1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_BASE_MACROS_H_
6 #define V8_BASE_MACROS_H_
8 #include "include/v8stdint.h"
9 #include "src/base/build_config.h"
10 #include "src/base/compiler-specific.h"
11 #include "src/base/logging.h"
14 // The expression OFFSET_OF(type, field) computes the byte-offset
15 // of the specified field relative to the containing type. This
16 // corresponds to 'offsetof' (in stddef.h), except that it doesn't
17 // use 0 or NULL, which causes a problem with the compiler warnings
18 // we have enabled (which is also why 'offsetof' doesn't seem to work).
19 // Here we simply use the non-zero value 4, which seems to work.
20 #define OFFSET_OF(type, field) \
21 (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(4)->field)) - 4)
24 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
25 // but can be used on anonymous types or types defined inside
26 // functions. It's less safe than arraysize as it accepts some
27 // (although not all) pointers. Therefore, you should use arraysize
30 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
33 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error
35 // "warning: division by zero in ..."
37 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
38 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
40 // The following comments are on the implementation details, and can
41 // be ignored by the users.
43 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
44 // the array) and sizeof(*(arr)) (the # of bytes in one array
45 // element). If the former is divisible by the latter, perhaps arr is
46 // indeed an array, in which case the division result is the # of
47 // elements in the array. Otherwise, arr cannot possibly be an array,
48 // and we generate a compiler error to prevent the code from
51 // Since the size of bool is implementation-defined, we need to cast
52 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
53 // result has type size_t.
55 // This macro is not perfect as it wrongfully accepts certain
56 // pointers, namely where the pointer size is divisible by the pointee
57 // size. Since all our code has to go through a 32-bit compiler,
58 // where a pointer is 4 bytes, this means all pointers to a type whose
59 // size is 3 or greater than 4 will be (righteously) rejected.
60 #define ARRAYSIZE_UNSAFE(a) \
61 ((sizeof(a) / sizeof(*(a))) / \
62 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) // NOLINT
67 // TODO(bmeurer): For some reason, the NaCl toolchain cannot handle the correct
68 // definition of arraysize() below, so we have to use the unsafe version for
70 #define arraysize ARRAYSIZE_UNSAFE
74 // The arraysize(arr) macro returns the # of elements in an array arr.
75 // The expression is a compile-time constant, and therefore can be
76 // used in defining new arrays, for example. If you use arraysize on
77 // a pointer by mistake, you will get a compile-time error.
79 // One caveat is that arraysize() doesn't accept any array of an
80 // anonymous type or a type defined inside a function. In these rare
81 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is
82 // due to a limitation in C++'s template system. The limitation might
83 // eventually be removed, but it hasn't happened yet.
84 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
87 // This template function declaration is used in defining arraysize.
88 // Note that the function doesn't need an implementation, as we only
90 template <typename T, size_t N>
91 char (&ArraySizeHelper(T (&array)[N]))[N];
95 // That gcc wants both of these prototypes seems mysterious. VC, for
96 // its part, can't decide which to use (another mystery). Matching of
97 // template overloads: the final frontier.
98 template <typename T, size_t N>
99 char (&ArraySizeHelper(const T (&array)[N]))[N];
105 // A macro to disallow the evil copy constructor and operator= functions
106 // This should be used in the private: declarations for a class
107 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
108 TypeName(const TypeName&) V8_DELETE; \
109 void operator=(const TypeName&) V8_DELETE
112 // A macro to disallow all the implicit constructors, namely the
113 // default constructor, copy constructor and operator= functions.
115 // This should be used in the private: declarations for a class
116 // that wants to prevent anyone from instantiating it. This is
117 // especially useful for classes containing only static methods.
118 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
119 TypeName() V8_DELETE; \
120 DISALLOW_COPY_AND_ASSIGN(TypeName)
123 // Newly written code should use V8_INLINE and V8_NOINLINE directly.
124 #define INLINE(declarator) V8_INLINE declarator
125 #define NO_INLINE(declarator) V8_NOINLINE declarator
128 // Newly written code should use WARN_UNUSED_RESULT.
129 #define MUST_USE_RESULT WARN_UNUSED_RESULT
132 // Define V8_USE_ADDRESS_SANITIZER macros.
133 #if defined(__has_feature)
134 #if __has_feature(address_sanitizer)
135 #define V8_USE_ADDRESS_SANITIZER 1
139 // Define DISABLE_ASAN macros.
140 #ifdef V8_USE_ADDRESS_SANITIZER
141 #define DISABLE_ASAN __attribute__((no_sanitize_address))
148 #define V8_IMMEDIATE_CRASH() __builtin_trap()
150 #define V8_IMMEDIATE_CRASH() ((void(*)())0)()
154 // Use C++11 static_assert if possible, which gives error
155 // messages that are easier to understand on first sight.
156 #if V8_HAS_CXX11_STATIC_ASSERT
157 #define STATIC_ASSERT(test) static_assert(test, #test)
159 // This is inspired by the static assertion facility in boost. This
160 // is pretty magical. If it causes you trouble on a platform you may
161 // find a fix in the boost code.
162 template <bool> class StaticAssertion;
163 template <> class StaticAssertion<true> { };
164 // This macro joins two tokens. If one of the tokens is a macro the
165 // helper call causes it to be resolved before joining.
