Move IC code into a subdir and move ic-compilation related code from stub-cache into...
[platform/upstream/v8.git] / src / builtins.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/api.h"
8 #include "src/arguments.h"
9 #include "src/base/once.h"
10 #include "src/bootstrapper.h"
11 #include "src/builtins.h"
12 #include "src/cpu-profiler.h"
13 #include "src/gdb-jit.h"
14 #include "src/heap/mark-compact.h"
15 #include "src/heap-profiler.h"
16 #include "src/ic/ic.h"
17 #include "src/ic/ic-compiler.h"
18 #include "src/prototype.h"
19 #include "src/vm-state-inl.h"
20
21 namespace v8 {
22 namespace internal {
23
24 namespace {
25
26 // Arguments object passed to C++ builtins.
27 template <BuiltinExtraArguments extra_args>
28 class BuiltinArguments : public Arguments {
29  public:
30   BuiltinArguments(int length, Object** arguments)
31       : Arguments(length, arguments) { }
32
33   Object*& operator[] (int index) {
34     DCHECK(index < length());
35     return Arguments::operator[](index);
36   }
37
38   template <class S> Handle<S> at(int index) {
39     DCHECK(index < length());
40     return Arguments::at<S>(index);
41   }
42
43   Handle<Object> receiver() {
44     return Arguments::at<Object>(0);
45   }
46
47   Handle<JSFunction> called_function() {
48     STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION);
49     return Arguments::at<JSFunction>(Arguments::length() - 1);
50   }
51
52   // Gets the total number of arguments including the receiver (but
53   // excluding extra arguments).
54   int length() const {
55     STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
56     return Arguments::length();
57   }
58
59 #ifdef DEBUG
60   void Verify() {
61     // Check we have at least the receiver.
62     DCHECK(Arguments::length() >= 1);
63   }
64 #endif
65 };
66
67
68 // Specialize BuiltinArguments for the called function extra argument.
69
70 template <>
71 int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const {
72   return Arguments::length() - 1;
73 }
74
75 #ifdef DEBUG
76 template <>
77 void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() {
78   // Check we have at least the receiver and the called function.
79   DCHECK(Arguments::length() >= 2);
80   // Make sure cast to JSFunction succeeds.
81   called_function();
82 }
83 #endif
84
85
86 #define DEF_ARG_TYPE(name, spec)                      \
87   typedef BuiltinArguments<spec> name##ArgumentsType;
88 BUILTIN_LIST_C(DEF_ARG_TYPE)
89 #undef DEF_ARG_TYPE
90
91 }  // namespace
92
93 // ----------------------------------------------------------------------------
94 // Support macro for defining builtins in C++.
95 // ----------------------------------------------------------------------------
96 //
97 // A builtin function is defined by writing:
98 //
99 //   BUILTIN(name) {
100 //     ...
101 //   }
102 //
103 // In the body of the builtin function the arguments can be accessed
104 // through the BuiltinArguments object args.
105
106 #ifdef DEBUG
107
108 #define BUILTIN(name)                                            \
109   MUST_USE_RESULT static Object* Builtin_Impl_##name(            \
110       name##ArgumentsType args, Isolate* isolate);               \
111   MUST_USE_RESULT static Object* Builtin_##name(                 \
112       int args_length, Object** args_object, Isolate* isolate) { \
113     name##ArgumentsType args(args_length, args_object);          \
114     args.Verify();                                               \
115     return Builtin_Impl_##name(args, isolate);                   \
116   }                                                              \
117   MUST_USE_RESULT static Object* Builtin_Impl_##name(            \
118       name##ArgumentsType args, Isolate* isolate)
119
120 #else  // For release mode.
121
122 #define BUILTIN(name)                                            \
123   static Object* Builtin_impl##name(                             \
124       name##ArgumentsType args, Isolate* isolate);               \
125   static Object* Builtin_##name(                                 \
126       int args_length, Object** args_object, Isolate* isolate) { \
127     name##ArgumentsType args(args_length, args_object);          \
128     return Builtin_impl##name(args, isolate);                    \
129   }                                                              \
130   static Object* Builtin_impl##name(                             \
131       name##ArgumentsType args, Isolate* isolate)
132 #endif
133
134
135 #ifdef DEBUG
136 static inline bool CalledAsConstructor(Isolate* isolate) {
137   // Calculate the result using a full stack frame iterator and check
138   // that the state of the stack is as we assume it to be in the
139   // code below.
140   StackFrameIterator it(isolate);
141   DCHECK(it.frame()->is_exit());
142   it.Advance();
143   StackFrame* frame = it.frame();
144   bool reference_result = frame->is_construct();
145   Address fp = Isolate::c_entry_fp(isolate->thread_local_top());
146   // Because we know fp points to an exit frame we can use the relevant
147   // part of ExitFrame::ComputeCallerState directly.
148   const int kCallerOffset = ExitFrameConstants::kCallerFPOffset;
149   Address caller_fp = Memory::Address_at(fp + kCallerOffset);
150   // This inlines the part of StackFrame::ComputeType that grabs the
151   // type of the current frame.  Note that StackFrame::ComputeType
152   // has been specialized for each architecture so if any one of them
153   // changes this code has to be changed as well.
154   const int kMarkerOffset = StandardFrameConstants::kMarkerOffset;
155   const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT);
156   Object* marker = Memory::Object_at(caller_fp + kMarkerOffset);
157   bool result = (marker == kConstructMarker);
158   DCHECK_EQ(result, reference_result);
159   return result;
160 }
161 #endif
162
163
164 // ----------------------------------------------------------------------------
165
166 BUILTIN(Illegal) {
167   UNREACHABLE();
168   return isolate->heap()->undefined_value();  // Make compiler happy.
169 }
170
171
172 BUILTIN(EmptyFunction) {
173   return isolate->heap()->undefined_value();
174 }
175
176
177 static void MoveDoubleElements(FixedDoubleArray* dst, int dst_index,
178                                FixedDoubleArray* src, int src_index, int len) {
179   if (len == 0) return;
180   MemMove(dst->data_start() + dst_index, src->data_start() + src_index,
181           len * kDoubleSize);
182 }
183
184
185 static bool ArrayPrototypeHasNoElements(Heap* heap,
186                                         Context* native_context,
187                                         JSObject* array_proto) {
188   DisallowHeapAllocation no_gc;
189   // This method depends on non writability of Object and Array prototype
190   // fields.
191   if (array_proto->elements() != heap->empty_fixed_array()) return false;
192   // Object.prototype
193   PrototypeIterator iter(heap->isolate(), array_proto);
194   if (iter.IsAtEnd()) {
195     return false;
196   }
197   array_proto = JSObject::cast(iter.GetCurrent());
198   if (array_proto != native_context->initial_object_prototype()) return false;
199   if (array_proto->elements() != heap->empty_fixed_array()) return false;
200   iter.Advance();
201   return iter.IsAtEnd();
202 }
203
204
205 // Returns empty handle if not applicable.
206 MUST_USE_RESULT
207 static inline MaybeHandle<FixedArrayBase> EnsureJSArrayWithWritableFastElements(
208     Isolate* isolate,
209     Handle<Object> receiver,
210     Arguments* args,
211     int first_added_arg) {
212   if (!receiver->IsJSArray()) return MaybeHandle<FixedArrayBase>();
213   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
214   // If there may be elements accessors in the prototype chain, the fast path
215   // cannot be used if there arguments to add to the array.
