tizen 2.3.1 release
[framework/graphics/cairo.git] / src / cairo-bentley-ottmann-rectangular.c
1 /*
2  * Copyright © 2004 Carl Worth
3  * Copyright © 2006 Red Hat, Inc.
4  * Copyright © 2009 Chris Wilson
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it either under the terms of the GNU Lesser General Public
8  * License version 2.1 as published by the Free Software Foundation
9  * (the "LGPL") or, at your option, under the terms of the Mozilla
10  * Public License Version 1.1 (the "MPL"). If you do not alter this
11  * notice, a recipient may use your version of this file under either
12  * the MPL or the LGPL.
13  *
14  * You should have received a copy of the LGPL along with this library
15  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17  * You should have received a copy of the MPL along with this library
18  * in the file COPYING-MPL-1.1
19  *
20  * The contents of this file are subject to the Mozilla Public License
21  * Version 1.1 (the "License"); you may not use this file except in
22  * compliance with the License. You may obtain a copy of the License at
23  * http://www.mozilla.org/MPL/
24  *
25  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27  * the specific language governing rights and limitations.
28  *
29  * The Original Code is the cairo graphics library.
30  *
31  * The Initial Developer of the Original Code is Carl Worth
32  *
33  * Contributor(s):
34  *      Carl D. Worth <cworth@cworth.org>
35  *      Chris Wilson <chris@chris-wilson.co.uk>
36  */
37
38 /* Provide definitions for standalone compilation */
39 #include "cairoint.h"
40
41 #include "cairo-boxes-private.h"
42 #include "cairo-error-private.h"
43 #include "cairo-combsort-inline.h"
44 #include "cairo-list-private.h"
45 #include "cairo-traps-private.h"
46
47 #include <setjmp.h>
48
49 typedef struct _rectangle rectangle_t;
50 typedef struct _edge edge_t;
51
52 struct _edge {
53     edge_t *next, *prev;
54     edge_t *right;
55     cairo_fixed_t x, top;
56     int dir;
57 };
58
59 struct _rectangle {
60     edge_t left, right;
61     int32_t top, bottom;
62 };
63
64 #define UNROLL3(x) x x x
65
66 /* the parent is always given by index/2 */
67 #define PQ_PARENT_INDEX(i) ((i) >> 1)
68 #define PQ_FIRST_ENTRY 1
69
70 /* left and right children are index * 2 and (index * 2) +1 respectively */
71 #define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
72
73 typedef struct _sweep_line {
74     rectangle_t **rectangles;
75     rectangle_t **stop;
76     edge_t head, tail, *insert, *cursor;
77     int32_t current_y;
78     int32_t last_y;
79     int stop_size;
80
81     int32_t insert_x;
82     cairo_fill_rule_t fill_rule;
83
84     cairo_bool_t do_traps;
85     void *container;
86
87     jmp_buf unwind;
88 } sweep_line_t;
89
90 #define DEBUG_TRAPS 0
91
92 #if DEBUG_TRAPS
93 static void
94 dump_traps (cairo_traps_t *traps, const char *filename)
95 {
96     FILE *file;
97     int n;
98
99     if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
100         return;
101
102     file = fopen (filename, "a");
103     if (file != NULL) {
104         for (n = 0; n < traps->num_traps; n++) {
105             fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
106                      traps->traps[n].top,
107                      traps->traps[n].bottom,
108                      traps->traps[n].left.p1.x,
109                      traps->traps[n].left.p1.y,
110                      traps->traps[n].left.p2.x,
111                      traps->traps[n].left.p2.y,
112                      traps->traps[n].right.p1.x,
113                      traps->traps[n].right.p1.y,
114                      traps->traps[n].right.p2.x,
115                      traps->traps[n].right.p2.y);
116         }
117         fprintf (file, "\n");
118         fclose (file);
119     }
120 }
121 #else
122 #define dump_traps(traps, filename)
123 #endif
124
125 static inline int
126 rectangle_compare_start (const rectangle_t *a,
127                          const rectangle_t *b)
128 {
