Tizen 2.0 Release
[framework/graphics/cairo.git] / src / cairo-botor-scan-converter.c
1 /*
2  * Copyright © 2004 Carl Worth
3  * Copyright © 2006 Red Hat, Inc.
4  * Copyright © 2007 David Turner
5  * Copyright © 2008 M Joonas Pihlaja
6  * Copyright © 2008 Chris Wilson
7  * Copyright © 2009 Intel Corporation
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it either under the terms of the GNU Lesser General Public
11  * License version 2.1 as published by the Free Software Foundation
12  * (the "LGPL") or, at your option, under the terms of the Mozilla
13  * Public License Version 1.1 (the "MPL"). If you do not alter this
14  * notice, a recipient may use your version of this file under either
15  * the MPL or the LGPL.
16  *
17  * You should have received a copy of the LGPL along with this library
18  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
20  * You should have received a copy of the MPL along with this library
21  * in the file COPYING-MPL-1.1
22  *
23  * The contents of this file are subject to the Mozilla Public License
24  * Version 1.1 (the "License"); you may not use this file except in
25  * compliance with the License. You may obtain a copy of the License at
26  * http://www.mozilla.org/MPL/
27  *
28  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
29  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
30  * the specific language governing rights and limitations.
31  *
32  * The Original Code is the cairo graphics library.
33  *
34  * The Initial Developer of the Original Code is Carl Worth
35  *
36  * Contributor(s):
37  *      Carl D. Worth <cworth@cworth.org>
38  *      M Joonas Pihlaja <jpihlaja@cc.helsinki.fi>
39  *      Chris Wilson <chris@chris-wilson.co.uk>
40  */
41
42 /* Provide definitions for standalone compilation */
43 #include "cairoint.h"
44
45 #include "cairo-error-private.h"
46 #include "cairo-list-inline.h"
47 #include "cairo-freelist-private.h"
48 #include "cairo-combsort-inline.h"
49
50 #include <setjmp.h>
51
52 #define STEP_X CAIRO_FIXED_ONE
53 #define STEP_Y CAIRO_FIXED_ONE
54 #define UNROLL3(x) x x x
55
56 #define STEP_XY (2*STEP_X*STEP_Y) /* Unit area in the step. */
57 #define AREA_TO_ALPHA(c)  (((c)*255 + STEP_XY/2) / STEP_XY)
58
59 typedef struct _cairo_bo_intersect_ordinate {
60     int32_t ordinate;
61     enum { EXACT, INEXACT } exactness;
62 } cairo_bo_intersect_ordinate_t;
63
64 typedef struct _cairo_bo_intersect_point {
65     cairo_bo_intersect_ordinate_t x;
66     cairo_bo_intersect_ordinate_t y;
67 } cairo_bo_intersect_point_t;
68
69 struct quorem {
70     cairo_fixed_t quo;
71     cairo_fixed_t rem;
72 };
73
74 struct run {
75     struct run *next;
76     int sign;
77     cairo_fixed_t y;
78 };
79
80 typedef struct edge {
81     cairo_list_t link;
82
83     cairo_edge_t edge;
84
85     /* Current x coordinate and advancement.
86      * Initialised to the x coordinate of the top of the
87      * edge. The quotient is in cairo_fixed_t units and the
88      * remainder is mod dy in cairo_fixed_t units.
89      */
90     cairo_fixed_t dy;
91     struct quorem x;
92     struct quorem dxdy;
93     struct quorem dxdy_full;
94
95     cairo_bool_t vertical;
96     unsigned int flags;
97
98     int current_sign;
99     struct run *runs;
100 } edge_t;
101
102 enum {
103     START = 0x1,
104     STOP = 0x2,
105 };
106
107 /* the parent is always given by index/2 */
108 #define PQ_PARENT_INDEX(i) ((i) >> 1)
109 #define PQ_FIRST_ENTRY 1
110
111 /* left and right children are index * 2 and (index * 2) +1 respectively */
112 #define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
113
114 typedef enum {
115     EVENT_TYPE_STOP,
116     EVENT_TYPE_INTERSECTION,
117     EVENT_TYPE_START
118 } event_type_t;
119
120 typedef struct _event {
121     cairo_fixed_t y;
122     event_type_t type;
123 } event_t;
124
125 typedef struct _start_event {
126     cairo_fixed_t y;
127     event_type_t type;
128     edge_t *edge;
129 } start_event_t;
130
131 typedef struct _queue_event {
132     cairo_fixed_t y;
133     event_type_t type;
134     edge_t *e1;
135     edge_t *e2;
136 } queue_event_t;
137
138 typedef struct _pqueue {
139     int size, max_size;
140
141     event_t **elements;
142     event_t *elements_embedded[1024];
143 } pqueue_t;
144
145 struct cell {
146     struct cell *prev;
147     struct cell *next;
148     int          x;
149     int          uncovered_area;
150     int          covered_height;
151 };
152
153 typedef struct _sweep_line {
154     cairo_list_t active;
155     cairo_list_t stopped;
156     cairo_list_t *insert_cursor;
157     cairo_bool_t is_vertical;
158
159     cairo_fixed_t current_row;
160     cairo_fixed_t current_subrow;
161
162     struct coverage {
163         struct cell head;
164         struct cell tail;
165
166         struct cell *cursor;
167         int count;
168
169         cairo_freepool_t pool;
170     } coverage;
171
172     struct event_queue {
173         pqueue_t pq;
174         event_t **start_events;
175
176         cairo_freepool_t pool;
177     } queue;
178
179     cairo_freepool_t runs;
180
181     jmp_buf unwind;
182 } sweep_line_t;
183
184 cairo_always_inline static struct quorem
185 floored_divrem (int a, int b)
186 {
187     struct quorem qr;
188     qr.quo = a/b;
189     qr.rem = a%b;
190     if ((a^b)<0 && qr.rem) {
191         qr.quo--;
192         qr.rem += b;
193     }
194     return qr;
195 }
196
197 static struct quorem
198 floored_muldivrem(int x, int a, int b)
199 {
200     struct quorem qr;
201     long long xa = (long long)x*a;
202     qr.quo = xa/b;
203     qr.rem = xa%b;
204     if ((xa>=0) != (b>=0) && qr.rem) {
205         qr.quo--;
206         qr.rem += b;
207     }
208     return qr;
209 }
210
211 static cairo_fixed_t
212 line_compute_intersection_x_for_y (const cairo_line_t *line,
213                                    cairo_fixed_t y)
214 {
215     cairo_fixed_t x, dy;
216
217     if (y == line->p1.y)
218         return line->p1.x;
219     if (y == line->p2.y)
220         return line->p2.x;
221
222     x = line->p1.x;
223     dy = line->p2.y - line->p1.y;
224     if (dy != 0) {
225         x += _cairo_fixed_mul_div_floor (y - line->p1.y,
226                                          line->p2.x - line->p1.x,
227                                          dy);
228     }
229
230     return x;
231 }
232
233 /*
234  * We need to compare the x-coordinates of a pair of lines for a particular y,
235  * without loss of precision.
236  *
237  * The x-coordinate along an edge for a given y is:
238  *   X = A_x + (Y - A_y) * A_dx / A_dy
239  *
240  * So the inequality we wish to test is:
241  *   A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
242  * where ∘ is our inequality operator.
243  *
244  * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
245  * all positive, so we can rearrange it thus without causing a sign change:
246  *   A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
247  *                                 - (Y - A_y) * A_dx * B_dy
248  *
249  * Given the assumption that all the deltas fit within 32 bits, we can compute
250  * this comparison directly using 128 bit arithmetic. For certain, but common,
251  * input we can reduce this down to a single 32 bit compare by inspecting the
252  * deltas.
253  *
254  * (And put the burden of the work on developing fast 128 bit ops, which are
255  * required throughout the tessellator.)
256  *
257  * See the similar discussion for _slope_compare().
258  */
259 static int
260 edges_compare_x_for_y_general (const cairo_edge_t *a,
261                                const cairo_edge_t *b,
262                                int32_t y)
263 {
264     /* XXX: We're assuming here that dx and dy will still fit in 32
265      * bits. That's not true in general as there could be overflow. We
266      * should prevent that before the tessellation algorithm
267      * begins.