216   if (args != NULL && array->map()->DictionaryElementsInPrototypeChainOnly()) {
217     return MaybeHandle<FixedArrayBase>();
218   }
219   if (array->map()->is_observed()) return MaybeHandle<FixedArrayBase>();
220   if (!array->map()->is_extensible()) return MaybeHandle<FixedArrayBase>();
221   Handle<FixedArrayBase> elms(array->elements(), isolate);
222   Heap* heap = isolate->heap();
223   Map* map = elms->map();
224   if (map == heap->fixed_array_map()) {
225     if (args == NULL || array->HasFastObjectElements()) return elms;
226   } else if (map == heap->fixed_cow_array_map()) {
227     elms = JSObject::EnsureWritableFastElements(array);
228     if (args == NULL || array->HasFastObjectElements()) return elms;
229   } else if (map == heap->fixed_double_array_map()) {
230     if (args == NULL) return elms;
231   } else {
232     return MaybeHandle<FixedArrayBase>();
233   }
234
235   // Need to ensure that the arguments passed in args can be contained in
236   // the array.
237   int args_length = args->length();
238   if (first_added_arg >= args_length) return handle(array->elements(), isolate);
239
240   ElementsKind origin_kind = array->map()->elements_kind();
241   DCHECK(!IsFastObjectElementsKind(origin_kind));
242   ElementsKind target_kind = origin_kind;
243   {
244     DisallowHeapAllocation no_gc;
245     int arg_count = args->length() - first_added_arg;
246     Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
247     for (int i = 0; i < arg_count; i++) {
248       Object* arg = arguments[i];
249       if (arg->IsHeapObject()) {
250         if (arg->IsHeapNumber()) {
251           target_kind = FAST_DOUBLE_ELEMENTS;
252         } else {
253           target_kind = FAST_ELEMENTS;
254           break;
255         }
256       }
257     }
258   }
259   if (target_kind != origin_kind) {
260     JSObject::TransitionElementsKind(array, target_kind);
261     return handle(array->elements(), isolate);
262   }
263   return elms;
264 }
265
266
267 static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap,
268                                                      JSArray* receiver) {
269   if (!FLAG_clever_optimizations) return false;
270   DisallowHeapAllocation no_gc;
271   Context* native_context = heap->isolate()->context()->native_context();
272   JSObject* array_proto =
273       JSObject::cast(native_context->array_function()->prototype());
274   PrototypeIterator iter(heap->isolate(), receiver);
275   return iter.GetCurrent() == array_proto &&
276          ArrayPrototypeHasNoElements(heap, native_context, array_proto);
277 }
278
279
280 MUST_USE_RESULT static Object* CallJsBuiltin(
281     Isolate* isolate,
282     const char* name,
283     BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
284   HandleScope handleScope(isolate);
285
286   Handle<Object> js_builtin = Object::GetProperty(
287       isolate,
288       handle(isolate->native_context()->builtins(), isolate),
289       name).ToHandleChecked();
290   Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin);
291   int argc = args.length() - 1;
292   ScopedVector<Handle<Object> > argv(argc);
293   for (int i = 0; i < argc; ++i) {
294     argv[i] = args.at<Object>(i + 1);
295   }
296   Handle<Object> result;
297   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
298       isolate, result,
299       Execution::Call(isolate,
300                       function,
301                       args.receiver(),
302                       argc,
303                       argv.start()));
304   return *result;
305 }
306
307
308 BUILTIN(ArrayPush) {
309   HandleScope scope(isolate);
310   Handle<Object> receiver = args.receiver();
311   MaybeHandle<FixedArrayBase> maybe_elms_obj =
312       EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1);
313   Handle<FixedArrayBase> elms_obj;
314   if (!maybe_elms_obj.ToHandle(&elms_obj)) {
315     return CallJsBuiltin(isolate, "ArrayPush", args);
316   }
317
318   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
319   int len = Smi::cast(array->length())->value();
320   int to_add = args.length() - 1;
321   if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
322     return CallJsBuiltin(isolate, "ArrayPush", args);
323   }
324   DCHECK(!array->map()->is_observed());
325
326   ElementsKind kind = array->GetElementsKind();
327
328   if (IsFastSmiOrObjectElementsKind(kind)) {
329     Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
330     if (to_add == 0) {
331       return Smi::FromInt(len);
332     }
333     // Currently fixed arrays cannot grow too big, so
334     // we should never hit this case.
335     DCHECK(to_add <= (Smi::kMaxValue - len));
336
337     int new_length = len + to_add;
338
339     if (new_length > elms->length()) {
340       // New backing storage is needed.
341       int capacity = new_length + (new_length >> 1) + 16;
342       Handle<FixedArray> new_elms =
343           isolate->factory()->NewUninitializedFixedArray(capacity);
344
345       ElementsAccessor* accessor = array->GetElementsAccessor();
346       accessor->CopyElements(
347           elms_obj, 0, kind, new_elms, 0,
348           ElementsAccessor::kCopyToEndAndInitializeToHole);
349
350       elms = new_elms;
351     }
352
353     // Add the provided values.
354     DisallowHeapAllocation no_gc;
355     WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
356     for (int index = 0; index < to_add; index++) {
357       elms->set(index + len, args[index + 1], mode);
358     }
359
360     if (*elms != array->elements()) {
361       array->set_elements(*elms);
362     }
363
364     // Set the length.
365     array->set_length(Smi::FromInt(new_length));
366     return Smi::FromInt(new_length);
367   } else {
368     int elms_len = elms_obj->length();
369     if (to_add == 0) {
370       return Smi::FromInt(len);
371     }
372     // Currently fixed arrays cannot grow too big, so
373     // we should never hit this case.
374     DCHECK(to_add <= (Smi::kMaxValue - len));
375
376     int new_length = len + to_add;
377
378     Handle<FixedDoubleArray> new_elms;
379
380     if (new_length > elms_len) {
381       // New backing storage is needed.
382       int capacity = new_length + (new_length >> 1) + 16;
383       // Create new backing store; since capacity > 0, we can
384       // safely cast to FixedDoubleArray.
385       new_elms = Handle<FixedDoubleArray>::cast(
386           isolate->factory()->NewFixedDoubleArray(capacity));
387
388       ElementsAccessor* accessor = array->GetElementsAccessor();
389       accessor->CopyElements(
390           elms_obj, 0, kind, new_elms, 0,
391           ElementsAccessor::kCopyToEndAndInitializeToHole);
392
393     } else {
394       // to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the
395       // empty_fixed_array.
396       new_elms = Handle<FixedDoubleArray>::cast(elms_obj);
397     }
398
399     // Add the provided values.
400     DisallowHeapAllocation no_gc;
401     int index;
402     for (index = 0; index < to_add; index++) {
403       Object* arg = args[index + 1];
404       new_elms->set(index + len, arg->Number());
405     }
406
407     if (*new_elms != array->elements()) {
408       array->set_elements(*new_elms);
409     }
410
411     // Set the length.