129     return a->top - b->top;
130 }
131
132 static inline int
133 rectangle_compare_stop (const rectangle_t *a,
134                          const rectangle_t *b)
135 {
136     return a->bottom - b->bottom;
137 }
138
139 static inline void
140 pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle)
141 {
142     rectangle_t **elements;
143     int i, parent;
144
145     elements = sweep->stop;
146     for (i = ++sweep->stop_size;
147          i != PQ_FIRST_ENTRY &&
148          rectangle_compare_stop (rectangle,
149                                  elements[parent = PQ_PARENT_INDEX (i)]) < 0;
150          i = parent)
151     {
152         elements[i] = elements[parent];
153     }
154
155     elements[i] = rectangle;
156 }
157
158 static inline void
159 rectangle_pop_stop (sweep_line_t *sweep)
160 {
161     rectangle_t **elements = sweep->stop;
162     rectangle_t *tail;
163     int child, i;
164
165     tail = elements[sweep->stop_size--];
166     if (sweep->stop_size == 0) {
167         elements[PQ_FIRST_ENTRY] = NULL;
168         return;
169     }
170
171     for (i = PQ_FIRST_ENTRY;
172          (child = PQ_LEFT_CHILD_INDEX (i)) <= sweep->stop_size;
173          i = child)
174     {
175         if (child != sweep->stop_size &&
176             rectangle_compare_stop (elements[child+1],
177                                     elements[child]) < 0)
178         {
179             child++;
180         }
181
182         if (rectangle_compare_stop (elements[child], tail) >= 0)
183             break;
184
185         elements[i] = elements[child];
186     }
187     elements[i] = tail;
188 }
189
190 static inline rectangle_t *
191 rectangle_pop_start (sweep_line_t *sweep_line)
192 {
193     return *sweep_line->rectangles++;
194 }
195
196 static inline rectangle_t *
197 rectangle_peek_stop (sweep_line_t *sweep_line)
198 {
199     return sweep_line->stop[PQ_FIRST_ENTRY];
200 }
201
202 CAIRO_COMBSORT_DECLARE (_rectangle_sort,
203                         rectangle_t *,
204                         rectangle_compare_start)
205
206 static void
207 sweep_line_init (sweep_line_t    *sweep_line,
208                  rectangle_t    **rectangles,
209                  int              num_rectangles,
210                  cairo_fill_rule_t fill_rule,
211                  cairo_bool_t    do_traps,
212                  void           *container)
213 {
214     rectangles[-2] = NULL;
215     rectangles[-1] = NULL;
216     rectangles[num_rectangles] = NULL;
217     sweep_line->rectangles = rectangles;
218     sweep_line->stop = rectangles - 2;
219     sweep_line->stop_size = 0;
220
221     sweep_line->insert = NULL;
222     sweep_line->insert_x = INT_MAX;
223     sweep_line->cursor = &sweep_line->tail;
224
225     sweep_line->head.dir = 0;
226     sweep_line->head.x = INT32_MIN;
227     sweep_line->head.right = NULL;
228     sweep_line->head.prev = NULL;
229     sweep_line->head.next = &sweep_line->tail;
230     sweep_line->tail.prev = &sweep_line->head;
231     sweep_line->tail.next = NULL;
232     sweep_line->tail.right = NULL;
233     sweep_line->tail.x = INT32_MAX;
234     sweep_line->tail.dir = 0;
235
236     sweep_line->current_y = INT32_MIN;
237     sweep_line->last_y = INT32_MIN;
238
239     sweep_line->fill_rule = fill_rule;
240     sweep_line->container = container;
241     sweep_line->do_traps = do_traps;
242 }
243
244 static void
245 edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot)
246 {
247     cairo_status_t status = CAIRO_STATUS_SUCCESS;
248
249     /* Only emit (trivial) non-degenerate trapezoids with positive height. */
250     if (likely (left->top < bot)) {
251         if (sweep_line->do_traps) {
252             cairo_line_t _left = {
253                 { left->x, left->top },
254                 { left->x, bot },
255             }, _right = {
256                 { left->right->x, left->top },
257                 { left->right->x, bot },
258             };
259             _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right);