268      */
269     int32_t dx;
270     int32_t adx, ady;
271     int32_t bdx, bdy;
272     enum {
273        HAVE_NONE    = 0x0,
274        HAVE_DX      = 0x1,
275        HAVE_ADX     = 0x2,
276        HAVE_DX_ADX  = HAVE_DX | HAVE_ADX,
277        HAVE_BDX     = 0x4,
278        HAVE_DX_BDX  = HAVE_DX | HAVE_BDX,
279        HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
280        HAVE_ALL     = HAVE_DX | HAVE_ADX | HAVE_BDX
281     } have_dx_adx_bdx = HAVE_ALL;
282
283     /* don't bother solving for abscissa if the edges' bounding boxes
284      * can be used to order them. */
285     {
286            int32_t amin, amax;
287            int32_t bmin, bmax;
288            if (a->line.p1.x < a->line.p2.x) {
289                    amin = a->line.p1.x;
290                    amax = a->line.p2.x;
291            } else {
292                    amin = a->line.p2.x;
293                    amax = a->line.p1.x;
294            }
295            if (b->line.p1.x < b->line.p2.x) {
296                    bmin = b->line.p1.x;
297                    bmax = b->line.p2.x;
298            } else {
299                    bmin = b->line.p2.x;
300                    bmax = b->line.p1.x;
301            }
302            if (amax < bmin) return -1;
303            if (amin > bmax) return +1;
304     }
305
306     ady = a->line.p2.y - a->line.p1.y;
307     adx = a->line.p2.x - a->line.p1.x;
308     if (adx == 0)
309         have_dx_adx_bdx &= ~HAVE_ADX;
310
311     bdy = b->line.p2.y - b->line.p1.y;
312     bdx = b->line.p2.x - b->line.p1.x;
313     if (bdx == 0)
314         have_dx_adx_bdx &= ~HAVE_BDX;
315
316     dx = a->line.p1.x - b->line.p1.x;
317     if (dx == 0)
318         have_dx_adx_bdx &= ~HAVE_DX;
319
320 #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
321 #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->line.p1.y)
322 #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->line.p1.y)
323     switch (have_dx_adx_bdx) {
324     default:
325     case HAVE_NONE:
326         return 0;
327     case HAVE_DX:
328         /* A_dy * B_dy * (A_x - B_x) ∘ 0 */
329         return dx; /* ady * bdy is positive definite */
330     case HAVE_ADX:
331         /* 0 ∘  - (Y - A_y) * A_dx * B_dy */
332         return adx; /* bdy * (y - a->top.y) is positive definite */
333     case HAVE_BDX:
334         /* 0 ∘ (Y - B_y) * B_dx * A_dy */
335         return -bdx; /* ady * (y - b->top.y) is positive definite */
336     case HAVE_ADX_BDX:
337         /*  0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
338         if ((adx ^ bdx) < 0) {
339             return adx;
340         } else if (a->line.p1.y == b->line.p1.y) { /* common origin */
341             cairo_int64_t adx_bdy, bdx_ady;
342
343             /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
344
345             adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
346             bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
347
348             return _cairo_int64_cmp (adx_bdy, bdx_ady);
349         } else
350             return _cairo_int128_cmp (A, B);
351     case HAVE_DX_ADX:
352         /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
353         if ((-adx ^ dx) < 0) {
354             return dx;
355         } else {
356             cairo_int64_t ady_dx, dy_adx;
357
358             ady_dx = _cairo_int32x32_64_mul (ady, dx);
359             dy_adx = _cairo_int32x32_64_mul (a->line.p1.y - y, adx);
360
361             return _cairo_int64_cmp (ady_dx, dy_adx);
362         }
363     case HAVE_DX_BDX:
364         /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
365         if ((bdx ^ dx) < 0) {
366             return dx;
367         } else {
368             cairo_int64_t bdy_dx, dy_bdx;
369
370             bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
371             dy_bdx = _cairo_int32x32_64_mul (y - b->line.p1.y, bdx);
372
373             return _cairo_int64_cmp (bdy_dx, dy_bdx);
374         }
375     case HAVE_ALL:
376         /* XXX try comparing (a->line.p2.x - b->line.p2.x) et al */
377         return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
378     }
379 #undef B
380 #undef A
381 #undef L
382 }
383
384 /*
385  * We need to compare the x-coordinate of a line for a particular y wrt to a
386  * given x, without loss of precision.
387  *
388  * The x-coordinate along an edge for a given y is:
389  *   X = A_x + (Y - A_y) * A_dx / A_dy
390  *
391  * So the inequality we wish to test is:
392  *   A_x + (Y - A_y) * A_dx / A_dy ∘ X
393  * where ∘ is our inequality operator.
394  *
395  * By construction, we know that A_dy (and (Y - A_y)) are
396  * all positive, so we can rearrange it thus without causing a sign change:
397  *   (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
398  *
399  * Given the assumption that all the deltas fit within 32 bits, we can compute
400  * this comparison directly using 64 bit arithmetic.
401  *
402  * See the similar discussion for _slope_compare() and
403  * edges_compare_x_for_y_general().
404  */
405 static int
406 edge_compare_for_y_against_x (const cairo_edge_t *a,
407                               int32_t y,
408                               int32_t x)
409 {
410     int32_t adx, ady;
411     int32_t dx, dy;
412     cairo_int64_t L, R;
413
414     if (a->line.p1.x <= a->line.p2.x) {
415         if (x < a->line.p1.x)
416             return 1;
417         if (x > a->line.p2.x)
418             return -1;
419     } else {
420         if (x < a->line.p2.x)
421             return 1;
422         if (x > a->line.p1.x)
423             return -1;
424     }
425
426     adx = a->line.p2.x - a->line.p1.x;
427     dx = x - a->line.p1.x;
428
429     if (adx == 0)
430         return -dx;
431     if (dx == 0 || (adx ^ dx) < 0)
432         return adx;
433
434     dy = y - a->line.p1.y;
435     ady = a->line.p2.y - a->line.p1.y;
436
437     L = _cairo_int32x32_64_mul (dy, adx);
438     R = _cairo_int32x32_64_mul (dx, ady);
439
440     return _cairo_int64_cmp (L, R);
441 }
442
443 static int
444 edges_compare_x_for_y (const cairo_edge_t *a,
445                        const cairo_edge_t *b,
446                        int32_t y)
447 {
448     /* If the sweep-line is currently on an end-point of a line,
449      * then we know its precise x value (and considering that we often need to
450      * compare events at end-points, this happens frequently enough to warrant
451      * special casing).
452      */
453     enum {
454        HAVE_NEITHER = 0x0,
455        HAVE_AX      = 0x1,
456        HAVE_BX      = 0x2,
457        HAVE_BOTH    = HAVE_AX | HAVE_BX
458     } have_ax_bx = HAVE_BOTH;
459     int32_t ax, bx;
460
461     /* XXX given we have x and dx? */
462
463     if (y == a->line.p1.y)
464         ax = a->line.p1.x;
465     else if (y == a->line.p2.y)
466         ax = a->line.p2.x;
467     else
468         have_ax_bx &= ~HAVE_AX;
469
470     if (y == b->line.p1.y)
471         bx = b->line.p1.x;
472     else if (y == b->line.p2.y)
473         bx = b->line.p2.x;
474     else
475         have_ax_bx &= ~HAVE_BX;
476
477     switch (have_ax_bx) {
478     default:
479     case HAVE_NEITHER:
480         return edges_compare_x_for_y_general (a, b, y);
481     case HAVE_AX:
482         return -edge_compare_for_y_against_x (b, y, ax);
483     case HAVE_BX:
484         return edge_compare_for_y_against_x (a, y, bx);
485     case HAVE_BOTH:
486         return ax - bx;
487     }
488 }
489
490 static inline int
491 slope_compare (const edge_t *a,
492                const edge_t *b)
493 {
494     cairo_int64_t L, R;
495     int cmp;
496
497     cmp = a->dxdy.quo - b->dxdy.quo;
498     if (cmp)
499         return cmp;
500
501     if (a->dxdy.rem == 0)
502         return -b->dxdy.rem;
503     if (b->dxdy.rem == 0)
504         return a->dxdy.rem;
505
506     L = _cairo_int32x32_64_mul (b->dy, a->dxdy.rem);
507     R = _cairo_int32x32_64_mul (a->dy, b->dxdy.rem);
508     return _cairo_int64_cmp (L, R);
509 }
510
511 static inline int
512 line_equal (const cairo_line_t *a, const cairo_line_t *b)
513 {
514     return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
515            a->p2.x == b->p2.x && a->p2.y == b->p2.y;
516 }
517
518 static inline int
519 sweep_line_compare_edges (const edge_t  *a,
520                           const edge_t  *b,
521                           cairo_fixed_t y)
522 {
523     int cmp;
524
525     if (line_equal (&a->edge.line, &b->edge.line))
526         return 0;
527
528     cmp = edges_compare_x_for_y (&a->edge, &b->edge, y);
529     if (cmp)
530         return cmp;
531
532     return slope_compare (a, b);
533 }
534
535 static inline cairo_int64_t
536 det32_64 (int32_t a, int32_t b,
537           int32_t c, int32_t d)
538 {
539     /* det = a * d - b * c */
540     return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
541                              _cairo_int32x32_64_mul (b, c));
542 }
543
544 static inline cairo_int128_t
545 det64x32_128 (cairo_int64_t a, int32_t       b,
546               cairo_int64_t c, int32_t       d)
547 {
548     /* det = a * d - b * c */
549     return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
550                               _cairo_int64x32_128_mul (c, b));
551 }
552
553 /* Compute the intersection of two lines as defined by two edges. The
554  * result is provided as a coordinate pair of 128-bit integers.