412     array->set_length(Smi::FromInt(new_length));
413     return Smi::FromInt(new_length);
414   }
415 }
416
417
418 BUILTIN(ArrayPop) {
419   HandleScope scope(isolate);
420   Handle<Object> receiver = args.receiver();
421   MaybeHandle<FixedArrayBase> maybe_elms_obj =
422       EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
423   Handle<FixedArrayBase> elms_obj;
424   if (!maybe_elms_obj.ToHandle(&elms_obj)) {
425     return CallJsBuiltin(isolate, "ArrayPop", args);
426   }
427
428   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
429   DCHECK(!array->map()->is_observed());
430
431   int len = Smi::cast(array->length())->value();
432   if (len == 0) return isolate->heap()->undefined_value();
433
434   ElementsAccessor* accessor = array->GetElementsAccessor();
435   int new_length = len - 1;
436   Handle<Object> element =
437       accessor->Get(array, array, new_length, elms_obj).ToHandleChecked();
438   if (element->IsTheHole()) {
439     return CallJsBuiltin(isolate, "ArrayPop", args);
440   }
441   RETURN_FAILURE_ON_EXCEPTION(
442       isolate,
443       accessor->SetLength(array, handle(Smi::FromInt(new_length), isolate)));
444   return *element;
445 }
446
447
448 BUILTIN(ArrayShift) {
449   HandleScope scope(isolate);
450   Heap* heap = isolate->heap();
451   Handle<Object> receiver = args.receiver();
452   MaybeHandle<FixedArrayBase> maybe_elms_obj =
453       EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
454   Handle<FixedArrayBase> elms_obj;
455   if (!maybe_elms_obj.ToHandle(&elms_obj) ||
456       !IsJSArrayFastElementMovingAllowed(heap,
457                                          *Handle<JSArray>::cast(receiver))) {
458     return CallJsBuiltin(isolate, "ArrayShift", args);
459   }
460   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
461   DCHECK(!array->map()->is_observed());
462
463   int len = Smi::cast(array->length())->value();
464   if (len == 0) return heap->undefined_value();
465
466   // Get first element
467   ElementsAccessor* accessor = array->GetElementsAccessor();
468   Handle<Object> first =
469     accessor->Get(array, array, 0, elms_obj).ToHandleChecked();
470   if (first->IsTheHole()) {
471     return CallJsBuiltin(isolate, "ArrayShift", args);
472   }
473
474   if (heap->CanMoveObjectStart(*elms_obj)) {
475     array->set_elements(heap->LeftTrimFixedArray(*elms_obj, 1));
476   } else {
477     // Shift the elements.
478     if (elms_obj->IsFixedArray()) {
479       Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
480       DisallowHeapAllocation no_gc;
481       heap->MoveElements(*elms, 0, 1, len - 1);
482       elms->set(len - 1, heap->the_hole_value());
483     } else {
484       Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
485       MoveDoubleElements(*elms, 0, *elms, 1, len - 1);
486       elms->set_the_hole(len - 1);
487     }
488   }
489
490   // Set the length.
491   array->set_length(Smi::FromInt(len - 1));
492
493   return *first;
494 }
495
496
497 BUILTIN(ArrayUnshift) {
498   HandleScope scope(isolate);
499   Heap* heap = isolate->heap();
500   Handle<Object> receiver = args.receiver();
501   MaybeHandle<FixedArrayBase> maybe_elms_obj =
502       EnsureJSArrayWithWritableFastElements(isolate, receiver, NULL, 0);
503   Handle<FixedArrayBase> elms_obj;
504   if (!maybe_elms_obj.ToHandle(&elms_obj) ||
505       !IsJSArrayFastElementMovingAllowed(heap,
506                                          *Handle<JSArray>::cast(receiver))) {
507     return CallJsBuiltin(isolate, "ArrayUnshift", args);
508   }
509   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
510   DCHECK(!array->map()->is_observed());
511   if (!array->HasFastSmiOrObjectElements()) {
512     return CallJsBuiltin(isolate, "ArrayUnshift", args);
513   }
514   int len = Smi::cast(array->length())->value();
515   int to_add = args.length() - 1;
516   int new_length = len + to_add;
517   // Currently fixed arrays cannot grow too big, so
518   // we should never hit this case.
519   DCHECK(to_add <= (Smi::kMaxValue - len));
520
521   if (to_add > 0 && JSArray::WouldChangeReadOnlyLength(array, len + to_add)) {
522     return CallJsBuiltin(isolate, "ArrayUnshift", args);
523   }
524
525   Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
526
527   JSObject::EnsureCanContainElements(array, &args, 1, to_add,
528                                      DONT_ALLOW_DOUBLE_ELEMENTS);
529
530   if (new_length > elms->length()) {
531     // New backing storage is needed.
532     int capacity = new_length + (new_length >> 1) + 16;
533     Handle<FixedArray> new_elms =
534         isolate->factory()->NewUninitializedFixedArray(capacity);
535
536     ElementsKind kind = array->GetElementsKind();
537     ElementsAccessor* accessor = array->GetElementsAccessor();
538     accessor->CopyElements(
539         elms, 0, kind, new_elms, to_add,
540         ElementsAccessor::kCopyToEndAndInitializeToHole);
541
542     elms = new_elms;
543     array->set_elements(*elms);
544   } else {
545     DisallowHeapAllocation no_gc;
546     heap->MoveElements(*elms, to_add, 0, len);
547   }
548
549   // Add the provided values.
550   DisallowHeapAllocation no_gc;
551   WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
552   for (int i = 0; i < to_add; i++) {
553     elms->set(i, args[i + 1], mode);
554   }
555
556   // Set the length.
557   array->set_length(Smi::FromInt(new_length));
558   return Smi::FromInt(new_length);
559 }
560
561
562 BUILTIN(ArraySlice) {
563   HandleScope scope(isolate);
564   Heap* heap = isolate->heap();
565   Handle<Object> receiver = args.receiver();
566   int len = -1;
567   int relative_start = 0;
568   int relative_end = 0;
569   {
570     DisallowHeapAllocation no_gc;
571     if (receiver->IsJSArray()) {
572       JSArray* array = JSArray::cast(*receiver);
573       if (!IsJSArrayFastElementMovingAllowed(heap, array)) {
574         AllowHeapAllocation allow_allocation;
575         return CallJsBuiltin(isolate, "ArraySlice", args);
576       }
577
578       if (!array->HasFastElements()) {
579         AllowHeapAllocation allow_allocation;
580         return CallJsBuiltin(isolate, "ArraySlice", args);
581       }
582
583       len = Smi::cast(array->length())->value();
584     } else {
585       // Array.slice(arguments, ...) is quite a common idiom (notably more
586       // than 50% of invocations in Web apps).  Treat it in C++ as well.
587       Map* arguments_map =
588           isolate->context()->native_context()->sloppy_arguments_map();
589
590       bool is_arguments_object_with_fast_elements =
591           receiver->IsJSObject() &&
592           JSObject::cast(*receiver)->map() == arguments_map;
593       if (!is_arguments_object_with_fast_elements) {
594         AllowHeapAllocation allow_allocation;
595         return CallJsBuiltin(isolate, "ArraySlice", args);
596       }
597       JSObject* object = JSObject::cast(*receiver);
598
599       if (!object->HasFastElements()) {
600         AllowHeapAllocation allow_allocation;
601         return CallJsBuiltin(isolate, "ArraySlice", args);
602       }
603
604       Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
605       if (!len_obj->IsSmi()) {
606         AllowHeapAllocation allow_allocation;
607         return CallJsBuiltin(isolate, "ArraySlice", args);
608       }
609       len = Smi::cast(len_obj)->value();
610       if (len > object->elements()->length()) {
611         AllowHeapAllocation allow_allocation;
612         return CallJsBuiltin(isolate, "ArraySlice", args);
613       }
614     }
615
616     DCHECK(len >= 0);
617     int n_arguments = args.length() - 1;
618
619     // Note carefully choosen defaults---if argument is missing,
620     // it's undefined which gets converted to 0 for relative_start
621     // and to len for relative_end.