260             status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container);
261         } else {
262             cairo_box_t box;
263
264             box.p1.x = left->x;
265             box.p1.y = left->top;
266             box.p2.x = left->right->x;
267             box.p2.y = bot;
268
269             status = _cairo_boxes_add (sweep_line->container,
270                                        CAIRO_ANTIALIAS_DEFAULT,
271                                        &box);
272         }
273     }
274     if (unlikely (status))
275         longjmp (sweep_line->unwind, status);
276
277     left->right = NULL;
278 }
279
280 /* Start a new trapezoid at the given top y coordinate, whose edges
281  * are `edge' and `edge->next'. If `edge' already has a trapezoid,
282  * then either add it to the traps in `traps', if the trapezoid's
283  * right edge differs from `edge->next', or do nothing if the new
284  * trapezoid would be a continuation of the existing one. */
285 static inline void
286 edge_start_or_continue_box (sweep_line_t *sweep_line,
287                             edge_t      *left,
288                             edge_t      *right,
289                             int          top)
290 {
291     if (left->right == right)
292         return;
293
294     if (left->right != NULL) {
295         if (left->right->x == right->x) {
296             /* continuation on right, so just swap edges */
297             left->right = right;
298             return;
299         }
300
301         edge_end_box (sweep_line, left, top);
302     }
303
304     if (left->x != right->x) {
305         left->top = top;
306         left->right = right;
307     }
308 }
309 /*
310  * Merge two sorted edge lists.
311  * Input:
312  *  - head_a: The head of the first list.
313  *  - head_b: The head of the second list; head_b cannot be NULL.
314  * Output:
315  * Returns the head of the merged list.
316  *
317  * Implementation notes:
318  * To make it fast (in particular, to reduce to an insertion sort whenever
319  * one of the two input lists only has a single element) we iterate through
320  * a list until its head becomes greater than the head of the other list,
321  * then we switch their roles. As soon as one of the two lists is empty, we
322  * just attach the other one to the current list and exit.
323  * Writes to memory are only needed to "switch" lists (as it also requires
324  * attaching to the output list the list which we will be iterating next) and
325  * to attach the last non-empty list.
326  */
327 static edge_t *
328 merge_sorted_edges (edge_t *head_a, edge_t *head_b)
329 {
330     edge_t *head, *prev;
331     int32_t x;
332
333     prev = head_a->prev;
334     if (head_a->x <= head_b->x) {
335         head = head_a;
336     } else {
337         head_b->prev = prev;
338         head = head_b;
339         goto start_with_b;
340     }
341
342     do {
343         x = head_b->x;
344         while (head_a != NULL && head_a->x <= x) {
345             prev = head_a;
346             head_a = head_a->next;
347         }
348
349         head_b->prev = prev;
350         prev->next = head_b;
351         if (head_a == NULL)
352             return head;
353
354 start_with_b:
355         x = head_a->x;
356         while (head_b != NULL && head_b->x <= x) {
357             prev = head_b;
358             head_b = head_b->next;
359         }
360
361         head_a->prev = prev;
362         prev->next = head_a;
363         if (head_b == NULL)
364             return head;
365     } while (1);
366 }
367
368 /*
369  * Sort (part of) a list.
370  * Input:
371  *  - list: The list to be sorted; list cannot be NULL.
372  *  - limit: Recursion limit.
373  * Output:
374  *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
375  *              input list; if the input list has fewer elements, head_out be a sorted list
376  *              containing all the elements of the input list.
377  * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
378  * all the elements of the input list).
