Imported Upstream version 2.6.5
[platform/upstream/freetype2.git] / src / base / fttrigon.c
1 /***************************************************************************/
2 /*                                                                         */
3 /*  fttrigon.c                                                             */
4 /*                                                                         */
5 /*    FreeType trigonometric functions (body).                             */
6 /*                                                                         */
7 /*  Copyright 2001-2016 by                                                 */
8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9 /*                                                                         */
10 /*  This file is part of the FreeType project, and may only be used,       */
11 /*  modified, and distributed under the terms of the FreeType project      */
12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13 /*  this file you indicate that you have read the license and              */
14 /*  understand and accept it fully.                                        */
15 /*                                                                         */
16 /***************************************************************************/
17
18   /*************************************************************************/
19   /*                                                                       */
20   /* This is a fixed-point CORDIC implementation of trigonometric          */
21   /* functions as well as transformations between Cartesian and polar      */
22   /* coordinates.  The angles are represented as 16.16 fixed-point values  */
23   /* in degrees, i.e., the angular resolution is 2^-16 degrees.  Note that */
24   /* only vectors longer than 2^16*180/pi (or at least 22 bits) on a       */
25   /* discrete Cartesian grid can have the same or better angular           */
26   /* resolution.  Therefore, to maintain this precision, some functions    */
27   /* require an interim upscaling of the vectors, whereas others operate   */
28   /* with 24-bit long vectors directly.                                    */
29   /*                                                                       */
30   /*************************************************************************/
31
32 #include <ft2build.h>
33 #include FT_INTERNAL_OBJECTS_H
34 #include FT_INTERNAL_CALC_H
35 #include FT_TRIGONOMETRY_H
36
37
38   /* the Cordic shrink factor 0.858785336480436 * 2^32 */
39 #define FT_TRIG_SCALE      0xDBD95B16UL
40
41   /* the highest bit in overflow-safe vector components, */
42   /* MSB of 0.858785336480436 * sqrt(0.5) * 2^30         */
43 #define FT_TRIG_SAFE_MSB   29
44
45   /* this table was generated for FT_PI = 180L << 16, i.e. degrees */
46 #define FT_TRIG_MAX_ITERS  23
47
48   static const FT_Angle
49   ft_trig_arctan_table[] =
50   {
51     1740967L, 919879L, 466945L, 234379L, 117304L, 58666L, 29335L,
52     14668L, 7334L, 3667L, 1833L, 917L, 458L, 229L, 115L,
53     57L, 29L, 14L, 7L, 4L, 2L, 1L
54   };
55
56
57 #ifdef FT_LONG64
58
59   /* multiply a given value by the CORDIC shrink factor */
60   static FT_Fixed
61   ft_trig_downscale( FT_Fixed  val )
62   {
63     FT_Int  s = 1;
64
65
66     if ( val < 0 )
67     {
68        val = -val;
69        s = -1;
70     }
71
72     /* 0x40000000 comes from regression analysis between true */