622     relative_start = 0;
623     relative_end = len;
624     if (n_arguments > 0) {
625       Object* arg1 = args[1];
626       if (arg1->IsSmi()) {
627         relative_start = Smi::cast(arg1)->value();
628       } else if (arg1->IsHeapNumber()) {
629         double start = HeapNumber::cast(arg1)->value();
630         if (start < kMinInt || start > kMaxInt) {
631           AllowHeapAllocation allow_allocation;
632           return CallJsBuiltin(isolate, "ArraySlice", args);
633         }
634         relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
635       } else if (!arg1->IsUndefined()) {
636         AllowHeapAllocation allow_allocation;
637         return CallJsBuiltin(isolate, "ArraySlice", args);
638       }
639       if (n_arguments > 1) {
640         Object* arg2 = args[2];
641         if (arg2->IsSmi()) {
642           relative_end = Smi::cast(arg2)->value();
643         } else if (arg2->IsHeapNumber()) {
644           double end = HeapNumber::cast(arg2)->value();
645           if (end < kMinInt || end > kMaxInt) {
646             AllowHeapAllocation allow_allocation;
647             return CallJsBuiltin(isolate, "ArraySlice", args);
648           }
649           relative_end = std::isnan(end) ? 0 : static_cast<int>(end);
650         } else if (!arg2->IsUndefined()) {
651           AllowHeapAllocation allow_allocation;
652           return CallJsBuiltin(isolate, "ArraySlice", args);
653         }
654       }
655     }
656   }
657
658   // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
659   int k = (relative_start < 0) ? Max(len + relative_start, 0)
660                                : Min(relative_start, len);
661
662   // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
663   int final = (relative_end < 0) ? Max(len + relative_end, 0)
664                                  : Min(relative_end, len);
665
666   // Calculate the length of result array.
667   int result_len = Max(final - k, 0);
668
669   Handle<JSObject> object = Handle<JSObject>::cast(receiver);
670   Handle<FixedArrayBase> elms(object->elements(), isolate);
671
672   ElementsKind kind = object->GetElementsKind();
673   if (IsHoleyElementsKind(kind)) {
674     DisallowHeapAllocation no_gc;
675     bool packed = true;
676     ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
677     for (int i = k; i < final; i++) {
678       if (!accessor->HasElement(object, object, i, elms)) {
679         packed = false;
680         break;
681       }
682     }
683     if (packed) {
684       kind = GetPackedElementsKind(kind);
685     } else if (!receiver->IsJSArray()) {
686       AllowHeapAllocation allow_allocation;
687       return CallJsBuiltin(isolate, "ArraySlice", args);
688     }
689   }
690
691   Handle<JSArray> result_array =
692       isolate->factory()->NewJSArray(kind, result_len, result_len);
693
694   DisallowHeapAllocation no_gc;
695   if (result_len == 0) return *result_array;
696
697   ElementsAccessor* accessor = object->GetElementsAccessor();
698   accessor->CopyElements(
699       elms, k, kind, handle(result_array->elements(), isolate), 0, result_len);
700   return *result_array;
701 }
702
703
704 BUILTIN(ArraySplice) {
705   HandleScope scope(isolate);
706   Heap* heap = isolate->heap();
707   Handle<Object> receiver = args.receiver();
708   MaybeHandle<FixedArrayBase> maybe_elms_obj =
709       EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3);
710   Handle<FixedArrayBase> elms_obj;
711   if (!maybe_elms_obj.ToHandle(&elms_obj) ||
712       !IsJSArrayFastElementMovingAllowed(heap,
713                                          *Handle<JSArray>::cast(receiver))) {
714     return CallJsBuiltin(isolate, "ArraySplice", args);
715   }
716   Handle<JSArray> array = Handle<JSArray>::cast(receiver);
717   DCHECK(!array->map()->is_observed());
718
719   int len = Smi::cast(array->length())->value();
720
721   int n_arguments = args.length() - 1;
722
723   int relative_start = 0;
724   if (n_arguments > 0) {
725     DisallowHeapAllocation no_gc;
726     Object* arg1 = args[1];
727     if (arg1->IsSmi()) {
728       relative_start = Smi::cast(arg1)->value();
729     } else if (arg1->IsHeapNumber()) {
730       double start = HeapNumber::cast(arg1)->value();
731       if (start < kMinInt || start > kMaxInt) {
732         AllowHeapAllocation allow_allocation;
733         return CallJsBuiltin(isolate, "ArraySplice", args);
734       }
735       relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
736     } else if (!arg1->IsUndefined()) {
737       AllowHeapAllocation allow_allocation;
738       return CallJsBuiltin(isolate, "ArraySplice", args);
739     }
740   }
741   int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
742                                           : Min(relative_start, len);
743
744   // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
745   // given as a request to delete all the elements from the start.
746   // And it differs from the case of undefined delete count.
747   // This does not follow ECMA-262, but we do the same for
748   // compatibility.
749   int actual_delete_count;
750   if (n_arguments == 1) {
751     DCHECK(len - actual_start >= 0);
752     actual_delete_count = len - actual_start;
753   } else {
754     int value = 0;  // ToInteger(undefined) == 0
755     if (n_arguments > 1) {
756       DisallowHeapAllocation no_gc;
757       Object* arg2 = args[2];
758       if (arg2->IsSmi()) {
759         value = Smi::cast(arg2)->value();
760       } else {
761         AllowHeapAllocation allow_allocation;
762         return CallJsBuiltin(isolate, "ArraySplice", args);
763       }
764     }
765     actual_delete_count = Min(Max(value, 0), len - actual_start);
766   }
767
768   ElementsKind elements_kind = array->GetElementsKind();
769
770   int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0;
771   int new_length = len - actual_delete_count + item_count;
772
773   // For double mode we do not support changing the length.
774   if (new_length > len && IsFastDoubleElementsKind(elements_kind)) {
775     return CallJsBuiltin(isolate, "ArraySplice", args);
776   }
777
778   if (new_length == 0) {
779     Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(
780         elms_obj, elements_kind, actual_delete_count);
781     array->set_elements(heap->empty_fixed_array());
782     array->set_length(Smi::FromInt(0));
783     return *result;
784   }
785
786   Handle<JSArray> result_array =
787       isolate->factory()->NewJSArray(elements_kind,
788                                      actual_delete_count,
789                                      actual_delete_count);
790
791   if (actual_delete_count > 0) {
792     DisallowHeapAllocation no_gc;
793     ElementsAccessor* accessor = array->GetElementsAccessor();
794     accessor->CopyElements(
795         elms_obj, actual_start, elements_kind,
796         handle(result_array->elements(), isolate), 0, actual_delete_count);
797   }
798
799   bool elms_changed = false;
800   if (item_count < actual_delete_count) {
801     // Shrink the array.
802     const bool trim_array = !heap->lo_space()->Contains(*elms_obj) &&
803       ((actual_start + item_count) <
804           (len - actual_delete_count - actual_start));
805     if (trim_array) {
806       const int delta = actual_delete_count - item_count;
807
808       if (elms_obj->IsFixedDoubleArray()) {
809         Handle<FixedDoubleArray> elms =
810             Handle<FixedDoubleArray>::cast(elms_obj);
811         MoveDoubleElements(*elms, delta, *elms, 0, actual_start);
812       } else {
813         Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
814         DisallowHeapAllocation no_gc;
815         heap->MoveElements(*elms, delta, 0, actual_start);
816       }
817
818       if (heap->CanMoveObjectStart(*elms_obj)) {
819         // On the fast path we move the start of the object in memory.