379  *
380  * Implementation notes:
381  * Special case single element list, unroll/inline the sorting of the first two elements.
382  * Some tail recursion is used since we iterate on the bottom-up solution of the problem
383  * (we start with a small sorted list and keep merging other lists of the same size to it).
384  */
385 static edge_t *
386 sort_edges (edge_t  *list,
387             unsigned int  level,
388             edge_t **head_out)
389 {
390     edge_t *head_other, *remaining;
391     unsigned int i;
392
393     head_other = list->next;
394
395     if (head_other == NULL) {
396         *head_out = list;
397         return NULL;
398     }
399
400     remaining = head_other->next;
401     if (list->x <= head_other->x) {
402         *head_out = list;
403         head_other->next = NULL;
404     } else {
405         *head_out = head_other;
406         head_other->prev = list->prev;
407         head_other->next = list;
408         list->prev = head_other;
409         list->next = NULL;
410     }
411
412     for (i = 0; i < level && remaining; i++) {
413         remaining = sort_edges (remaining, i, &head_other);
414         *head_out = merge_sorted_edges (*head_out, head_other);
415     }
416
417     return remaining;
418 }
419
420 static edge_t *
421 merge_unsorted_edges (edge_t *head, edge_t *unsorted)
422 {
423     sort_edges (unsorted, UINT_MAX, &unsorted);
424     return merge_sorted_edges (head, unsorted);
425 }
426
427 static void
428 active_edges_insert (sweep_line_t *sweep)
429 {
430     edge_t *prev;
431     int x;
432
433     x = sweep->insert_x;
434     prev = sweep->cursor;
435     if (prev->x > x) {
436         do {
437             prev = prev->prev;
438         } while (prev->x > x);
439     } else {
440         while (prev->next->x < x)
441             prev = prev->next;
442     }
443
444     prev->next = merge_unsorted_edges (prev->next, sweep->insert);
445     sweep->cursor = sweep->insert;
446     sweep->insert = NULL;
447     sweep->insert_x = INT_MAX;
448 }
449
450 static inline void
451 active_edges_to_traps (sweep_line_t *sweep)
452 {
453     int top = sweep->current_y;
454     edge_t *pos;
455
456     if (sweep->last_y == sweep->current_y)
457         return;
458
459     if (sweep->insert)
460         active_edges_insert (sweep);
461
462     pos = sweep->head.next;
463     if (pos == &sweep->tail)
464         return;
465
466     if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) {
467         do {
468             edge_t *left, *right;
469             int winding;
470
471             left = pos;
472             winding = left->dir;
473
474             right = left->next;
475
476             /* Check if there is a co-linear edge with an existing trap */
477             while (right->x == left->x) {
478                 if (right->right != NULL) {
479                     assert (left->right == NULL);
480                     /* continuation on left */
481                     left->top = right->top;
482                     left->right = right->right;
483                     right->right = NULL;
484                 }
485                 winding += right->dir;
486                 right = right->next;
487             }
488
489             if (winding == 0) {
490                 if (left->right != NULL)
491                     edge_end_box (sweep, left, top);
492                 pos = right;
493                 continue;
494             }
495
496             do {
497                 /* End all subsumed traps */
498                 if (unlikely (right->right != NULL))
499                     edge_end_box (sweep, right, top);
500
501                 /* Greedily search for the closing edge, so that we generate
502                  * the * maximal span width with the minimal number of
503                  * boxes.