73     /* and CORDIC hypotenuse, so it minimizes the error       */
74     val = (FT_Fixed)(
75             ( (FT_UInt64)val * FT_TRIG_SCALE + 0x40000000UL ) >> 32 );
76
77     return s < 0 ? -val : val;
78   }
79
80 #else /* !FT_LONG64 */
81
82   /* multiply a given value by the CORDIC shrink factor */
83   static FT_Fixed
84   ft_trig_downscale( FT_Fixed  val )
85   {
86     FT_Int     s = 1;
87     FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
88
89
90     if ( val < 0 )
91     {
92        val = -val;
93        s = -1;
94     }
95
96     lo1 = (FT_UInt32)val & 0x0000FFFFU;
97     hi1 = (FT_UInt32)val >> 16;
98     lo2 = FT_TRIG_SCALE & 0x0000FFFFU;
99     hi2 = FT_TRIG_SCALE >> 16;
100
101     lo = lo1 * lo2;
102     i1 = lo1 * hi2;
103     i2 = lo2 * hi1;
104     hi = hi1 * hi2;
105
106     /* Check carry overflow of i1 + i2 */
107     i1 += i2;
108     hi += (FT_UInt32)( i1 < i2 ) << 16;
109
110     hi += i1 >> 16;
111     i1  = i1 << 16;
112
113     /* Check carry overflow of i1 + lo */
114     lo += i1;
115     hi += ( lo < i1 );
116
117     /* 0x40000000 comes from regression analysis between true */
118     /* and CORDIC hypotenuse, so it minimizes the error       */
119
120     /* Check carry overflow of lo + 0x40000000 */
121     lo += 0x40000000UL;
122     hi += ( lo < 0x40000000UL );
123
124     val = (FT_Fixed)hi;
125
126     return s < 0 ? -val : val;
127   }
128
129 #endif /* !FT_LONG64 */
130
131
132   /* undefined and never called for zero vector */
133   static FT_Int
134   ft_trig_prenorm( FT_Vector*  vec )
135   {
136     FT_Pos  x, y;
137     FT_Int  shift;
138
139
140     x = vec->x;
141     y = vec->y;
142
143     shift = FT_MSB( (FT_UInt32)( FT_ABS( x ) | FT_ABS( y ) ) );
144
145     if ( shift <= FT_TRIG_SAFE_MSB )
146     {
147       shift  = FT_TRIG_SAFE_MSB - shift;
148       vec->x = (FT_Pos)( (FT_ULong)x << shift );
149       vec->y = (FT_Pos)( (FT_ULong)y << shift );
150     }
151     else
152     {
153       shift -= FT_TRIG_SAFE_MSB;
154       vec->x = x >> shift;
155       vec->y = y >> shift;
156       shift  = -shift;
157     }
158
159     return shift;
160   }
161
162
163   static void
164   ft_trig_pseudo_rotate( FT_Vector*  vec,
165                          FT_Angle    theta )
166   {
167     FT_Int           i;
168     FT_Fixed         x, y, xtemp, b;
169     const FT_Angle  *arctanptr;
170
171
172     x = vec->x;
173     y = vec->y;
174
175     /* Rotate inside [-PI/4,PI/4] sector */
176     while ( theta < -FT_ANGLE_PI4 )
177     {
178       xtemp  =  y;
179       y      = -x;
180       x      =  xtemp;
181       theta +=  FT_ANGLE_PI2;
182     }
183
184     while ( theta > FT_ANGLE_PI4 )
185     {
186       xtemp  = -y;
187       y      =  x;
188       x      =  xtemp;
189       theta -=  FT_ANGLE_PI2;
190     }
191
192     arctanptr = ft_trig_arctan_table;
193
194     /* Pseudorotations, with right shifts */
195     for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
196     {
197       if ( theta < 0 )
198       {
199         xtemp  = x + ( ( y + b ) >> i );
200         y      = y - ( ( x + b ) >> i );
201         x      = xtemp;
202         theta += *arctanptr++;
203       }
204       else
205       {
206         xtemp  = x - ( ( y + b ) >> i );
207         y      = y + ( ( x + b ) >> i );
208         x      = xtemp;
209         theta -= *arctanptr++;
210       }
211     }
212
213     vec->x = x;
214     vec->y = y;