820         elms_obj = handle(heap->LeftTrimFixedArray(*elms_obj, delta));
821       } else {
822         // This is the slow path. We are going to move the elements to the left
823         // by copying them. For trimmed values we store the hole.
824         if (elms_obj->IsFixedDoubleArray()) {
825           Handle<FixedDoubleArray> elms =
826               Handle<FixedDoubleArray>::cast(elms_obj);
827           MoveDoubleElements(*elms, 0, *elms, delta, len - delta);
828           elms->FillWithHoles(len - delta, len);
829         } else {
830           Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
831           DisallowHeapAllocation no_gc;
832           heap->MoveElements(*elms, 0, delta, len - delta);
833           elms->FillWithHoles(len - delta, len);
834         }
835       }
836       elms_changed = true;
837     } else {
838       if (elms_obj->IsFixedDoubleArray()) {
839         Handle<FixedDoubleArray> elms =
840             Handle<FixedDoubleArray>::cast(elms_obj);
841         MoveDoubleElements(*elms, actual_start + item_count,
842                            *elms, actual_start + actual_delete_count,
843                            (len - actual_delete_count - actual_start));
844         elms->FillWithHoles(new_length, len);
845       } else {
846         Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
847         DisallowHeapAllocation no_gc;
848         heap->MoveElements(*elms, actual_start + item_count,
849                            actual_start + actual_delete_count,
850                            (len - actual_delete_count - actual_start));
851         elms->FillWithHoles(new_length, len);
852       }
853     }
854   } else if (item_count > actual_delete_count) {
855     Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
856     // Currently fixed arrays cannot grow too big, so
857     // we should never hit this case.
858     DCHECK((item_count - actual_delete_count) <= (Smi::kMaxValue - len));
859
860     // Check if array need to grow.
861     if (new_length > elms->length()) {
862       // New backing storage is needed.
863       int capacity = new_length + (new_length >> 1) + 16;
864       Handle<FixedArray> new_elms =
865           isolate->factory()->NewUninitializedFixedArray(capacity);
866
867       DisallowHeapAllocation no_gc;
868
869       ElementsKind kind = array->GetElementsKind();
870       ElementsAccessor* accessor = array->GetElementsAccessor();
871       if (actual_start > 0) {
872         // Copy the part before actual_start as is.
873         accessor->CopyElements(
874             elms, 0, kind, new_elms, 0, actual_start);
875       }
876       accessor->CopyElements(
877           elms, actual_start + actual_delete_count, kind,
878           new_elms, actual_start + item_count,
879           ElementsAccessor::kCopyToEndAndInitializeToHole);
880
881       elms_obj = new_elms;
882       elms_changed = true;
883     } else {
884       DisallowHeapAllocation no_gc;
885       heap->MoveElements(*elms, actual_start + item_count,
886                          actual_start + actual_delete_count,
887                          (len - actual_delete_count - actual_start));
888     }
889   }
890
891   if (IsFastDoubleElementsKind(elements_kind)) {
892     Handle<FixedDoubleArray> elms = Handle<FixedDoubleArray>::cast(elms_obj);
893     for (int k = actual_start; k < actual_start + item_count; k++) {
894       Object* arg = args[3 + k - actual_start];
895       if (arg->IsSmi()) {
896         elms->set(k, Smi::cast(arg)->value());
897       } else {
898         elms->set(k, HeapNumber::cast(arg)->value());
899       }
900     }
901   } else {
902     Handle<FixedArray> elms = Handle<FixedArray>::cast(elms_obj);
903     DisallowHeapAllocation no_gc;
904     WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
905     for (int k = actual_start; k < actual_start + item_count; k++) {
906       elms->set(k, args[3 + k - actual_start], mode);
907     }
908   }
909
910   if (elms_changed) {
911     array->set_elements(*elms_obj);
912   }
913   // Set the length.
914   array->set_length(Smi::FromInt(new_length));
915
916   return *result_array;
917 }
918
919
920 BUILTIN(ArrayConcat) {
921   HandleScope scope(isolate);
922
923   int n_arguments = args.length();
924   int result_len = 0;
925   ElementsKind elements_kind = GetInitialFastElementsKind();
926   bool has_double = false;
927   {
928     DisallowHeapAllocation no_gc;
929     Heap* heap = isolate->heap();
930     Context* native_context = isolate->context()->native_context();
931     JSObject* array_proto =
932         JSObject::cast(native_context->array_function()->prototype());
933     if (!ArrayPrototypeHasNoElements(heap, native_context, array_proto)) {
934       AllowHeapAllocation allow_allocation;
935       return CallJsBuiltin(isolate, "ArrayConcatJS", args);
936     }
937
938     // Iterate through all the arguments performing checks
939     // and calculating total length.
940     bool is_holey = false;
941     for (int i = 0; i < n_arguments; i++) {
942       Object* arg = args[i];
943       PrototypeIterator iter(isolate, arg);
944       if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() ||
945           iter.GetCurrent() != array_proto) {
946         AllowHeapAllocation allow_allocation;
947         return CallJsBuiltin(isolate, "ArrayConcatJS", args);
948       }
949       int len = Smi::cast(JSArray::cast(arg)->length())->value();
950
951       // We shouldn't overflow when adding another len.
952       const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
953       STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
954       USE(kHalfOfMaxInt);
955       result_len += len;
956       DCHECK(result_len >= 0);
957
958       if (result_len > FixedDoubleArray::kMaxLength) {
959         AllowHeapAllocation allow_allocation;
960         return CallJsBuiltin(isolate, "ArrayConcatJS", args);
961       }
962
963       ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
964       has_double = has_double || IsFastDoubleElementsKind(arg_kind);
965       is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
966       if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) {
967         elements_kind = arg_kind;
968       }
969     }
970     if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
971   }
972
973   // If a double array is concatted into a fast elements array, the fast
974   // elements array needs to be initialized to contain proper holes, since
975   // boxing doubles may cause incremental marking.
976   ArrayStorageAllocationMode mode =
977       has_double && IsFastObjectElementsKind(elements_kind)
978       ? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
979   Handle<JSArray> result_array =
980       isolate->factory()->NewJSArray(elements_kind,
981                                      result_len,
982                                      result_len,
983                                      mode);
984   if (result_len == 0) return *result_array;
985
986   int j = 0;
987   Handle<FixedArrayBase> storage(result_array->elements(), isolate);
988   ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
989   for (int i = 0; i < n_arguments; i++) {
990     // TODO(ishell): It is crucial to keep |array| as a raw pointer to avoid
991     // performance degradation. Revisit this later.