504                  */
505                 winding += right->dir;
506                 if (winding == 0 && right->x != right->next->x)
507                     break;
508
509                 right = right->next;
510             } while (TRUE);
511
512             edge_start_or_continue_box (sweep, left, right, top);
513
514             pos = right->next;
515         } while (pos != &sweep->tail);
516     } else {
517         do {
518             edge_t *right = pos->next;
519             int count = 0;
520
521             do {
522                 /* End all subsumed traps */
523                 if (unlikely (right->right != NULL))
524                     edge_end_box (sweep, right, top);
525
526                     /* skip co-linear edges */
527                 if (++count & 1 && right->x != right->next->x)
528                     break;
529
530                 right = right->next;
531             } while (TRUE);
532
533             edge_start_or_continue_box (sweep, pos, right, top);
534
535             pos = right->next;
536         } while (pos != &sweep->tail);
537     }
538
539     sweep->last_y = sweep->current_y;
540 }
541
542 static inline void
543 sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge)
544 {
545     if (edge->right != NULL) {
546         edge_t *next = edge->next;
547         if (next->x == edge->x) {
548             next->top = edge->top;
549             next->right = edge->right;
550         } else
551             edge_end_box (sweep, edge, sweep->current_y);
552     }
553
554     if (sweep->cursor == edge)
555         sweep->cursor = edge->prev;
556
557     edge->prev->next = edge->next;
558     edge->next->prev = edge->prev;
559 }
560
561 static inline cairo_bool_t
562 sweep_line_delete (sweep_line_t *sweep, rectangle_t *rectangle)
563 {
564     cairo_bool_t update;
565
566     update = TRUE;
567     if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING &&
568         rectangle->left.prev->dir == rectangle->left.dir)
569     {
570         update = rectangle->left.next != &rectangle->right;
571     }
572
573     sweep_line_delete_edge (sweep, &rectangle->left);
574     sweep_line_delete_edge (sweep, &rectangle->right);
575
576     rectangle_pop_stop (sweep);
577     return update;
578 }
579
580 static inline void
581 sweep_line_insert (sweep_line_t *sweep, rectangle_t *rectangle)
582 {
583     if (sweep->insert)
584         sweep->insert->prev = &rectangle->right;
585     rectangle->right.next = sweep->insert;
586     rectangle->right.prev = &rectangle->left;
587     rectangle->left.next = &rectangle->right;
588     rectangle->left.prev = NULL;
589     sweep->insert = &rectangle->left;
590     if (rectangle->left.x < sweep->insert_x)
591         sweep->insert_x = rectangle->left.x;
592
593     pqueue_push (sweep, rectangle);
594 }
595
596 static cairo_status_t
597 _cairo_bentley_ottmann_tessellate_rectangular (rectangle_t      **rectangles,
598                                                int                        num_rectangles,
599                                                cairo_fill_rule_t          fill_rule,
600                                                cairo_bool_t              do_traps,
601                                                void                     *container)
602 {
603     sweep_line_t sweep_line;
604     rectangle_t *rectangle;
605     cairo_status_t status;
606     cairo_bool_t update = FALSE;
607
608     sweep_line_init (&sweep_line,
609                      rectangles, num_rectangles,
610                      fill_rule,
611                      do_traps, container);
612     if ((status = setjmp (sweep_line.unwind)))
613         return status;
614
615     rectangle = rectangle_pop_start (&sweep_line);
616     do {
617         if (rectangle->top != sweep_line.current_y) {
618             rectangle_t *stop;
619
620             stop = rectangle_peek_stop (&sweep_line);
621             while (stop != NULL && stop->bottom < rectangle->top) {
622                 if (stop->bottom != sweep_line.current_y) {
623                     if (update) {
624                         active_edges_to_traps (&sweep_line);
625                         update = FALSE;
626                     }
627
628                     sweep_line.current_y = stop->bottom;
629                 }
630
631                 update |= sweep_line_delete (&sweep_line, stop);
632                 stop = rectangle_peek_stop (&sweep_line);
633             }
634
635             if (update) {
636                 active_edges_to_traps (&sweep_line);
637                 update = FALSE;
638             }
639