555  *
556  * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
557  * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
558  */
559 static cairo_bool_t
560 intersect_lines (const edge_t *a, const edge_t *b,
561                  cairo_bo_intersect_point_t     *intersection)
562 {
563     cairo_int64_t a_det, b_det;
564
565     /* XXX: We're assuming here that dx and dy will still fit in 32
566      * bits. That's not true in general as there could be overflow. We
567      * should prevent that before the tessellation algorithm begins.
568      * What we're doing to mitigate this is to perform clamping in
569      * cairo_bo_tessellate_polygon().
570      */
571     int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
572     int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
573
574     int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
575     int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
576
577     cairo_int64_t den_det;
578     cairo_int64_t R;
579     cairo_quorem64_t qr;
580
581     den_det = det32_64 (dx1, dy1, dx2, dy2);
582
583      /* Q: Can we determine that the lines do not intersect (within range)
584       * much more cheaply than computing the intersection point i.e. by
585       * avoiding the division?
586       *
587       *   X = ax + t * adx = bx + s * bdx;
588       *   Y = ay + t * ady = by + s * bdy;
589       *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
590       *   => t * L = R
591       *
592       * Therefore we can reject any intersection (under the criteria for
593       * valid intersection events) if:
594       *   L^R < 0 => t < 0, or
595       *   L<R => t > 1
596       *
597       * (where top/bottom must at least extend to the line endpoints).
598       *
599       * A similar substitution can be performed for s, yielding:
600       *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
601       */
602     R = det32_64 (dx2, dy2,
603                   b->edge.line.p1.x - a->edge.line.p1.x,
604                   b->edge.line.p1.y - a->edge.line.p1.y);
605     if (_cairo_int64_negative (den_det)) {
606         if (_cairo_int64_ge (den_det, R))
607             return FALSE;
608     } else {
609         if (_cairo_int64_le (den_det, R))
610             return FALSE;
611     }
612
613     R = det32_64 (dy1, dx1,
614                   a->edge.line.p1.y - b->edge.line.p1.y,
615                   a->edge.line.p1.x - b->edge.line.p1.x);
616     if (_cairo_int64_negative (den_det)) {
617         if (_cairo_int64_ge (den_det, R))
618             return FALSE;
619     } else {
620         if (_cairo_int64_le (den_det, R))
621             return FALSE;
622     }
623
624     /* We now know that the two lines should intersect within range. */
625
626     a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
627                       a->edge.line.p2.x, a->edge.line.p2.y);
628     b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
629                       b->edge.line.p2.x, b->edge.line.p2.y);
630
631     /* x = det (a_det, dx1, b_det, dx2) / den_det */
632     qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
633                                                        b_det, dx2),
634                                          den_det);
635     if (_cairo_int64_eq (qr.rem, den_det))
636         return FALSE;
637 #if 0
638     intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
639 #else
640     intersection->x.exactness = EXACT;
641     if (! _cairo_int64_is_zero (qr.rem)) {
642         if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
643             qr.rem = _cairo_int64_negate (qr.rem);
644         qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
645         if (_cairo_int64_ge (qr.rem, den_det)) {
646             qr.quo = _cairo_int64_add (qr.quo,
647                                        _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
648         } else
649             intersection->x.exactness = INEXACT;
650     }
651 #endif
652     intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
653
654     /* y = det (a_det, dy1, b_det, dy2) / den_det */
655     qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
656                                                        b_det, dy2),
657                                          den_det);
658     if (_cairo_int64_eq (qr.rem, den_det))
659         return FALSE;
660 #if 0
661     intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
662 #else
663     intersection->y.exactness = EXACT;
664     if (! _cairo_int64_is_zero (qr.rem)) {
665         /* compute ceiling away from zero */
666         qr.quo = _cairo_int64_add (qr.quo,
667                                    _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
668         intersection->y.exactness = INEXACT;
669     }
670 #endif
671     intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
672
673     return TRUE;
674 }
675
676 static int
677 bo_intersect_ordinate_32_compare (int32_t a, int32_t b, int exactness)
678 {
679     int cmp;
680
681     /* First compare the quotient */
682     cmp = a - b;
683     if (cmp)
684         return cmp;
685
686     /* With quotient identical, if remainder is 0 then compare equal */
687     /* Otherwise, the non-zero remainder makes a > b */
688     return -(INEXACT == exactness);
689 }
690
691 /* Does the given edge contain the given point. The point must already
692  * be known to be contained within the line determined by the edge,
693  * (most likely the point results from an intersection of this edge
694  * with another).
695  *
696  * If we had exact arithmetic, then this function would simply be a
697  * matter of examining whether the y value of the point lies within
698  * the range of y values of the edge. But since intersection points
699  * are not exact due to being rounded to the nearest integer within
700  * the available precision, we must also examine the x value of the
701  * point.
702  *
703  * The definition of "contains" here is that the given intersection
704  * point will be seen by the sweep line after the start event for the
705  * given edge and before the stop event for the edge. See the comments
706  * in the implementation for more details.
707  */
708 static cairo_bool_t
709 bo_edge_contains_intersect_point (const edge_t                  *edge,
710                                   cairo_bo_intersect_point_t    *point)
711 {
712     int cmp_top, cmp_bottom;
713
714     /* XXX: When running the actual algorithm, we don't actually need to
715      * compare against edge->top at all here, since any intersection above
716      * top is eliminated early via a slope comparison. We're leaving these
717      * here for now only for the sake of the quadratic-time intersection
718      * finder which needs them.
719      */
720
721     cmp_top = bo_intersect_ordinate_32_compare (point->y.ordinate,
722                                                 edge->edge.top,
723                                                 point->y.exactness);
724     if (cmp_top < 0)
725         return FALSE;
726
727     cmp_bottom = bo_intersect_ordinate_32_compare (point->y.ordinate,
728                                                    edge->edge.bottom,
729                                                    point->y.exactness);
730     if (cmp_bottom > 0)
731         return FALSE;
732
733     if (cmp_top > 0 && cmp_bottom < 0)
734         return TRUE;
735
736     /* At this stage, the point lies on the same y value as either
737      * edge->top or edge->bottom, so we have to examine the x value in
738      * order to properly determine containment. */
739
740     /* If the y value of the point is the same as the y value of the
741      * top of the edge, then the x value of the point must be greater
742      * to be considered as inside the edge. Similarly, if the y value
743      * of the point is the same as the y value of the bottom of the
744      * edge, then the x value of the point must be less to be
745      * considered as inside. */
746
747     if (cmp_top == 0) {
748         cairo_fixed_t top_x;
749
750         top_x = line_compute_intersection_x_for_y (&edge->edge.line,
751                                                    edge->edge.top);
752         return bo_intersect_ordinate_32_compare (top_x, point->x.ordinate, point->x.exactness) < 0;
753     } else { /* cmp_bottom == 0 */
754         cairo_fixed_t bot_x;
755
756         bot_x = line_compute_intersection_x_for_y (&edge->edge.line,
757                                                    edge->edge.bottom);
758         return bo_intersect_ordinate_32_compare (point->x.ordinate, bot_x, point->x.exactness) < 0;
759     }
760 }
761
762 static cairo_bool_t
763 edge_intersect (const edge_t            *a,
764                 const edge_t            *b,
765                 cairo_point_t   *intersection)
766 {
767     cairo_bo_intersect_point_t quorem;
768
769     if (! intersect_lines (a, b, &quorem))
770         return FALSE;
771
772     if (a->edge.top != a->edge.line.p1.y || a->edge.bottom != a->edge.line.p2.y) {
773         if (! bo_edge_contains_intersect_point (a, &quorem))
774             return FALSE;