992     JSArray* array = JSArray::cast(args[i]);
993     int len = Smi::cast(array->length())->value();
994     ElementsKind from_kind = array->GetElementsKind();
995     if (len > 0) {
996       accessor->CopyElements(array, 0, from_kind, storage, j, len);
997       j += len;
998     }
999   }
1000
1001   DCHECK(j == result_len);
1002
1003   return *result_array;
1004 }
1005
1006
1007 // -----------------------------------------------------------------------------
1008 // Generator and strict mode poison pills
1009
1010
1011 BUILTIN(StrictModePoisonPill) {
1012   HandleScope scope(isolate);
1013   return isolate->Throw(*isolate->factory()->NewTypeError(
1014       "strict_poison_pill", HandleVector<Object>(NULL, 0)));
1015 }
1016
1017
1018 BUILTIN(GeneratorPoisonPill) {
1019   HandleScope scope(isolate);
1020   return isolate->Throw(*isolate->factory()->NewTypeError(
1021       "generator_poison_pill", HandleVector<Object>(NULL, 0)));
1022 }
1023
1024
1025 // -----------------------------------------------------------------------------
1026 //
1027
1028
1029 // Searches the hidden prototype chain of the given object for the first
1030 // object that is an instance of the given type.  If no such object can
1031 // be found then Heap::null_value() is returned.
1032 static inline Object* FindHidden(Heap* heap,
1033                                  Object* object,
1034                                  FunctionTemplateInfo* type) {
1035   for (PrototypeIterator iter(heap->isolate(), object,
1036                               PrototypeIterator::START_AT_RECEIVER);
1037        !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
1038     if (type->IsTemplateFor(iter.GetCurrent())) {
1039       return iter.GetCurrent();
1040     }
1041   }
1042   return heap->null_value();
1043 }
1044
1045
1046 // Returns the holder JSObject if the function can legally be called
1047 // with this receiver.  Returns Heap::null_value() if the call is
1048 // illegal.  Any arguments that don't fit the expected type is
1049 // overwritten with undefined.  Note that holder and the arguments are
1050 // implicitly rewritten with the first object in the hidden prototype
1051 // chain that actually has the expected type.
1052 static inline Object* TypeCheck(Heap* heap,
1053                                 int argc,
1054                                 Object** argv,
1055                                 FunctionTemplateInfo* info) {
1056   Object* recv = argv[0];
1057   // API calls are only supported with JSObject receivers.
1058   if (!recv->IsJSObject()) return heap->null_value();
1059   Object* sig_obj = info->signature();
1060   if (sig_obj->IsUndefined()) return recv;
1061   SignatureInfo* sig = SignatureInfo::cast(sig_obj);
1062   // If necessary, check the receiver
1063   Object* recv_type = sig->receiver();
1064   Object* holder = recv;
1065   if (!recv_type->IsUndefined()) {
1066     holder = FindHidden(heap, holder, FunctionTemplateInfo::cast(recv_type));
1067     if (holder == heap->null_value()) return heap->null_value();
1068   }
1069   Object* args_obj = sig->args();
1070   // If there is no argument signature we're done
1071   if (args_obj->IsUndefined()) return holder;
1072   FixedArray* args = FixedArray::cast(args_obj);
1073   int length = args->length();
1074   if (argc <= length) length = argc - 1;
1075   for (int i = 0; i < length; i++) {
1076     Object* argtype = args->get(i);
1077     if (argtype->IsUndefined()) continue;
1078     Object** arg = &argv[-1 - i];
1079     Object* current = *arg;
1080     current = FindHidden(heap, current, FunctionTemplateInfo::cast(argtype));
1081     if (current == heap->null_value()) current = heap->undefined_value();
1082     *arg = current;
1083   }
1084   return holder;
1085 }
1086
1087
1088 template <bool is_construct>
1089 MUST_USE_RESULT static Object* HandleApiCallHelper(
1090     BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) {
1091   DCHECK(is_construct == CalledAsConstructor(isolate));
1092   Heap* heap = isolate->heap();
1093
1094   HandleScope scope(isolate);
1095   Handle<JSFunction> function = args.called_function();
1096   DCHECK(function->shared()->IsApiFunction());
1097
1098   Handle<FunctionTemplateInfo> fun_data(
1099       function->shared()->get_api_func_data(), isolate);
1100   if (is_construct) {
1101     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1102         isolate, fun_data,
1103         isolate->factory()->ConfigureInstance(
1104             fun_data, Handle<JSObject>::cast(args.receiver())));
1105   }
1106
1107   SharedFunctionInfo* shared = function->shared();
1108   if (shared->strict_mode() == SLOPPY && !shared->native()) {
1109     Object* recv = args[0];
1110     DCHECK(!recv->IsNull());
1111     if (recv->IsUndefined()) args[0] = function->global_proxy();
1112   }
1113
1114   Object* raw_holder = TypeCheck(heap, args.length(), &args[0], *fun_data);
1115
1116   if (raw_holder->IsNull()) {
1117     // This function cannot be called with the given receiver.  Abort!
1118     Handle<Object> obj =
1119         isolate->factory()->NewTypeError(
1120             "illegal_invocation", HandleVector(&function, 1));
1121     return isolate->Throw(*obj);
1122   }
1123
1124   Object* raw_call_data = fun_data->call_code();
1125   if (!raw_call_data->IsUndefined()) {
1126     CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
1127     Object* callback_obj = call_data->callback();
1128     v8::FunctionCallback callback =
1129         v8::ToCData<v8::FunctionCallback>(callback_obj);
1130     Object* data_obj = call_data->data();
1131     Object* result;
1132
1133     LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
1134     DCHECK(raw_holder->IsJSObject());
1135
1136     FunctionCallbackArguments custom(isolate,
1137                                      data_obj,
1138                                      *function,
1139                                      raw_holder,
1140                                      &args[0] - 1,
1141                                      args.length() - 1,
1142                                      is_construct);
1143
1144     v8::Handle<v8::Value> value = custom.Call(callback);
1145     if (value.IsEmpty()) {
1146       result = heap->undefined_value();
1147     } else {
1148       result = *reinterpret_cast<Object**>(*value);
1149       result->VerifyApiCallResultType();
1150     }
1151
1152     RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1153     if (!is_construct || result->IsJSObject()) return result;
1154   }
1155
1156   return *args.receiver();
1157 }
1158
1159
1160 BUILTIN(HandleApiCall) {
1161   return HandleApiCallHelper<false>(args, isolate);
1162 }
1163
1164
1165 BUILTIN(HandleApiCallConstruct) {
1166   return HandleApiCallHelper<true>(args, isolate);
1167 }
1168
1169
1170 // Helper function to handle calls to non-function objects created through the
1171 // API. The object can be called as either a constructor (using new) or just as
1172 // a function (without new).
1173 MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor(
1174     Isolate* isolate,
1175     bool is_construct_call,
1176     BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
1177   // Non-functions are never called as constructors. Even if this is an object
1178   // called as a constructor the delegate call is not a construct call.
1179   DCHECK(!CalledAsConstructor(isolate));
1180   Heap* heap = isolate->heap();
1181
1182   Handle<Object> receiver = args.receiver();
1183
1184   // Get the object called.
1185   JSObject* obj = JSObject::cast(*receiver);
1186
1187   // Get the invocation callback from the function descriptor that was
1188   // used to create the called object.
1189   DCHECK(obj->map()->has_instance_call_handler());
1190   JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
1191   DCHECK(constructor->shared()->IsApiFunction());
1192   Object* handler =
1193       constructor->shared()->get_api_func_data()->instance_call_handler();
1194   DCHECK(!handler->IsUndefined());
1195   CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
1196   Object* callback_obj = call_data->callback();
1197   v8::FunctionCallback callback =
1198       v8::ToCData<v8::FunctionCallback>(callback_obj);
1199
1200   // Get the data for the call and perform the callback.