166 #define SEMI_STATIC_JOIN(a, b) SEMI_STATIC_JOIN_HELPER(a, b)
167 #define SEMI_STATIC_JOIN_HELPER(a, b) a##b
168 // Causes an error during compilation of the condition is not
169 // statically known to be true. It is formulated as a typedef so that
170 // it can be used wherever a typedef can be used. Beware that this
171 // actually causes each use to introduce a new defined type with a
172 // name depending on the source line.
173 template <int> class StaticAssertionHelper { };
174 #define STATIC_ASSERT(test) \
176 StaticAssertionHelper<sizeof(StaticAssertion<static_cast<bool>((test))>)> \
177 SEMI_STATIC_JOIN(__StaticAssertTypedef__, __LINE__) ALLOW_UNUSED
182 // The USE(x) template is used to silence C++ compiler warnings
183 // issued for (yet) unused variables (typically parameters).
184 template <typename T>
185 inline void USE(T) { }
188 #define IS_POWER_OF_TWO(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
191 // Returns true iff x is a power of 2. Cannot be used with the maximally
192 // negative value of the type T (the -1 overflows).
193 template <typename T>
194 inline bool IsPowerOf2(T x) {
195 return IS_POWER_OF_TWO(x);
199 // Define our own macros for writing 64-bit constants. This is less fragile
200 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
201 // works on compilers that don't have it (like MSVC).
203 # define V8_UINT64_C(x) (x ## UI64)
204 # define V8_INT64_C(x) (x ## I64)
205 # if V8_HOST_ARCH_64_BIT
206 # define V8_INTPTR_C(x) (x ## I64)
207 # define V8_PTR_PREFIX "ll"
209 # define V8_INTPTR_C(x) (x)
210 # define V8_PTR_PREFIX ""
211 # endif // V8_HOST_ARCH_64_BIT
213 # define V8_UINT64_C(x) (x ## ULL)
214 # define V8_INT64_C(x) (x ## LL)
215 # define V8_INTPTR_C(x) (x ## LL)
216 # define V8_PTR_PREFIX "I64"
217 #elif V8_HOST_ARCH_64_BIT
219 # define V8_UINT64_C(x) (x ## ULL)
220 # define V8_INT64_C(x) (x ## LL)
222 # define V8_UINT64_C(x) (x ## UL)
223 # define V8_INT64_C(x) (x ## L)
225 # define V8_INTPTR_C(x) (x ## L)
226 # define V8_PTR_PREFIX "l"
228 # define V8_UINT64_C(x) (x ## ULL)
229 # define V8_INT64_C(x) (x ## LL)
230 # define V8_INTPTR_C(x) (x)
231 # define V8_PTR_PREFIX ""
234 #define V8PRIxPTR V8_PTR_PREFIX "x"
235 #define V8PRIdPTR V8_PTR_PREFIX "d"
236 #define V8PRIuPTR V8_PTR_PREFIX "u"
238 // Fix for Mac OS X defining uintptr_t as "unsigned long":
241 #define V8PRIxPTR "lx"
244 // The following macro works on both 32 and 64-bit platforms.
245 // Usage: instead of writing 0x1234567890123456
246 // write V8_2PART_UINT64_C(0x12345678,90123456);
247 #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
250 // Compute the 0-relative offset of some absolute value x of type T.
251 // This allows conversion of Addresses and integral types into
252 // 0-relative int offsets.
253 template <typename T>
254 inline intptr_t OffsetFrom(T x) {
255 return x - static_cast<T>(0);
259 // Compute the absolute value of type T for some 0-relative offset x.
260 // This allows conversion of 0-relative int offsets into Addresses and
262 template <typename T>
263 inline T AddressFrom(intptr_t x) {
264 return static_cast<T>(static_cast<T>(0) + x);
268 // Return the largest multiple of m which is <= x.
269 template <typename T>
270 inline T RoundDown(T x, intptr_t m) {
271 DCHECK(IsPowerOf2(m));
272 return AddressFrom<T>(OffsetFrom(x) & -m);
276 // Return the smallest multiple of m which is >= x.
277 template <typename T>
278 inline T RoundUp(T x, intptr_t m) {
279 return RoundDown<T>(static_cast<T>(x + m - 1), m);
283 // Increment a pointer until it has the specified alignment.
284 // This works like RoundUp, but it works correctly on pointer types where
285 // sizeof(*pointer) might not be 1.
287 T AlignUp(T pointer, size_t alignment) {
288 DCHECK(sizeof(pointer) == sizeof(uintptr_t));
289 uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
290 return reinterpret_cast<T>(RoundUp(pointer_raw, alignment));
294 template <typename T, typename U>
295 inline bool IsAligned(T value, U alignment) {
296 return (value & (alignment - 1)) == 0;
300 // Returns the smallest power of two which is >= x. If you pass in a
301 // number that is already a power of two, it is returned as is.
302 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
303 // figure 3-3, page 48, where the function is called clp2.
304 inline uint32_t RoundUpToPowerOf2(uint32_t x) {
305 DCHECK(x <= 0x80000000u);
316 inline uint32_t RoundDownToPowerOf2(uint32_t x) {
317 uint32_t rounded_up = RoundUpToPowerOf2(x);
318 if (rounded_up > x) return rounded_up >> 1;
323 // Returns current value of top of the stack. Works correctly with ASAN.
325 inline uintptr_t GetCurrentStackPosition() {
326 // Takes the address of the limit variable in order to find out where
327 // the top of stack is right now.
328 uintptr_t limit = reinterpret_cast<uintptr_t>(&limit);
332 #endif // V8_BASE_MACROS_H_