640             sweep_line.current_y = rectangle->top;
641         }
642
643         do {
644             sweep_line_insert (&sweep_line, rectangle);
645         } while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL &&
646                  sweep_line.current_y == rectangle->top);
647         update = TRUE;
648     } while (rectangle);
649
650     while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL) {
651         if (rectangle->bottom != sweep_line.current_y) {
652             if (update) {
653                 active_edges_to_traps (&sweep_line);
654                 update = FALSE;
655             }
656             sweep_line.current_y = rectangle->bottom;
657         }
658
659         update |= sweep_line_delete (&sweep_line, rectangle);
660     }
661
662     return CAIRO_STATUS_SUCCESS;
663 }
664
665 cairo_status_t
666 _cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
667                                                      cairo_fill_rule_t fill_rule)
668 {
669     rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
670     rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
671     rectangle_t *rectangles, **rectangles_ptrs;
672     cairo_status_t status;
673     int i;
674
675     if (unlikely (traps->num_traps <= 1))
676         return CAIRO_STATUS_SUCCESS;
677
678     assert (traps->is_rectangular);
679
680     dump_traps (traps, "bo-rects-traps-in.txt");
681
682     rectangles = stack_rectangles;
683     rectangles_ptrs = stack_rectangles_ptrs;
684     if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
685         rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
686                                               sizeof (rectangle_t) +
687                                               sizeof (rectangle_t *),
688                                               3*sizeof (rectangle_t *));
689         if (unlikely (rectangles == NULL))
690             return _cairo_error (CAIRO_STATUS_NO_MEMORY);
691
692         rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps);
693     }
694
695     for (i = 0; i < traps->num_traps; i++) {
696         if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
697             rectangles[i].left.x = traps->traps[i].left.p1.x;
698             rectangles[i].left.dir = 1;
699
700             rectangles[i].right.x = traps->traps[i].right.p1.x;
701             rectangles[i].right.dir = -1;
702         } else {
703             rectangles[i].right.x = traps->traps[i].left.p1.x;
704             rectangles[i].right.dir = 1;
705
706             rectangles[i].left.x = traps->traps[i].right.p1.x;
707             rectangles[i].left.dir = -1;
708         }
709
710         rectangles[i].left.right = NULL;
711         rectangles[i].right.right = NULL;
712
713         rectangles[i].top = traps->traps[i].top;
714         rectangles[i].bottom = traps->traps[i].bottom;
715
716         rectangles_ptrs[i+2] = &rectangles[i];
717     }
718     /* XXX incremental sort */
719     _rectangle_sort (rectangles_ptrs+2, i);
720
721     _cairo_traps_clear (traps);
722     status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i,
723                                                             fill_rule,
724                                                             TRUE, traps);
725     traps->is_rectilinear = TRUE;
726     traps->is_rectangular = TRUE;
727
728     if (rectangles != stack_rectangles)
729         free (rectangles);
730
731     dump_traps (traps, "bo-rects-traps-out.txt");
732
733     return status;
734 }
735
736 cairo_status_t
737 _cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in,
738                                          cairo_fill_rule_t fill_rule,
739                                          cairo_boxes_t *out)
740 {
741     rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
742     rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
743     rectangle_t *rectangles, **rectangles_ptrs;
744     rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *) ];
745     rectangle_t **rectangles_chain = NULL;
746     const struct _cairo_boxes_chunk *chunk;
747     cairo_status_t status;
748     int i, j, y_min, y_max;
749
750     if (unlikely (in->num_boxes == 0)) {
751         _cairo_boxes_clear (out);
752         return CAIRO_STATUS_SUCCESS;
753     }
754
755     if (in->num_boxes == 1) {
756         if (in == out) {
757             cairo_box_t *box = &in->chunks.base[0];
758
759             if (box->p1.x > box->p2.x) {
760                 cairo_fixed_t tmp = box->p1.x;
761                 box->p1.x = box->p2.x;
762                 box->p2.x = tmp;
763             }