215   }
216
217
218   static void
219   ft_trig_pseudo_polarize( FT_Vector*  vec )
220   {
221     FT_Angle         theta;
222     FT_Int           i;
223     FT_Fixed         x, y, xtemp, b;
224     const FT_Angle  *arctanptr;
225
226
227     x = vec->x;
228     y = vec->y;
229
230     /* Get the vector into [-PI/4,PI/4] sector */
231     if ( y > x )
232     {
233       if ( y > -x )
234       {
235         theta =  FT_ANGLE_PI2;
236         xtemp =  y;
237         y     = -x;
238         x     =  xtemp;
239       }
240       else
241       {
242         theta =  y > 0 ? FT_ANGLE_PI : -FT_ANGLE_PI;
243         x     = -x;
244         y     = -y;
245       }
246     }
247     else
248     {
249       if ( y < -x )
250       {
251         theta = -FT_ANGLE_PI2;
252         xtemp = -y;
253         y     =  x;
254         x     =  xtemp;
255       }
256       else
257       {
258         theta = 0;
259       }
260     }
261
262     arctanptr = ft_trig_arctan_table;
263
264     /* Pseudorotations, with right shifts */
265     for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
266     {
267       if ( y > 0 )
268       {
269         xtemp  = x + ( ( y + b ) >> i );
270         y      = y - ( ( x + b ) >> i );
271         x      = xtemp;
272         theta += *arctanptr++;
273       }
274       else
275       {
276         xtemp  = x - ( ( y + b ) >> i );
277         y      = y + ( ( x + b ) >> i );
278         x      = xtemp;
279         theta -= *arctanptr++;
280       }
281     }
282
283     /* round theta to acknowledge its error that mostly comes */
284     /* from accumulated rounding errors in the arctan table   */
285     if ( theta >= 0 )
286       theta = FT_PAD_ROUND( theta, 16 );
287     else
288       theta = -FT_PAD_ROUND( -theta, 16 );
289
290     vec->x = x;
291     vec->y = theta;
292   }
293
294
295   /* documentation is in fttrigon.h */
296
297   FT_EXPORT_DEF( FT_Fixed )
298   FT_Cos( FT_Angle  angle )
299   {
300     FT_Vector  v;
301
302
303     FT_Vector_Unit( &v, angle );
304
305     return v.x;
306   }
307
308
309   /* documentation is in fttrigon.h */
310
311   FT_EXPORT_DEF( FT_Fixed )
312   FT_Sin( FT_Angle  angle )
313   {
314     FT_Vector  v;
315
316
317     FT_Vector_Unit( &v, angle );
318
319     return v.y;
320   }
321
322
323   /* documentation is in fttrigon.h */
324
325   FT_EXPORT_DEF( FT_Fixed )
326   FT_Tan( FT_Angle  angle )
327   {
328     FT_Vector  v;
329
330
331     FT_Vector_Unit( &v, angle );
332
333     return FT_DivFix( v.y, v.x );
334   }
335
336
337   /* documentation is in fttrigon.h */
338
339   FT_EXPORT_DEF( FT_Angle )
340   FT_Atan2( FT_Fixed  dx,
341             FT_Fixed  dy )
342   {
343     FT_Vector  v;
344
345
346     if ( dx == 0 && dy == 0 )
347       return 0;
348
349     v.x = dx;
350     v.y = dy;
351     ft_trig_prenorm( &v );
352     ft_trig_pseudo_polarize( &v );
353
354     return v.y;
355   }
356
357
358   /* documentation is in fttrigon.h */
359
360   FT_EXPORT_DEF( void )
361   FT_Vector_Unit( FT_Vector*  vec,
362                   FT_Angle    angle )
363   {
364     if ( !vec )
365       return;
366
367     vec->x = FT_TRIG_SCALE >> 8;
368     vec->y = 0;
369     ft_trig_pseudo_rotate( vec, angle );
370     vec->x = ( vec->x + 0x80L ) >> 8;
371     vec->y = ( vec->y + 0x80L ) >> 8;
372   }
373
374
375   /* these macros return 0 for positive numbers,
376      and -1 for negative ones */