1201   Object* result;
1202   {
1203     HandleScope scope(isolate);
1204     LOG(isolate, ApiObjectAccess("call non-function", obj));
1205
1206     FunctionCallbackArguments custom(isolate,
1207                                      call_data->data(),
1208                                      constructor,
1209                                      obj,
1210                                      &args[0] - 1,
1211                                      args.length() - 1,
1212                                      is_construct_call);
1213     v8::Handle<v8::Value> value = custom.Call(callback);
1214     if (value.IsEmpty()) {
1215       result = heap->undefined_value();
1216     } else {
1217       result = *reinterpret_cast<Object**>(*value);
1218       result->VerifyApiCallResultType();
1219     }
1220   }
1221   // Check for exceptions and return result.
1222   RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1223   return result;
1224 }
1225
1226
1227 // Handle calls to non-function objects created through the API. This delegate
1228 // function is used when the call is a normal function call.
1229 BUILTIN(HandleApiCallAsFunction) {
1230   return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
1231 }
1232
1233
1234 // Handle calls to non-function objects created through the API. This delegate
1235 // function is used when the call is a construct call.
1236 BUILTIN(HandleApiCallAsConstructor) {
1237   return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
1238 }
1239
1240
1241 static void Generate_LoadIC_Miss(MacroAssembler* masm) {
1242   LoadIC::GenerateMiss(masm);
1243 }
1244
1245
1246 static void Generate_LoadIC_Normal(MacroAssembler* masm) {
1247   LoadIC::GenerateNormal(masm);
1248 }
1249
1250
1251 static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
1252   NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(masm);
1253 }
1254
1255
1256 static void Generate_LoadIC_Slow(MacroAssembler* masm) {
1257   LoadIC::GenerateRuntimeGetProperty(masm);
1258 }
1259
1260
1261 static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
1262   KeyedLoadIC::GenerateInitialize(masm);
1263 }
1264
1265
1266 static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
1267   KeyedLoadIC::GenerateRuntimeGetProperty(masm);
1268 }
1269
1270
1271 static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
1272   KeyedLoadIC::GenerateMiss(masm);
1273 }
1274
1275
1276 static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
1277   KeyedLoadIC::GenerateGeneric(masm);
1278 }
1279
1280
1281 static void Generate_KeyedLoadIC_String(MacroAssembler* masm) {
1282   KeyedLoadIC::GenerateString(masm);
1283 }
1284
1285
1286 static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
1287   KeyedLoadIC::GeneratePreMonomorphic(masm);
1288 }
1289
1290
1291 static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) {
1292   KeyedLoadIC::GenerateIndexedInterceptor(masm);
1293 }
1294
1295
1296 static void Generate_KeyedLoadIC_SloppyArguments(MacroAssembler* masm) {
1297   KeyedLoadIC::GenerateSloppyArguments(masm);
1298 }
1299
1300
1301 static void Generate_StoreIC_Slow(MacroAssembler* masm) {
1302   StoreIC::GenerateSlow(masm);
1303 }
1304
1305
1306 static void Generate_StoreIC_Miss(MacroAssembler* masm) {
1307   StoreIC::GenerateMiss(masm);
1308 }
1309
1310
1311 static void Generate_StoreIC_Normal(MacroAssembler* masm) {
1312   StoreIC::GenerateNormal(masm);
1313 }
1314
1315
1316 static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
1317   NamedStoreHandlerCompiler::GenerateStoreViaSetterForDeopt(masm);
1318 }
1319
1320
1321 static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
1322   KeyedStoreIC::GenerateGeneric(masm, SLOPPY);
1323 }
1324
1325
1326 static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) {
1327   KeyedStoreIC::GenerateGeneric(masm, STRICT);
1328 }
1329
1330
1331 static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
1332   KeyedStoreIC::GenerateMiss(masm);
1333 }
1334
1335
1336 static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
1337   KeyedStoreIC::GenerateSlow(masm);
1338 }
1339
1340
1341 static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
1342   KeyedStoreIC::GenerateInitialize(masm);
1343 }
1344
1345
1346 static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
1347   KeyedStoreIC::GenerateInitialize(masm);
1348 }
1349
1350
1351 static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
1352   KeyedStoreIC::GeneratePreMonomorphic(masm);
1353 }
1354
1355
1356 static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
1357   KeyedStoreIC::GeneratePreMonomorphic(masm);
1358 }
1359
1360
1361 static void Generate_KeyedStoreIC_SloppyArguments(MacroAssembler* masm) {
1362   KeyedStoreIC::GenerateSloppyArguments(masm);
1363 }
1364
1365
1366 static void Generate_CallICStub_DebugBreak(MacroAssembler* masm) {
1367   DebugCodegen::GenerateCallICStubDebugBreak(masm);
1368 }
1369
1370
1371 static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
1372   DebugCodegen::GenerateLoadICDebugBreak(masm);
1373 }
1374
1375
1376 static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
1377   DebugCodegen::GenerateStoreICDebugBreak(masm);
1378 }
1379
1380
1381 static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
1382   DebugCodegen::GenerateKeyedLoadICDebugBreak(masm);
1383 }
1384
1385
1386 static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
1387   DebugCodegen::GenerateKeyedStoreICDebugBreak(masm);
1388 }
1389
1390
1391 static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) {
1392   DebugCodegen::GenerateCompareNilICDebugBreak(masm);
1393 }
1394
1395
1396 static void Generate_Return_DebugBreak(MacroAssembler* masm) {
1397   DebugCodegen::GenerateReturnDebugBreak(masm);
1398 }
1399
1400
1401 static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) {
1402   DebugCodegen::GenerateCallFunctionStubDebugBreak(masm);
1403 }
1404
1405
1406 static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) {
1407   DebugCodegen::GenerateCallConstructStubDebugBreak(masm);
1408 }
1409
1410
1411 static void Generate_CallConstructStub_Recording_DebugBreak(
1412     MacroAssembler* masm) {
1413   DebugCodegen::GenerateCallConstructStubRecordDebugBreak(masm);
1414 }
1415
1416
1417 static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
1418   DebugCodegen::GenerateSlotDebugBreak(masm);
1419 }
1420
1421
1422 static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) {
1423   DebugCodegen::GeneratePlainReturnLiveEdit(masm);
1424 }
1425
1426
1427 static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
1428   DebugCodegen::GenerateFrameDropperLiveEdit(masm);
1429 }
1430
1431
1432 Builtins::Builtins() : initialized_(false) {
1433   memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
1434   memset(names_, 0, sizeof(names_[0]) * builtin_count);
1435 }
1436
1437
1438 Builtins::~Builtins() {
1439 }
1440
1441
1442 #define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
1443 Address const Builtins::c_functions_[cfunction_count] = {
1444   BUILTIN_LIST_C(DEF_ENUM_C)
1445 };
1446 #undef DEF_ENUM_C
1447
1448 #define DEF_JS_NAME(name, ignore) #name,
1449 #define DEF_JS_ARGC(ignore, argc) argc,
1450 const char* const Builtins::javascript_names_[id_count] = {
1451   BUILTINS_LIST_JS(DEF_JS_NAME)
1452 };
1453
1454 int const Builtins::javascript_argc_[id_count] = {
1455   BUILTINS_LIST_JS(DEF_JS_ARGC)
1456 };
1457 #undef DEF_JS_NAME
1458 #undef DEF_JS_ARGC
1459
1460 struct BuiltinDesc {
1461   byte* generator;
1462   byte* c_code;
1463   const char* s_name;  // name is only used for generating log information.