775     }
776
777     if (b->edge.top != b->edge.line.p1.y || b->edge.bottom != b->edge.line.p2.y) {
778         if (! bo_edge_contains_intersect_point (b, &quorem))
779             return FALSE;
780     }
781
782     /* Now that we've correctly compared the intersection point and
783      * determined that it lies within the edge, then we know that we
784      * no longer need any more bits of storage for the intersection
785      * than we do for our edge coordinates. We also no longer need the
786      * remainder from the division. */
787     intersection->x = quorem.x.ordinate;
788     intersection->y = quorem.y.ordinate;
789
790     return TRUE;
791 }
792
793 static inline int
794 event_compare (const event_t *a, const event_t *b)
795 {
796     return a->y - b->y;
797 }
798
799 static void
800 pqueue_init (pqueue_t *pq)
801 {
802     pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
803     pq->size = 0;
804
805     pq->elements = pq->elements_embedded;
806 }
807
808 static void
809 pqueue_fini (pqueue_t *pq)
810 {
811     if (pq->elements != pq->elements_embedded)
812         free (pq->elements);
813 }
814
815 static cairo_bool_t
816 pqueue_grow (pqueue_t *pq)
817 {
818     event_t **new_elements;
819     pq->max_size *= 2;
820
821     if (pq->elements == pq->elements_embedded) {
822         new_elements = _cairo_malloc_ab (pq->max_size,
823                                          sizeof (event_t *));
824         if (unlikely (new_elements == NULL))
825             return FALSE;
826
827         memcpy (new_elements, pq->elements_embedded,
828                 sizeof (pq->elements_embedded));
829     } else {
830         new_elements = _cairo_realloc_ab (pq->elements,
831                                           pq->max_size,
832                                           sizeof (event_t *));
833         if (unlikely (new_elements == NULL))
834             return FALSE;
835     }
836
837     pq->elements = new_elements;
838     return TRUE;
839 }
840
841 static inline void
842 pqueue_push (sweep_line_t *sweep_line, event_t *event)
843 {
844     event_t **elements;
845     int i, parent;
846
847     if (unlikely (sweep_line->queue.pq.size + 1 == sweep_line->queue.pq.max_size)) {
848         if (unlikely (! pqueue_grow (&sweep_line->queue.pq))) {
849             longjmp (sweep_line->unwind,
850                      _cairo_error (CAIRO_STATUS_NO_MEMORY));
851         }
852     }
853
854     elements = sweep_line->queue.pq.elements;
855     for (i = ++sweep_line->queue.pq.size;
856          i != PQ_FIRST_ENTRY &&
857          event_compare (event,
858                         elements[parent = PQ_PARENT_INDEX (i)]) < 0;
859          i = parent)
860     {
861         elements[i] = elements[parent];
862     }
863
864     elements[i] = event;
865 }
866
867 static inline void
868 pqueue_pop (pqueue_t *pq)
869 {
870     event_t **elements = pq->elements;
871     event_t *tail;
872     int child, i;
873
874     tail = elements[pq->size--];
875     if (pq->size == 0) {
876         elements[PQ_FIRST_ENTRY] = NULL;
877         return;
878     }
879
880     for (i = PQ_FIRST_ENTRY;
881          (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
882          i = child)
883     {
884         if (child != pq->size &&
885             event_compare (elements[child+1],
886                            elements[child]) < 0)
887         {
888             child++;
889         }
890
891         if (event_compare (elements[child], tail) >= 0)
892             break;
893
894         elements[i] = elements[child];
895     }
896     elements[i] = tail;
897 }
898
899 static inline void
900 event_insert (sweep_line_t      *sweep_line,
901               event_type_t       type,
902               edge_t            *e1,
903               edge_t            *e2,
904               cairo_fixed_t      y)
905 {
906     queue_event_t *event;
907
908     event = _cairo_freepool_alloc (&sweep_line->queue.pool);
909     if (unlikely (event == NULL)) {
910         longjmp (sweep_line->unwind,
911                  _cairo_error (CAIRO_STATUS_NO_MEMORY));
912     }
913
914     event->y = y;
915     event->type = type;
916     event->e1 = e1;
917     event->e2 = e2;
918
919     pqueue_push (sweep_line, (event_t *) event);
920 }
921
922 static void
923 event_delete (sweep_line_t      *sweep_line,
924               event_t           *event)
925 {
926     _cairo_freepool_free (&sweep_line->queue.pool, event);
927 }
928
929 static inline event_t *
930 event_next (sweep_line_t *sweep_line)
931 {
932     event_t *event, *cmp;
933
934     event = sweep_line->queue.pq.elements[PQ_FIRST_ENTRY];
935     cmp = *sweep_line->queue.start_events;
936     if (event == NULL ||
937         (cmp != NULL && event_compare (cmp, event) < 0))
938     {
939         event = cmp;
940         sweep_line->queue.start_events++;
941     }
942     else
943     {
944         pqueue_pop (&sweep_line->queue.pq);
945     }
946
947     return event;
948 }
949
950 CAIRO_COMBSORT_DECLARE (start_event_sort, event_t *, event_compare)
951
952 static inline void
953 event_insert_stop (sweep_line_t *sweep_line,
954                    edge_t       *edge)
955 {
956     event_insert (sweep_line,
957                   EVENT_TYPE_STOP,
958                   edge, NULL,
959                   edge->edge.bottom);
960 }
961
962 static inline void
963 event_insert_if_intersect_below_current_y (sweep_line_t *sweep_line,
964                                            edge_t       *left,
965                                            edge_t       *right)
966 {
967     cairo_point_t intersection;
968
969     /* start points intersect */
970     if (left->edge.line.p1.x == right->edge.line.p1.x &&
971         left->edge.line.p1.y == right->edge.line.p1.y)
972     {
973         return;
974     }
975
976     /* end points intersect, process DELETE events first */
977     if (left->edge.line.p2.x == right->edge.line.p2.x &&
978         left->edge.line.p2.y == right->edge.line.p2.y)
979     {
980         return;
981     }
982
983     if (slope_compare (left, right) <= 0)
984         return;
985
986     if (! edge_intersect (left, right, &intersection))
987         return;
988
989     event_insert (sweep_line,
990                   EVENT_TYPE_INTERSECTION,
991                   left, right,
992                   intersection.y);
993 }
994
995 static inline edge_t *
996 link_to_edge (cairo_list_t *link)
997 {
998     return (edge_t *) link;
999 }
1000
1001 static void
1002 sweep_line_insert (sweep_line_t *sweep_line,
1003                    edge_t       *edge)
1004 {
1005     cairo_list_t *pos;
1006     cairo_fixed_t y = sweep_line->current_subrow;
1007
1008     pos = sweep_line->insert_cursor;
1009     if (pos == &sweep_line->active)
1010         pos = sweep_line->active.next;
1011     if (pos != &sweep_line->active) {
1012         int cmp;
1013
1014         cmp = sweep_line_compare_edges (link_to_edge (pos),
1015                                         edge,
1016                                         y);
1017         if (cmp < 0) {
1018             while (pos->next != &sweep_line->active &&
1019                    sweep_line_compare_edges (link_to_edge (pos->next),
1020                                              edge,
1021                                              y) < 0)
1022             {
1023                 pos = pos->next;
1024             }
1025         } else if (cmp > 0) {
1026             do {
1027                 pos = pos->prev;
1028             } while (pos != &sweep_line->active &&
1029                      sweep_line_compare_edges (link_to_edge (pos),
1030                                                edge,
1031                                                y) > 0);
1032         }
1033     }
1034     cairo_list_add (&edge->link, pos);
1035     sweep_line->insert_cursor = &edge->link;
1036 }
1037
1038 inline static void
1039 coverage_rewind (struct coverage *cells)
1040 {
1041     cells->cursor = &cells->head;
1042 }
1043
1044 static void
1045 coverage_init (struct coverage *cells)
1046 {
1047     _cairo_freepool_init (&cells->pool,
1048                           sizeof (struct cell));
1049     cells->head.prev = NULL;
1050     cells->head.next = &cells->tail;
1051     cells->head.x = INT_MIN;
1052     cells->tail.prev = &cells->head;
1053     cells->tail.next = NULL;
1054     cells->tail.x = INT_MAX;
1055     cells->count = 0;
1056     coverage_rewind (cells);
1057 }
1058
1059 static void
1060 coverage_fini (struct coverage *cells)
1061 {
1062     _cairo_freepool_fini (&cells->pool);
1063 }
1064
1065 inline static void
1066 coverage_reset (struct coverage *cells)
1067 {
1068     cells->head.next = &cells->tail;
1069     cells->tail.prev = &cells->head;
1070     cells->count = 0;
1071     _cairo_freepool_reset (&cells->pool);
1072     coverage_rewind (cells);
1073 }
1074
1075 static struct cell *
1076 coverage_alloc (sweep_line_t *sweep_line,
1077                 struct cell *tail,
1078                 int x)
1079 {
1080     struct cell *cell;
1081
1082     cell = _cairo_freepool_alloc (&sweep_line->coverage.pool);
1083     if (unlikely (NULL == cell)) {
1084         longjmp (sweep_line->unwind,