377 #define FT_SIGN_LONG( x )   ( (x) >> ( FT_SIZEOF_LONG * 8 - 1 ) )
378 #define FT_SIGN_INT( x )    ( (x) >> ( FT_SIZEOF_INT * 8 - 1 ) )
379 #define FT_SIGN_INT32( x )  ( (x) >> 31 )
380 #define FT_SIGN_INT16( x )  ( (x) >> 15 )
381
382
383   /* documentation is in fttrigon.h */
384
385   FT_EXPORT_DEF( void )
386   FT_Vector_Rotate( FT_Vector*  vec,
387                     FT_Angle    angle )
388   {
389     FT_Int     shift;
390     FT_Vector  v;
391
392
393     if ( !vec || !angle )
394       return;
395
396     v = *vec;
397
398     if ( v.x == 0 && v.y == 0 )
399       return;
400
401     shift = ft_trig_prenorm( &v );
402     ft_trig_pseudo_rotate( &v, angle );
403     v.x = ft_trig_downscale( v.x );
404     v.y = ft_trig_downscale( v.y );
405
406     if ( shift > 0 )
407     {
408       FT_Int32  half = (FT_Int32)1L << ( shift - 1 );
409
410
411       vec->x = ( v.x + half + FT_SIGN_LONG( v.x ) ) >> shift;
412       vec->y = ( v.y + half + FT_SIGN_LONG( v.y ) ) >> shift;
413     }
414     else
415     {
416       shift  = -shift;
417       vec->x = (FT_Pos)( (FT_ULong)v.x << shift );
418       vec->y = (FT_Pos)( (FT_ULong)v.y << shift );
419     }
420   }
421
422
423   /* documentation is in fttrigon.h */
424
425   FT_EXPORT_DEF( FT_Fixed )
426   FT_Vector_Length( FT_Vector*  vec )
427   {
428     FT_Int     shift;
429     FT_Vector  v;
430
431
432     if ( !vec )
433       return 0;
434
435     v = *vec;
436
437     /* handle trivial cases */
438     if ( v.x == 0 )
439     {
440       return FT_ABS( v.y );
441     }
442     else if ( v.y == 0 )
443     {
444       return FT_ABS( v.x );
445     }
446
447     /* general case */
448     shift = ft_trig_prenorm( &v );
449     ft_trig_pseudo_polarize( &v );
450
451     v.x = ft_trig_downscale( v.x );
452
453     if ( shift > 0 )
454       return ( v.x + ( 1L << ( shift - 1 ) ) ) >> shift;
455
456     return (FT_Fixed)( (FT_UInt32)v.x << -shift );
457   }
458
459
460   /* documentation is in fttrigon.h */
461
462   FT_EXPORT_DEF( void )
463   FT_Vector_Polarize( FT_Vector*  vec,
464                       FT_Fixed   *length,
465                       FT_Angle   *angle )
466   {
467     FT_Int     shift;
468     FT_Vector  v;
469
470
471     if ( !vec || !length || !angle )
472       return;
473
474     v = *vec;
475
476     if ( v.x == 0 && v.y == 0 )
477       return;
478
479     shift = ft_trig_prenorm( &v );
480     ft_trig_pseudo_polarize( &v );
481
482     v.x = ft_trig_downscale( v.x );
483
484     *length = shift >= 0 ?                      ( v.x >>  shift )
485                          : (FT_Fixed)( (FT_UInt32)v.x << -shift );
486     *angle  = v.y;
487   }
488
489
490   /* documentation is in fttrigon.h */
491
492   FT_EXPORT_DEF( void )
493   FT_Vector_From_Polar( FT_Vector*  vec,
494                         FT_Fixed    length,
495                         FT_Angle    angle )
496   {
497     if ( !vec )
498       return;
499
500     vec->x = length;
501     vec->y = 0;
502
503     FT_Vector_Rotate( vec, angle );
504   }
505
506
507   /* documentation is in fttrigon.h */
508
509   FT_EXPORT_DEF( FT_Angle )
510   FT_Angle_Diff( FT_Angle  angle1,
511                  FT_Angle  angle2 )
512   {
513     FT_Angle  delta = angle2 - angle1;
514
515
516     while ( delta <= -FT_ANGLE_PI )
517       delta += FT_ANGLE_2PI;
518
519     while ( delta > FT_ANGLE_PI )
520       delta -= FT_ANGLE_2PI;
521
522     return delta;
523   }
524
525
526 /* END */