1464   int name;
1465   Code::Flags flags;
1466   BuiltinExtraArguments extra_args;
1467 };
1468
1469 #define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
1470
1471 class BuiltinFunctionTable {
1472  public:
1473   BuiltinDesc* functions() {
1474     base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
1475     return functions_;
1476   }
1477
1478   base::OnceType once_;
1479   BuiltinDesc functions_[Builtins::builtin_count + 1];
1480
1481   friend class Builtins;
1482 };
1483
1484 static BuiltinFunctionTable builtin_function_table =
1485     BUILTIN_FUNCTION_TABLE_INIT;
1486
1487 // Define array of pointers to generators and C builtin functions.
1488 // We do this in a sort of roundabout way so that we can do the initialization
1489 // within the lexical scope of Builtins:: and within a context where
1490 // Code::Flags names a non-abstract type.
1491 void Builtins::InitBuiltinFunctionTable() {
1492   BuiltinDesc* functions = builtin_function_table.functions_;
1493   functions[builtin_count].generator = NULL;
1494   functions[builtin_count].c_code = NULL;
1495   functions[builtin_count].s_name = NULL;
1496   functions[builtin_count].name = builtin_count;
1497   functions[builtin_count].flags = static_cast<Code::Flags>(0);
1498   functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS;
1499
1500 #define DEF_FUNCTION_PTR_C(aname, aextra_args)                         \
1501     functions->generator = FUNCTION_ADDR(Generate_Adaptor);            \
1502     functions->c_code = FUNCTION_ADDR(Builtin_##aname);                \
1503     functions->s_name = #aname;                                        \
1504     functions->name = c_##aname;                                       \
1505     functions->flags = Code::ComputeFlags(Code::BUILTIN);              \
1506     functions->extra_args = aextra_args;                               \
1507     ++functions;
1508
1509 #define DEF_FUNCTION_PTR_A(aname, kind, state, extra)                       \
1510     functions->generator = FUNCTION_ADDR(Generate_##aname);                 \
1511     functions->c_code = NULL;                                               \
1512     functions->s_name = #aname;                                             \
1513     functions->name = k##aname;                                             \
1514     functions->flags = Code::ComputeFlags(Code::kind,                       \
1515                                           state,                            \
1516                                           extra);                           \
1517     functions->extra_args = NO_EXTRA_ARGUMENTS;                             \
1518     ++functions;
1519
1520 #define DEF_FUNCTION_PTR_H(aname, kind)                                     \
1521     functions->generator = FUNCTION_ADDR(Generate_##aname);                 \
1522     functions->c_code = NULL;                                               \
1523     functions->s_name = #aname;                                             \
1524     functions->name = k##aname;                                             \
1525     functions->flags = Code::ComputeHandlerFlags(Code::kind);               \
1526     functions->extra_args = NO_EXTRA_ARGUMENTS;                             \
1527     ++functions;
1528
1529   BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
1530   BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
1531   BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
1532   BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
1533
1534 #undef DEF_FUNCTION_PTR_C
1535 #undef DEF_FUNCTION_PTR_A
1536 }
1537
1538
1539 void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
1540   DCHECK(!initialized_);
1541
1542   // Create a scope for the handles in the builtins.
1543   HandleScope scope(isolate);
1544
1545   const BuiltinDesc* functions = builtin_function_table.functions();
1546
1547   // For now we generate builtin adaptor code into a stack-allocated
1548   // buffer, before copying it into individual code objects. Be careful
1549   // with alignment, some platforms don't like unaligned code.
1550 #ifdef DEBUG
1551   // We can generate a lot of debug code on Arm64.
1552   const size_t buffer_size = 32*KB;
1553 #else
1554   const size_t buffer_size = 8*KB;
1555 #endif
1556   union { int force_alignment; byte buffer[buffer_size]; } u;
1557
1558   // Traverse the list of builtins and generate an adaptor in a
1559   // separate code object for each one.
1560   for (int i = 0; i < builtin_count; i++) {
1561     if (create_heap_objects) {
1562       MacroAssembler masm(isolate, u.buffer, sizeof u.buffer);
1563       // Generate the code/adaptor.
1564       typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
1565       Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
1566       // We pass all arguments to the generator, but it may not use all of
1567       // them.  This works because the first arguments are on top of the
1568       // stack.
1569       DCHECK(!masm.has_frame());
1570       g(&masm, functions[i].name, functions[i].extra_args);
1571       // Move the code into the object heap.
1572       CodeDesc desc;
1573       masm.GetCode(&desc);
1574       Code::Flags flags =  functions[i].flags;
1575       Handle<Code> code =
1576           isolate->factory()->NewCode(desc, flags, masm.CodeObject());
1577       // Log the event and add the code to the builtins array.
1578       PROFILE(isolate,
1579               CodeCreateEvent(Logger::BUILTIN_TAG, *code, functions[i].s_name));
1580       builtins_[i] = *code;
1581       if (code->kind() == Code::BUILTIN) code->set_builtin_index(i);
1582 #ifdef ENABLE_DISASSEMBLER
1583       if (FLAG_print_builtin_code) {
1584         CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
1585         OFStream os(trace_scope.file());
1586         os << "Builtin: " << functions[i].s_name << "\n";
1587         code->Disassemble(functions[i].s_name, os);
1588         os << "\n";
1589       }
1590 #endif
1591     } else {
1592       // Deserializing. The values will be filled in during IterateBuiltins.
1593       builtins_[i] = NULL;
1594     }
1595     names_[i] = functions[i].s_name;
1596   }
1597
1598   // Mark as initialized.
1599   initialized_ = true;
1600 }
1601
1602
1603 void Builtins::TearDown() {
1604   initialized_ = false;
1605 }
1606
1607
1608 void Builtins::IterateBuiltins(ObjectVisitor* v) {
1609   v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
1610 }
1611
1612
1613 const char* Builtins::Lookup(byte* pc) {
1614   // may be called during initialization (disassembler!)
1615   if (initialized_) {
1616     for (int i = 0; i < builtin_count; i++) {
1617       Code* entry = Code::cast(builtins_[i]);
1618       if (entry->contains(pc)) {
1619         return names_[i];
1620       }
1621     }
1622   }
1623   return NULL;
1624 }
1625
1626
1627 void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
1628   masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
1629 }
1630
1631
1632 void Builtins::Generate_StackCheck(MacroAssembler* masm) {
1633   masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
1634 }
1635
1636
1637 #define DEFINE_BUILTIN_ACCESSOR_C(name, ignore)               \
1638 Handle<Code> Builtins::name() {                               \
1639   Code** code_address =                                       \
1640       reinterpret_cast<Code**>(builtin_address(k##name));     \
1641   return Handle<Code>(code_address);                          \
1642 }
1643 #define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
1644 Handle<Code> Builtins::name() {                             \
1645   Code** code_address =                                     \
1646       reinterpret_cast<Code**>(builtin_address(k##name));   \
1647   return Handle<Code>(code_address);                        \
1648 }
1649 #define DEFINE_BUILTIN_ACCESSOR_H(name, kind)               \
1650 Handle<Code> Builtins::name() {                             \
1651   Code** code_address =                                     \
1652       reinterpret_cast<Code**>(builtin_address(k##name));   \
1653   return Handle<Code>(code_address);                        \
1654 }
1655 BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
1656 BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
1657 BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
1658 BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
1659 #undef DEFINE_BUILTIN_ACCESSOR_C
1660 #undef DEFINE_BUILTIN_ACCESSOR_A
1661
1662
1663 } }  // namespace v8::internal