- add sources.
[platform/framework/web/crosswalk.git] / src / base / time / time_win_unittest.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <windows.h>
6 #include <mmsystem.h>
7 #include <process.h>
8
9 #include "base/threading/platform_thread.h"
10 #include "base/time/time.h"
11 #include "testing/gtest/include/gtest/gtest.h"
12
13 using base::Time;
14 using base::TimeDelta;
15 using base::TimeTicks;
16
17 namespace {
18
19 class MockTimeTicks : public TimeTicks {
20  public:
21   static DWORD Ticker() {
22     return static_cast<int>(InterlockedIncrement(&ticker_));
23   }
24
25   static void InstallTicker() {
26     old_tick_function_ = SetMockTickFunction(&Ticker);
27     ticker_ = -5;
28   }
29
30   static void UninstallTicker() {
31     SetMockTickFunction(old_tick_function_);
32   }
33
34  private:
35   static volatile LONG ticker_;
36   static TickFunctionType old_tick_function_;
37 };
38
39 volatile LONG MockTimeTicks::ticker_;
40 MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
41
42 HANDLE g_rollover_test_start;
43
44 unsigned __stdcall RolloverTestThreadMain(void* param) {
45   int64 counter = reinterpret_cast<int64>(param);
46   DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
47   EXPECT_EQ(rv, WAIT_OBJECT_0);
48
49   TimeTicks last = TimeTicks::Now();
50   for (int index = 0; index < counter; index++) {
51     TimeTicks now = TimeTicks::Now();
52     int64 milliseconds = (now - last).InMilliseconds();
53     // This is a tight loop; we could have looped faster than our
54     // measurements, so the time might be 0 millis.
55     EXPECT_GE(milliseconds, 0);
56     EXPECT_LT(milliseconds, 250);
57     last = now;
58   }
59   return 0;
60 }
61
62 }  // namespace
63
64 TEST(TimeTicks, WinRollover) {
65   // The internal counter rolls over at ~49days.  We'll use a mock
66   // timer to test this case.
67   // Basic test algorithm:
68   //   1) Set clock to rollover - N
69   //   2) Create N threads
70   //   3) Start the threads
71   //   4) Each thread loops through TimeTicks() N times
72   //   5) Each thread verifies integrity of result.
73
74   const int kThreads = 8;
75   // Use int64 so we can cast into a void* without a compiler warning.
76   const int64 kChecks = 10;
77
78   // It takes a lot of iterations to reproduce the bug!
79   // (See bug 1081395)
80   for (int loop = 0; loop < 4096; loop++) {
81     // Setup
82     MockTimeTicks::InstallTicker();
83     g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
84     HANDLE threads[kThreads];
85
86     for (int index = 0; index < kThreads; index++) {
87       void* argument = reinterpret_cast<void*>(kChecks);
88       unsigned thread_id;
89       threads[index] = reinterpret_cast<HANDLE>(
90         _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0,
91           &thread_id));
92       EXPECT_NE((HANDLE)NULL, threads[index]);
93     }
94
95     // Start!
96     SetEvent(g_rollover_test_start);
97
98     // Wait for threads to finish
99     for (int index = 0; index < kThreads; index++) {
100       DWORD rv = WaitForSingleObject(threads[index], INFINITE);
101       EXPECT_EQ(rv, WAIT_OBJECT_0);
102     }
103
104     CloseHandle(g_rollover_test_start);
105
106     // Teardown
107     MockTimeTicks::UninstallTicker();
108   }
109 }
110
111 TEST(TimeTicks, SubMillisecondTimers) {
112   // HighResNow doesn't work on some systems.  Since the product still works
113   // even if it doesn't work, it makes this entire test questionable.
114   if (!TimeTicks::IsHighResClockWorking())
115     return;
116
117   const int kRetries = 1000;
118   bool saw_submillisecond_timer = false;
119
120   // Run kRetries attempts to see a sub-millisecond timer.
121   for (int index = 0; index < 1000; index++) {
122     TimeTicks last_time = TimeTicks::HighResNow();
123     TimeDelta delta;
124     // Spin until the clock has detected a change.