1085                  _cairo_error (CAIRO_STATUS_NO_MEMORY));
1086     }
1087
1088     tail->prev->next = cell;
1089     cell->prev = tail->prev;
1090     cell->next = tail;
1091     tail->prev = cell;
1092     cell->x = x;
1093     cell->uncovered_area = 0;
1094     cell->covered_height = 0;
1095     sweep_line->coverage.count++;
1096     return cell;
1097 }
1098
1099 inline static struct cell *
1100 coverage_find (sweep_line_t *sweep_line, int x)
1101 {
1102     struct cell *cell;
1103
1104     cell = sweep_line->coverage.cursor;
1105     if (unlikely (cell->x > x)) {
1106         do {
1107             if (cell->prev->x < x)
1108                 break;
1109             cell = cell->prev;
1110         } while (TRUE);
1111     } else {
1112         if (cell->x == x)
1113             return cell;
1114
1115         do {
1116             UNROLL3({
1117                     cell = cell->next;
1118                     if (cell->x >= x)
1119                         break;
1120                     });
1121         } while (TRUE);
1122     }
1123
1124     if (cell->x != x)
1125         cell = coverage_alloc (sweep_line, cell, x);
1126
1127     return sweep_line->coverage.cursor = cell;
1128 }
1129
1130 static void
1131 coverage_render_cells (sweep_line_t *sweep_line,
1132                        cairo_fixed_t left, cairo_fixed_t right,
1133                        cairo_fixed_t y1, cairo_fixed_t y2,
1134                        int sign)
1135 {
1136     int fx1, fx2;
1137     int ix1, ix2;
1138     int dx, dy;
1139
1140     /* Orient the edge left-to-right. */
1141     dx = right - left;
1142     if (dx >= 0) {
1143         ix1 = _cairo_fixed_integer_part (left);
1144         fx1 = _cairo_fixed_fractional_part (left);
1145
1146         ix2 = _cairo_fixed_integer_part (right);
1147         fx2 = _cairo_fixed_fractional_part (right);
1148
1149         dy = y2 - y1;
1150     } else {
1151         ix1 = _cairo_fixed_integer_part (right);
1152         fx1 = _cairo_fixed_fractional_part (right);
1153
1154         ix2 = _cairo_fixed_integer_part (left);
1155         fx2 = _cairo_fixed_fractional_part (left);
1156
1157         dx = -dx;
1158         sign = -sign;
1159         dy = y1 - y2;
1160         y1 = y2 - dy;
1161         y2 = y1 + dy;
1162     }
1163
1164     /* Add coverage for all pixels [ix1,ix2] on this row crossed
1165      * by the edge. */
1166     {
1167         struct quorem y = floored_divrem ((STEP_X - fx1)*dy, dx);
1168         struct cell *cell;
1169
1170         cell = sweep_line->coverage.cursor;
1171         if (cell->x != ix1) {
1172             if (unlikely (cell->x > ix1)) {
1173                 do {
1174                     if (cell->prev->x < ix1)
1175                         break;
1176                     cell = cell->prev;
1177                 } while (TRUE);
1178             } else do {
1179                 UNROLL3({
1180                         if (cell->x >= ix1)
1181                             break;
1182                         cell = cell->next;
1183                         });
1184             } while (TRUE);
1185
1186             if (cell->x != ix1)
1187                 cell = coverage_alloc (sweep_line, cell, ix1);
1188         }
1189
1190         cell->uncovered_area += sign * y.quo * (STEP_X + fx1);
1191         cell->covered_height += sign * y.quo;
1192         y.quo += y1;
1193
1194         cell = cell->next;
1195         if (cell->x != ++ix1)
1196             cell = coverage_alloc (sweep_line, cell, ix1);
1197         if (ix1 < ix2) {
1198             struct quorem dydx_full = floored_divrem (STEP_X*dy, dx);
1199
1200             do {
1201                 cairo_fixed_t y_skip = dydx_full.quo;
1202                 y.rem += dydx_full.rem;
1203                 if (y.rem >= dx) {
1204                     ++y_skip;
1205                     y.rem -= dx;
1206                 }
1207
1208                 y.quo += y_skip;
1209
1210                 y_skip *= sign;
1211                 cell->covered_height += y_skip;
1212                 cell->uncovered_area += y_skip*STEP_X;
1213
1214                 cell = cell->next;
1215                 if (cell->x != ++ix1)
1216                     cell = coverage_alloc (sweep_line, cell, ix1);
1217             } while (ix1 != ix2);
1218         }
1219         cell->uncovered_area += sign*(y2 - y.quo)*fx2;
1220         cell->covered_height += sign*(y2 - y.quo);
1221         sweep_line->coverage.cursor = cell;
1222     }
1223 }
1224
1225 inline static void
1226 full_inc_edge (edge_t *edge)
1227 {
1228     edge->x.quo += edge->dxdy_full.quo;
1229     edge->x.rem += edge->dxdy_full.rem;
1230     if (edge->x.rem >= 0) {
1231         ++edge->x.quo;
1232         edge->x.rem -= edge->dy;
1233     }
1234 }
1235
1236 static void
1237 full_add_edge (sweep_line_t *sweep_line, edge_t *edge, int sign)
1238 {
1239     struct cell *cell;
1240     cairo_fixed_t x1, x2;
1241     int ix1, ix2;
1242     int frac;
1243
1244     edge->current_sign = sign;
1245
1246     ix1 = _cairo_fixed_integer_part (edge->x.quo);
1247
1248     if (edge->vertical) {
1249         frac = _cairo_fixed_fractional_part (edge->x.quo);
1250         cell = coverage_find (sweep_line, ix1);
1251         cell->covered_height += sign * STEP_Y;
1252         cell->uncovered_area += sign * 2 * frac * STEP_Y;
1253         return;
1254     }
1255
1256     x1 = edge->x.quo;
1257     full_inc_edge (edge);
1258     x2 = edge->x.quo;
1259
1260     ix2 = _cairo_fixed_integer_part (edge->x.quo);
1261
1262     /* Edge is entirely within a column? */
1263     if (likely (ix1 == ix2)) {
1264         frac = _cairo_fixed_fractional_part (x1) +
1265                _cairo_fixed_fractional_part (x2);
1266         cell = coverage_find (sweep_line, ix1);
1267         cell->covered_height += sign * STEP_Y;
1268         cell->uncovered_area += sign * frac * STEP_Y;
1269         return;
1270     }
1271
1272     coverage_render_cells (sweep_line, x1, x2, 0, STEP_Y, sign);
1273 }
1274
1275 static void
1276 full_nonzero (sweep_line_t *sweep_line)
1277 {
1278     cairo_list_t *pos;
1279
1280     sweep_line->is_vertical = TRUE;
1281     pos = sweep_line->active.next;
1282     do {
1283         edge_t *left = link_to_edge (pos), *right;
1284         int winding = left->edge.dir;
1285
1286         sweep_line->is_vertical &= left->vertical;
1287
1288         pos = left->link.next;
1289         do {
1290             if (unlikely (pos == &sweep_line->active)) {
1291                 full_add_edge (sweep_line, left, +1);
1292                 return;
1293             }
1294
1295             right = link_to_edge (pos);
1296             pos = pos->next;
1297             sweep_line->is_vertical &= right->vertical;
1298
1299             winding += right->edge.dir;
1300             if (0 == winding) {
1301                 if (pos == &sweep_line->active ||
1302                     link_to_edge (pos)->x.quo != right->x.quo)
1303                 {
1304                     break;
1305                 }
1306             }
1307
1308             if (! right->vertical)
1309                 full_inc_edge (right);
1310         } while (TRUE);
1311
1312         full_add_edge (sweep_line, left,  +1);
1313         full_add_edge (sweep_line, right, -1);
1314     } while (pos != &sweep_line->active);
1315 }
1316
1317 static void
1318 full_evenodd (sweep_line_t *sweep_line)
1319 {
1320     cairo_list_t *pos;
1321
1322     sweep_line->is_vertical = TRUE;
1323     pos = sweep_line->active.next;
1324     do {
1325         edge_t *left = link_to_edge (pos), *right;
1326         int winding = 0;
1327
1328         sweep_line->is_vertical &= left->vertical;
1329
1330         pos = left->link.next;
1331         do {
1332             if (pos == &sweep_line->active) {
1333                 full_add_edge (sweep_line, left, +1);
1334                 return;
1335             }
1336
1337             right = link_to_edge (pos);
1338             pos = pos->next;
1339             sweep_line->is_vertical &= right->vertical;
1340
1341             if (++winding & 1) {
1342                 if (pos == &sweep_line->active ||
1343                     link_to_edge (pos)->x.quo != right->x.quo)
1344                 {
1345                     break;
1346                 }
1347             }
1348
1349             if (! right->vertical)
1350                 full_inc_edge (right);
1351         } while (TRUE);
1352
1353         full_add_edge (sweep_line, left,  +1);
1354         full_add_edge (sweep_line, right, -1);
1355     } while (pos != &sweep_line->active);
1356 }
1357
1358 static void
1359 render_rows (cairo_botor_scan_converter_t *self,
1360              sweep_line_t *sweep_line,
1361              int y, int height,
1362              cairo_span_renderer_t *renderer)
1363 {
1364     cairo_half_open_span_t spans_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_half_open_span_t)];
1365     cairo_half_open_span_t *spans = spans_stack;
1366     struct cell *cell;
1367     int prev_x, cover;
1368     int num_spans;
1369     cairo_status_t status;
1370
1371     if (unlikely (sweep_line->coverage.count == 0)) {
1372         status = renderer->render_rows (renderer, y, height, NULL, 0);
