS8/F16/F32
295 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
296 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
297 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
298 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
299 * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
300 * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
301 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
302 * @param[out] dst_ptr Pointer to the destination tensor. Same as @p src_ptr
303 * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
304 * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
305 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
306 * @param[in] width The width of the input tensor
307 * @param[in] height The height of the input tensor
309 __kernel void im2col_reduced(
310 TENSOR3D_DECLARATION(src),
311 VECTOR_DECLARATION(dst),
312 uint width, uint height)
314 Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
316 const uint image_size = width * height;
318 __global uchar *tmp_out_ptr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) + get_global_id(1) * width + get_global_id(2) * image_size) * dst_stride_x;
320 *((__global DATA_TYPE *)tmp_out_ptr) = *((__global DATA_TYPE *)src.ptr);
323 // If it is the last thread in the 3 dimensional workgroup
324 if(get_global_id(0) == (get_global_size(0) - 1) && get_global_id(1) == (get_global_size(1) - 1) && get_global_id(2) == (get_global_size(2) - 1))
326 tmp_out_ptr += dst_stride_x;
327 #ifdef FIXED_POINT_POSITION
328 *((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)(1 << FIXED_POINT_POSITION);
329 #else // FIXED_POINT_POSITION
330 *((__global DATA_TYPE *)tmp_out_ptr) = (DATA_TYPE)1;
331 #endif // FIXED_POINT_POSITION