125     do {
126       delta = TimeTicks::HighResNow() - last_time;
127     } while (delta.InMicroseconds() == 0);
128     if (delta.InMicroseconds() < 1000) {
129       saw_submillisecond_timer = true;
130       break;
131     }
132   }
133   EXPECT_TRUE(saw_submillisecond_timer);
134 }
135
136 TEST(TimeTicks, TimeGetTimeCaps) {
137   // Test some basic assumptions that we expect about how timeGetDevCaps works.
138
139   TIMECAPS caps;
140   MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
141   EXPECT_EQ(TIMERR_NOERROR, status);
142   if (status != TIMERR_NOERROR) {
143     printf("Could not get timeGetDevCaps\n");
144     return;
145   }
146
147   EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
148   EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
149   EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
150   EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
151   printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin,
152     caps.wPeriodMax);
153 }
154
155 TEST(TimeTicks, QueryPerformanceFrequency) {
156   // Test some basic assumptions that we expect about QPC.
157
158   LARGE_INTEGER frequency;
159   BOOL rv = QueryPerformanceFrequency(&frequency);
160   EXPECT_EQ(TRUE, rv);
161   EXPECT_GT(frequency.QuadPart, 1000000);  // Expect at least 1MHz
162   printf("QueryPerformanceFrequency is %5.2fMHz\n",
163     frequency.QuadPart / 1000000.0);
164 }
165
166 TEST(TimeTicks, TimerPerformance) {
167   // Verify that various timer mechanisms can always complete quickly.
168   // Note:  This is a somewhat arbitrary test.
169   const int kLoops = 10000;
170   // Due to the fact that these run on bbots, which are horribly slow,
171   // we can't really make any guarantees about minimum runtime.
172   // Really, we want these to finish in ~10ms, and that is generous.
173   const int kMaxTime = 35;  // Maximum acceptible milliseconds for test.
174
175   typedef TimeTicks (*TestFunc)();
176   struct TestCase {
177     TestFunc func;
178     char *description;
179   };
180   // Cheating a bit here:  assumes sizeof(TimeTicks) == sizeof(Time)
181   // in order to create a single test case list.
182   COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time),
183                  test_only_works_with_same_sizes);
184   TestCase cases[] = {
185     { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" },
186     { TimeTicks::Now, "TimeTicks::Now" },
187     { TimeTicks::HighResNow, "TimeTicks::HighResNow" },
188     { NULL, "" }
189   };
190
191   int test_case = 0;
192   while (cases[test_case].func) {
193     TimeTicks start = TimeTicks::HighResNow();
194     for (int index = 0; index < kLoops; index++)
195       cases[test_case].func();
196     TimeTicks stop = TimeTicks::HighResNow();
197     // Turning off the check for acceptible delays.  Without this check,
198     // the test really doesn't do much other than measure.  But the
199     // measurements are still useful for testing timers on various platforms.
200     // The reason to remove the check is because the tests run on many
201     // buildbots, some of which are VMs.  These machines can run horribly
202     // slow, and there is really no value for checking against a max timer.
203     //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
204     printf("%s: %1.2fus per call\n", cases[test_case].description,
205       (stop - start).InMillisecondsF() * 1000 / kLoops);
206     test_case++;
207   }
208 }
209
210 TEST(TimeTicks, Drift) {
211   // If QPC is disabled, this isn't measuring anything.
212   if (!TimeTicks::IsHighResClockWorking())
213     return;
214
215   const int kIterations = 100;
216   int64 total_drift = 0;
217
218   for (int i = 0; i < kIterations; ++i) {
219     int64 drift_microseconds = TimeTicks::GetQPCDriftMicroseconds();
220
221     // Make sure the drift never exceeds our limit.
222     EXPECT_LT(drift_microseconds, 50000);
223
224     // Sleep for a few milliseconds (note that it means 1000 microseconds).
225     // If we check the drift too frequently, it's going to increase
226     // monotonically, making our measurement less realistic.
227     base::PlatformThread::Sleep(
228         base::TimeDelta::FromMilliseconds((i % 2 == 0) ? 1 : 2));
229
230     total_drift += drift_microseconds;
231   }
232
233   // Sanity check. We expect some time drift to occur, especially across
234   // the number of iterations we do.
235   EXPECT_LT(0, total_drift);
236
237   printf("average time drift in microseconds: %lld\n",
238          total_drift / kIterations);
239 }