1373         if (unlikely (status))
1374             longjmp (sweep_line->unwind, status);
1375         return;
1376     }
1377
1378     /* Allocate enough spans for the row. */
1379
1380     num_spans = 2*sweep_line->coverage.count+2;
1381     if (unlikely (num_spans > ARRAY_LENGTH (spans_stack))) {
1382         spans = _cairo_malloc_ab (num_spans, sizeof (cairo_half_open_span_t));
1383         if (unlikely (spans == NULL)) {
1384             longjmp (sweep_line->unwind,
1385                      _cairo_error (CAIRO_STATUS_NO_MEMORY));
1386         }
1387     }
1388
1389     /* Form the spans from the coverage and areas. */
1390     num_spans = 0;
1391     prev_x = self->xmin;
1392     cover = 0;
1393     cell = sweep_line->coverage.head.next;
1394     do {
1395         int x = cell->x;
1396         int area;
1397
1398         if (x > prev_x) {
1399             spans[num_spans].x = prev_x;
1400             spans[num_spans].inverse = 0;
1401             spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1402             ++num_spans;
1403         }
1404
1405         cover += cell->covered_height*STEP_X*2;
1406         area = cover - cell->uncovered_area;
1407
1408         spans[num_spans].x = x;
1409         spans[num_spans].coverage = AREA_TO_ALPHA (area);
1410         ++num_spans;
1411
1412         prev_x = x + 1;
1413     } while ((cell = cell->next) != &sweep_line->coverage.tail);
1414
1415     if (prev_x <= self->xmax) {
1416         spans[num_spans].x = prev_x;
1417         spans[num_spans].inverse = 0;
1418         spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1419         ++num_spans;
1420     }
1421
1422     if (cover && prev_x < self->xmax) {
1423         spans[num_spans].x = self->xmax;
1424         spans[num_spans].inverse = 1;
1425         spans[num_spans].coverage = 0;
1426         ++num_spans;
1427     }
1428
1429     status = renderer->render_rows (renderer, y, height, spans, num_spans);
1430
1431     if (unlikely (spans != spans_stack))
1432         free (spans);
1433
1434     coverage_reset (&sweep_line->coverage);
1435
1436     if (unlikely (status))
1437         longjmp (sweep_line->unwind, status);
1438 }
1439
1440 static void
1441 full_repeat (sweep_line_t *sweep)
1442 {
1443     edge_t *edge;
1444
1445     cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1446         if (edge->current_sign)
1447             full_add_edge (sweep, edge, edge->current_sign);
1448         else if (! edge->vertical)
1449             full_inc_edge (edge);
1450     }
1451 }
1452
1453 static void
1454 full_reset (sweep_line_t *sweep)
1455 {
1456     edge_t *edge;
1457
1458     cairo_list_foreach_entry (edge, edge_t, &sweep->active, link)
1459         edge->current_sign = 0;
1460 }
1461
1462 static void
1463 full_step (cairo_botor_scan_converter_t *self,
1464            sweep_line_t *sweep_line,
1465            cairo_fixed_t row,
1466            cairo_span_renderer_t *renderer)
1467 {
1468     int top, bottom;
1469
1470     top = _cairo_fixed_integer_part (sweep_line->current_row);
1471     bottom = _cairo_fixed_integer_part (row);
1472     if (cairo_list_is_empty (&sweep_line->active)) {
1473         cairo_status_t  status;
1474
1475         status = renderer->render_rows (renderer, top, bottom - top, NULL, 0);
1476         if (unlikely (status))
1477             longjmp (sweep_line->unwind, status);
1478
1479         return;
1480     }
1481
1482     if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1483         full_nonzero (sweep_line);
1484     else
1485         full_evenodd (sweep_line);
1486
1487     if (sweep_line->is_vertical || bottom == top + 1) {
1488         render_rows (self, sweep_line, top, bottom - top, renderer);
1489         full_reset (sweep_line);
1490         return;
1491     }
1492
1493     render_rows (self, sweep_line, top++, 1, renderer);
1494     do {
1495         full_repeat (sweep_line);
1496         render_rows (self, sweep_line, top, 1, renderer);
1497     } while (++top != bottom);
1498
1499     full_reset (sweep_line);
1500 }
1501
1502 cairo_always_inline static void
1503 sub_inc_edge (edge_t *edge,
1504               cairo_fixed_t height)
1505 {
1506     if (height == 1) {
1507         edge->x.quo += edge->dxdy.quo;
1508         edge->x.rem += edge->dxdy.rem;
1509         if (edge->x.rem >= 0) {
1510             ++edge->x.quo;
1511             edge->x.rem -= edge->dy;
1512         }
1513     } else {
1514         edge->x.quo += height * edge->dxdy.quo;
1515         edge->x.rem += height * edge->dxdy.rem;
1516         if (edge->x.rem >= 0) {
1517             int carry = edge->x.rem / edge->dy + 1;
1518             edge->x.quo += carry;
1519             edge->x.rem -= carry * edge->dy;
1520         }
1521     }
1522 }
1523
1524 static void
1525 sub_add_run (sweep_line_t *sweep_line, edge_t *edge, int y, int sign)
1526 {
1527     struct run *run;
1528
1529     run = _cairo_freepool_alloc (&sweep_line->runs);
1530     if (unlikely (run == NULL))
1531         longjmp (sweep_line->unwind, _cairo_error (CAIRO_STATUS_NO_MEMORY));
1532
1533     run->y = y;
1534     run->sign = sign;
1535     run->next = edge->runs;
1536     edge->runs = run;
1537
1538     edge->current_sign = sign;
1539 }
1540
1541 inline static cairo_bool_t
1542 edges_coincident (edge_t *left, edge_t *right, cairo_fixed_t y)
1543 {
1544     /* XXX is compare_x_for_y() worth executing during sub steps? */
1545     return line_equal (&left->edge.line, &right->edge.line);
1546     //edges_compare_x_for_y (&left->edge, &right->edge, y) >= 0;
1547 }
1548
1549 static void
1550 sub_nonzero (sweep_line_t *sweep_line)
1551 {
1552     cairo_fixed_t y = sweep_line->current_subrow;
1553     cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1554     cairo_list_t *pos;
1555
1556     pos = sweep_line->active.next;
1557     do {
1558         edge_t *left = link_to_edge (pos), *right;
1559         int winding = left->edge.dir;
1560
1561         pos = left->link.next;
1562         do {
1563             if (unlikely (pos == &sweep_line->active)) {
1564                 if (left->current_sign != +1)
1565                     sub_add_run (sweep_line, left, fy, +1);
1566                 return;
1567             }
1568
1569             right = link_to_edge (pos);
1570             pos = pos->next;
1571
1572             winding += right->edge.dir;
1573             if (0 == winding) {
1574                 if (pos == &sweep_line->active ||
1575                     ! edges_coincident (right, link_to_edge (pos), y))
1576                 {
1577                     break;
1578                 }
1579             }
1580
1581             if (right->current_sign)
1582                 sub_add_run (sweep_line, right, fy, 0);
1583         } while (TRUE);
1584
1585         if (left->current_sign != +1)
1586             sub_add_run (sweep_line, left, fy, +1);
1587         if (right->current_sign != -1)
1588             sub_add_run (sweep_line, right, fy, -1);
1589     } while (pos != &sweep_line->active);
1590 }
1591
1592 static void
1593 sub_evenodd (sweep_line_t *sweep_line)
1594 {
1595     cairo_fixed_t y = sweep_line->current_subrow;
1596     cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1597     cairo_list_t *pos;
1598
1599     pos = sweep_line->active.next;
1600     do {
1601         edge_t *left = link_to_edge (pos), *right;
1602         int winding = 0;
1603
1604         pos = left->link.next;
1605         do {
1606             if (unlikely (pos == &sweep_line->active)) {
1607                 if (left->current_sign != +1)
1608                     sub_add_run (sweep_line, left, fy, +1);
1609                 return;
1610             }
1611
1612             right = link_to_edge (pos);
1613             pos = pos->next;
1614
1615             if (++winding & 1) {
1616                 if (pos == &sweep_line->active ||
1617                     ! edges_coincident (right, link_to_edge (pos), y))
1618                 {
1619                     break;
1620                 }
1621             }
1622
1623             if (right->current_sign)
1624                 sub_add_run (sweep_line, right, fy, 0);
1625         } while (TRUE);
1626
1627         if (left->current_sign != +1)
1628             sub_add_run (sweep_line, left, fy, +1);
1629         if (right->current_sign != -1)
1630             sub_add_run (sweep_line, right, fy, -1);
1631     } while (pos != &sweep_line->active);
1632 }
1633
1634 cairo_always_inline static void
1635 sub_step (cairo_botor_scan_converter_t *self,
1636           sweep_line_t *sweep_line)
1637 {
1638     if (cairo_list_is_empty (&sweep_line->active))
1639         return;
1640
1641     if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1642         sub_nonzero (sweep_line);
1643     else
1644         sub_evenodd (sweep_line);
1645 }
1646
1647 static void
1648 coverage_render_runs (sweep_line_t *sweep, edge_t *edge,
1649                       cairo_fixed_t y1, cairo_fixed_t y2)
1650 {
1651     struct run tail;
1652     struct run *run = &tail;
1653
1654     tail.next = NULL;
1655     tail.y = y2;
1656
1657     /* Order the runs top->bottom */
1658     while (edge->runs) {
1659         struct run *r;
1660