764         } else {
765             cairo_box_t box = in->chunks.base[0];
766
767             if (box.p1.x > box.p2.x) {
768                 cairo_fixed_t tmp = box.p1.x;
769                 box.p1.x = box.p2.x;
770                 box.p2.x = tmp;
771             }
772
773             _cairo_boxes_clear (out);
774             status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box);
775             assert (status == CAIRO_STATUS_SUCCESS);
776         }
777         return CAIRO_STATUS_SUCCESS;
778     }
779
780     y_min = INT_MAX; y_max = INT_MIN;
781     for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
782         const cairo_box_t *box = chunk->base;
783         for (i = 0; i < chunk->count; i++) {
784             if (box[i].p1.y < y_min)
785                 y_min = box[i].p1.y;
786             if (box[i].p1.y > y_max)
787                 y_max = box[i].p1.y;
788         }
789     }
790     y_min = _cairo_fixed_integer_floor (y_min);
791     y_max = _cairo_fixed_integer_floor (y_max) + 1;
792     y_max -= y_min;
793
794     if (y_max < in->num_boxes) {
795         rectangles_chain = stack_rectangles_chain;
796         if (y_max > ARRAY_LENGTH (stack_rectangles_chain)) {
797             rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *));
798             if (unlikely (rectangles_chain == NULL))
799                 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
800         }
801         memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*));
802     }
803
804     rectangles = stack_rectangles;
805     rectangles_ptrs = stack_rectangles_ptrs;
806     if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)) {
807         rectangles = _cairo_malloc_ab_plus_c (in->num_boxes,
808                                               sizeof (rectangle_t) +
809                                               sizeof (rectangle_t *),
810                                               3*sizeof (rectangle_t *));
811         if (unlikely (rectangles == NULL)) {
812             if (rectangles_chain != stack_rectangles_chain)
813                 free (rectangles_chain);
814             return _cairo_error (CAIRO_STATUS_NO_MEMORY);
815         }
816
817         rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes);
818     }
819
820     j = 0;
821     for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
822         const cairo_box_t *box = chunk->base;
823         for (i = 0; i < chunk->count; i++) {
824             int h;
825
826             if (box[i].p1.x < box[i].p2.x) {
827                 rectangles[j].left.x = box[i].p1.x;
828                 rectangles[j].left.dir = 1;
829
830                 rectangles[j].right.x = box[i].p2.x;
831                 rectangles[j].right.dir = -1;
832             } else {
833                 rectangles[j].right.x = box[i].p1.x;
834                 rectangles[j].right.dir = 1;
835
836                 rectangles[j].left.x = box[i].p2.x;
837                 rectangles[j].left.dir = -1;
838             }
839
840             rectangles[j].left.right = NULL;
841             rectangles[j].right.right = NULL;
842
843             rectangles[j].top = box[i].p1.y;
844             rectangles[j].bottom = box[i].p2.y;
845
846             if (rectangles_chain) {
847                 h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min;
848                 rectangles[j].left.next = (edge_t *)rectangles_chain[h];
849                 rectangles_chain[h] = &rectangles[j];
850             } else {
851                 rectangles_ptrs[j+2] = &rectangles[j];
852             }
853             j++;
854         }
855     }
856
857     if (rectangles_chain) {
858         j = 2;
859         for (y_min = 0; y_min < y_max; y_min++) {
860             rectangle_t *r;
861             int start = j;
862             for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next)
863                 rectangles_ptrs[j++] = r;
864             if (j > start + 1)
865                 _rectangle_sort (rectangles_ptrs + start, j - start);
866         }
867
868         if (rectangles_chain != stack_rectangles_chain)
869             free (rectangles_chain);
870
871         j -= 2;
872     } else {
873         _rectangle_sort (rectangles_ptrs + 2, j);
874     }
875
876     _cairo_boxes_clear (out);
877     status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j,
878                                                             fill_rule,
879                                                             FALSE, out);
880     if (rectangles != stack_rectangles)
881         free (rectangles);
882
883     return status;
884 }