1661         r = edge->runs;
1662         edge->runs = r->next;
1663         r->next = run;
1664         run = r;
1665     }
1666
1667     if (run->y > y1)
1668         sub_inc_edge (edge, run->y - y1);
1669
1670     do {
1671         cairo_fixed_t x1, x2;
1672
1673         y1 = run->y;
1674         y2 = run->next->y;
1675
1676         x1 = edge->x.quo;
1677         if (y2 - y1 == STEP_Y)
1678             full_inc_edge (edge);
1679         else
1680             sub_inc_edge (edge, y2 - y1);
1681         x2 = edge->x.quo;
1682
1683         if (run->sign) {
1684             int ix1, ix2;
1685
1686             ix1 = _cairo_fixed_integer_part (x1);
1687             ix2 = _cairo_fixed_integer_part (x2);
1688
1689             /* Edge is entirely within a column? */
1690             if (likely (ix1 == ix2)) {
1691                 struct cell *cell;
1692                 int frac;
1693
1694                 frac = _cairo_fixed_fractional_part (x1) +
1695                        _cairo_fixed_fractional_part (x2);
1696                 cell = coverage_find (sweep, ix1);
1697                 cell->covered_height += run->sign * (y2 - y1);
1698                 cell->uncovered_area += run->sign * (y2 - y1) * frac;
1699             } else {
1700                 coverage_render_cells (sweep, x1, x2, y1, y2, run->sign);
1701             }
1702         }
1703
1704         run = run->next;
1705     } while (run->next != NULL);
1706 }
1707
1708 static void
1709 coverage_render_vertical_runs (sweep_line_t *sweep, edge_t *edge, cairo_fixed_t y2)
1710 {
1711     struct cell *cell;
1712     struct run *run;
1713     int height = 0;
1714
1715     for (run = edge->runs; run != NULL; run = run->next) {
1716         if (run->sign)
1717             height += run->sign * (y2 - run->y);
1718         y2 = run->y;
1719     }
1720
1721     cell = coverage_find (sweep, _cairo_fixed_integer_part (edge->x.quo));
1722     cell->covered_height += height;
1723     cell->uncovered_area += 2 * _cairo_fixed_fractional_part (edge->x.quo) * height;
1724 }
1725
1726 cairo_always_inline static void
1727 sub_emit (cairo_botor_scan_converter_t *self,
1728           sweep_line_t *sweep,
1729           cairo_span_renderer_t *renderer)
1730 {
1731     edge_t *edge;
1732
1733     sub_step (self, sweep);
1734
1735     /* convert the runs into coverages */
1736
1737     cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1738         if (edge->runs == NULL) {
1739             if (! edge->vertical) {
1740                 if (edge->flags & START) {
1741                     sub_inc_edge (edge,
1742                                   STEP_Y - _cairo_fixed_fractional_part (edge->edge.top));
1743                     edge->flags &= ~START;
1744                 } else
1745                     full_inc_edge (edge);
1746             }
1747         } else {
1748             if (edge->vertical) {
1749                 coverage_render_vertical_runs (sweep, edge, STEP_Y);
1750             } else {
1751                 int y1 = 0;
1752                 if (edge->flags & START) {
1753                     y1 = _cairo_fixed_fractional_part (edge->edge.top);
1754                     edge->flags &= ~START;
1755                 }
1756                 coverage_render_runs (sweep, edge, y1, STEP_Y);
1757             }
1758         }
1759         edge->current_sign = 0;
1760         edge->runs = NULL;
1761     }
1762
1763     cairo_list_foreach_entry (edge, edge_t, &sweep->stopped, link) {
1764         int y2 = _cairo_fixed_fractional_part (edge->edge.bottom);
1765         if (edge->vertical) {
1766             coverage_render_vertical_runs (sweep, edge, y2);
1767         } else {
1768             int y1 = 0;
1769             if (edge->flags & START)
1770                 y1 = _cairo_fixed_fractional_part (edge->edge.top);
1771             coverage_render_runs (sweep, edge, y1, y2);
1772         }
1773     }
1774     cairo_list_init (&sweep->stopped);
1775
1776     _cairo_freepool_reset (&sweep->runs);
1777
1778     render_rows (self, sweep,
1779                  _cairo_fixed_integer_part (sweep->current_row), 1,
1780                  renderer);
1781 }
1782
1783 static void
1784 sweep_line_init (sweep_line_t    *sweep_line,
1785                  event_t        **start_events,
1786                  int              num_events)
1787 {
1788     cairo_list_init (&sweep_line->active);
1789     cairo_list_init (&sweep_line->stopped);
1790     sweep_line->insert_cursor = &sweep_line->active;
1791
1792     sweep_line->current_row = INT32_MIN;
1793     sweep_line->current_subrow = INT32_MIN;
1794
1795     coverage_init (&sweep_line->coverage);
1796     _cairo_freepool_init (&sweep_line->runs, sizeof (struct run));
1797
1798     start_event_sort (start_events, num_events);
1799     start_events[num_events] = NULL;
1800
1801     sweep_line->queue.start_events = start_events;
1802
1803     _cairo_freepool_init (&sweep_line->queue.pool,
1804                           sizeof (queue_event_t));
1805     pqueue_init (&sweep_line->queue.pq);
1806     sweep_line->queue.pq.elements[PQ_FIRST_ENTRY] = NULL;
1807 }
1808
1809 static void
1810 sweep_line_delete (sweep_line_t *sweep_line,
1811                    edge_t       *edge)
1812 {
1813     if (sweep_line->insert_cursor == &edge->link)
1814         sweep_line->insert_cursor = edge->link.prev;
1815
1816     cairo_list_del (&edge->link);
1817     if (edge->runs)
1818         cairo_list_add_tail (&edge->link, &sweep_line->stopped);
1819     edge->flags |= STOP;
1820 }
1821
1822 static void
1823 sweep_line_swap (sweep_line_t   *sweep_line,
1824                  edge_t *left,
1825                  edge_t *right)
1826 {
1827     right->link.prev = left->link.prev;
1828     left->link.next = right->link.next;
1829     right->link.next = &left->link;
1830     left->link.prev = &right->link;
1831     left->link.next->prev = &left->link;
1832     right->link.prev->next = &right->link;
1833 }
1834
1835 static void
1836 sweep_line_fini (sweep_line_t *sweep_line)
1837 {
1838     pqueue_fini (&sweep_line->queue.pq);
1839     _cairo_freepool_fini (&sweep_line->queue.pool);
1840     coverage_fini (&sweep_line->coverage);
1841     _cairo_freepool_fini (&sweep_line->runs);
1842 }
1843
1844 static cairo_status_t
1845 botor_generate (cairo_botor_scan_converter_t     *self,
1846                 event_t                         **start_events,
1847                 cairo_span_renderer_t            *renderer)
1848 {
1849     cairo_status_t status;
1850     sweep_line_t sweep_line;
1851     cairo_fixed_t ybot;
1852     event_t *event;
1853     cairo_list_t *left, *right;
1854     edge_t *e1, *e2;
1855     int bottom;
1856
1857     sweep_line_init (&sweep_line, start_events, self->num_edges);
1858     if ((status = setjmp (sweep_line.unwind)))
1859         goto unwind;
1860
1861     ybot = self->extents.p2.y;
1862     sweep_line.current_subrow = self->extents.p1.y;
1863     sweep_line.current_row = _cairo_fixed_floor (self->extents.p1.y);
1864     event = *sweep_line.queue.start_events++;
1865     do {
1866         /* Can we process a full step in one go? */
1867         if (event->y >= sweep_line.current_row + STEP_Y) {
1868             bottom = _cairo_fixed_floor (event->y);
1869             full_step (self, &sweep_line, bottom, renderer);
1870             sweep_line.current_row = bottom;
1871             sweep_line.current_subrow = bottom;
1872         }
1873
1874         do {
1875             if (event->y > sweep_line.current_subrow) {
1876                 sub_step (self, &sweep_line);
1877                 sweep_line.current_subrow = event->y;
1878             }
1879
1880             do {
1881                 /* Update the active list using Bentley-Ottmann */
1882                 switch (event->type) {
1883                 case EVENT_TYPE_START:
1884                     e1 = ((start_event_t *) event)->edge;
1885
1886                     sweep_line_insert (&sweep_line, e1);
1887                     event_insert_stop (&sweep_line, e1);
1888
1889                     left = e1->link.prev;
1890                     right = e1->link.next;
1891
1892                     if (left != &sweep_line.active) {
1893                         event_insert_if_intersect_below_current_y (&sweep_line,
1894                                                                    link_to_edge (left), e1);
1895                     }
1896
1897                     if (right != &sweep_line.active) {
1898                         event_insert_if_intersect_below_current_y (&sweep_line,
1899                                                                    e1, link_to_edge (right));
1900                     }
1901
1902                     break;
1903
1904                 case EVENT_TYPE_STOP:
1905                     e1 = ((queue_event_t *) event)->e1;
1906                     event_delete (&sweep_line, event);
1907
1908                     left = e1->link.prev;
1909                     right = e1->link.next;
1910
1911                     sweep_line_delete (&sweep_line, e1);
1912
1913                     if (left != &sweep_line.active &&
1914                         right != &sweep_line.active)
1915                     {
1916                          event_insert_if_intersect_below_current_y (&sweep_line,
1917                                                                     link_to_edge (left),
1918                                                                     link_to_edge (right));
1919                     }
1920
1921                     break;
1922
1923                 case EVENT_TYPE_INTERSECTION:
1924                     e1 = ((queue_event_t *) event)->e1;
1925                     e2 = ((queue_event_t *) event)->e2;
1926
1927                     event_delete (&sweep_line, event);
1928                     if (e1->flags & STOP)
1929                         break;
1930                     if (e2->flags & STOP)
1931                         break;
1932
1933                     /* skip this intersection if its edges are not adjacent */
1934                     if (&e2->link != e1->link.next)
1935                         break;
1936
1937                     left = e1->link.prev;
1938                     right = e2->link.next;
1939
1940                     sweep_line_swap (&sweep_line, e1, e2);
1941
1942                     /* after the swap e2 is left of e1 */
1943                     if (left != &sweep_line.active) {
1944                         event_insert_if_intersect_below_current_y (&sweep_line,
1945                                                                    link_to_edge (left), e2);
1946                     }
1947
1948                     if (right != &sweep_line.active) {
1949                         event_insert_if_intersect_below_current_y (&sweep_line,
1950                                                                    e1, link_to_edge (right));
1951                     }
1952
1953                     break;
1954                 }
1955
1956                 event = event_next (&sweep_line);
1957                 if (event == NULL)
1958                     goto end;
1959             } while (event->y == sweep_line.current_subrow);
1960         } while (event->y < sweep_line.current_row + STEP_Y);
1961
1962         bottom = sweep_line.current_row + STEP_Y;
1963         sub_emit (self, &sweep_line, renderer);
1964         sweep_line.current_subrow = bottom;
1965         sweep_line.current_row = sweep_line.current_subrow;
1966     } while (TRUE);
1967
1968   end:
1969     /* flush any partial spans */
1970     if (sweep_line.current_subrow != sweep_line.current_row) {
1971         sub_emit (self, &sweep_line, renderer);
1972         sweep_line.current_row += STEP_Y;
1973         sweep_line.current_subrow = sweep_line.current_row;
1974     }
1975     /* clear the rest */
1976     if (sweep_line.current_subrow < ybot) {
1977         bottom = _cairo_fixed_integer_part (sweep_line.current_row);
1978         status = renderer->render_rows (renderer,
1979                                         bottom, _cairo_fixed_integer_ceil (ybot) - bottom,
1980                                         NULL, 0);
1981     }
1982
1983  unwind:
1984     sweep_line_fini (&sweep_line);
1985
1986     return status;
1987 }
1988
1989 static cairo_status_t
1990 _cairo_botor_scan_converter_generate (void                      *converter,
1991                                       cairo_span_renderer_t     *renderer)
1992 {
1993     cairo_botor_scan_converter_t *self = converter;
1994     start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (start_event_t)];
1995     start_event_t *events;
1996     event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1997     event_t **event_ptrs;
1998     struct _cairo_botor_scan_converter_chunk *chunk;
1999     cairo_status_t status;
2000     int num_events;
2001     int i, j;
2002
2003     num_events = self->num_edges;
2004     if (unlikely (0 == num_events)) {
2005         return renderer->render_rows (renderer,
2006                                       _cairo_fixed_integer_floor (self->extents.p1.y),
2007                                       _cairo_fixed_integer_ceil (self->extents.p2.y) -
2008                                       _cairo_fixed_integer_floor (self->extents.p1.y),
2009                                       NULL, 0);
2010     }
2011
2012     events = stack_events;
2013     event_ptrs = stack_event_ptrs;
2014     if (unlikely (num_events >= ARRAY_LENGTH (stack_events))) {
2015         events = _cairo_malloc_ab_plus_c (num_events,
2016                                           sizeof (start_event_t) + sizeof (event_t *),
2017                                           sizeof (event_t *));
2018         if (unlikely (events == NULL))
2019             return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2020
2021         event_ptrs = (event_t **) (events + num_events);
2022     }
2023
2024     j = 0;
2025     for (chunk = &self->chunks; chunk != NULL; chunk = chunk->next) {
2026         edge_t *edge;
2027
2028         edge = chunk->base;
2029         for (i = 0; i < chunk->count; i++) {
2030             event_ptrs[j] = (event_t *) &events[j];
2031
2032             events[j].y = edge->edge.top;
2033             events[j].type = EVENT_TYPE_START;
2034             events[j].edge = edge;
2035
2036             edge++, j++;
2037         }
2038     }
2039
2040     status = botor_generate (self, event_ptrs, renderer);
2041
2042     if (events != stack_events)
2043         free (events);
2044
2045     return status;
2046 }
2047
2048 static edge_t *
2049 botor_allocate_edge (cairo_botor_scan_converter_t *self)
2050 {
2051     struct _cairo_botor_scan_converter_chunk *chunk;
2052
2053     chunk = self->tail;
2054     if (chunk->count == chunk->size) {
2055         int size;
2056
2057         size = chunk->size * 2;
2058         chunk->next = _cairo_malloc_ab_plus_c (size,
2059                                                sizeof (edge_t),
2060                                                sizeof (struct _cairo_botor_scan_converter_chunk));
2061         if (unlikely (chunk->next == NULL))
2062             return NULL;
2063
2064         chunk = chunk->next;
2065         chunk->next = NULL;
2066         chunk->count = 0;
2067         chunk->size = size;
2068         chunk->base = chunk + 1;
2069         self->tail = chunk;
2070     }
2071
2072     return (edge_t *) chunk->base + chunk->count++;
2073 }
2074
2075 static cairo_status_t
2076 botor_add_edge (cairo_botor_scan_converter_t *self,
2077                 const cairo_edge_t *edge)
2078 {
2079     edge_t *e;
2080     cairo_fixed_t dx, dy;
2081
2082     e = botor_allocate_edge (self);
2083     if (unlikely (e == NULL))
2084         return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2085
2086     cairo_list_init (&e->link);
2087     e->edge = *edge;
2088
2089     dx = edge->line.p2.x - edge->line.p1.x;
2090     dy = edge->line.p2.y - edge->line.p1.y;
2091     e->dy = dy;
2092
2093     if (dx == 0) {
2094         e->vertical = TRUE;
2095         e->x.quo = edge->line.p1.x;
2096         e->x.rem = 0;
2097         e->dxdy.quo = 0;
2098         e->dxdy.rem = 0;
2099         e->dxdy_full.quo = 0;
2100         e->dxdy_full.rem = 0;
2101     } else {
2102         e->vertical = FALSE;
2103         e->dxdy = floored_divrem (dx, dy);
2104         if (edge->top == edge->line.p1.y) {
2105             e->x.quo = edge->line.p1.x;
2106             e->x.rem = 0;
2107         } else {
2108             e->x = floored_muldivrem (edge->top - edge->line.p1.y,
2109                                       dx, dy);
2110             e->x.quo += edge->line.p1.x;
2111         }
2112
2113         if (_cairo_fixed_integer_part (edge->bottom) - _cairo_fixed_integer_part (edge->top) > 1) {
2114             e->dxdy_full = floored_muldivrem (STEP_Y, dx, dy);
2115         } else {
2116             e->dxdy_full.quo = 0;
2117             e->dxdy_full.rem = 0;
2118         }
2119     }
2120
2121     e->x.rem = -e->dy;
2122     e->current_sign = 0;
2123     e->runs = NULL;
2124     e->flags = START;
2125
2126     self->num_edges++;
2127
2128     return CAIRO_STATUS_SUCCESS;
2129 }
2130
2131 static void
2132 _cairo_botor_scan_converter_destroy (void *converter)
2133 {
2134     cairo_botor_scan_converter_t *self = converter;
2135     struct _cairo_botor_scan_converter_chunk *chunk, *next;
2136
2137     for (chunk = self->chunks.next; chunk != NULL; chunk = next) {
2138         next = chunk->next;
2139         free (chunk);
2140     }
2141 }
2142
2143 void
2144 _cairo_botor_scan_converter_init (cairo_botor_scan_converter_t *self,
2145                                   const cairo_box_t *extents,
2146                                   cairo_fill_rule_t fill_rule)
2147 {
2148     self->base.destroy     = _cairo_botor_scan_converter_destroy;
2149     self->base.generate    = _cairo_botor_scan_converter_generate;
2150
2151     self->extents   = *extents;
2152     self->fill_rule = fill_rule;
2153
2154     self->xmin = _cairo_fixed_integer_floor (extents->p1.x);
2155     self->xmax = _cairo_fixed_integer_ceil (extents->p2.x);
2156
2157     self->chunks.base = self->buf;
2158     self->chunks.next = NULL;
2159     self->chunks.count = 0;
2160     self->chunks.size = sizeof (self->buf) / sizeof (edge_t);
2161     self->tail = &self->chunks;
2162
2163     self->num_edges = 0;
2164 }