2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
6 #include "ClMeanWorkload.hpp"
8 #include <backends/cl/ClTensorHandle.hpp>
9 #include <backends/aclCommon/ArmComputeTensorUtils.hpp>
11 #include "ClWorkloadUtils.hpp"
16 void ConvertArmnnAxesToAclCoordinates(size_t inputDimensions,
17 unsigned int originalInputRank,
18 const std::vector<unsigned int>& armnnAxes,
19 arm_compute::Coordinates& outAclCoords)
21 if (armnnAxes.empty())
23 // If no reduction axes were provided, then the input must be reduced along all dimensions.
24 // Since arm_compute::CLReduceMean does not accept an empty vector as the reduction dimensions, we then
25 // manually create a vector including all the input dimensions (in reversed order) as:
27 // { inputDimensions - 1, inputDimensions - 2, ..., 1, 0 }
29 outAclCoords.set_num_dimensions(inputDimensions);
30 std::generate(outAclCoords.begin(), outAclCoords.end(), [d = inputDimensions - 1] () mutable { return d--; });
34 // Create a vector of reduction dimensions (in reversed order) with the given reduction axes.
36 // Adjust the given reduction axes according to the original rank of the input tensor (before ACL applied any
37 // dimension correction).
38 // For example, if the input tensor originally had 4 dimensions, and one of the reduction axes was 2, then the
39 // new value for that reduction axis should be 1.
42 // ArmNN input shape = { 1, 1, 3, 2 } -> ACL input shape = { 2, 3 }
43 // ArmNN reduction axis = { 2 } -> ACL reduction axis = { 1 }
44 // ArmNN reduction axis = { 3 } -> ACL reduction axis = { 0 }
46 // The transformation: ACL reduction axis index = original rank - ArmNN reduction axis index - 1
48 outAclCoords.set_num_dimensions(armnnAxes.size());
49 std::transform(armnnAxes.begin(), armnnAxes.end(),
51 [originalInputRank](unsigned int i){ return originalInputRank - i - 1; });
55 } // anonymous namespace
59 using namespace armcomputetensorutils;
61 arm_compute::Status ClMeanValidate(const TensorInfo& input,
62 const TensorInfo& output,
63 const MeanDescriptor& desc)
65 const arm_compute::TensorInfo aclInputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(input);
66 const arm_compute::TensorInfo aclOutputInfo = armcomputetensorutils::BuildArmComputeTensorInfo(output);
68 arm_compute::Coordinates coords;
69 ConvertArmnnAxesToAclCoordinates(aclInputInfo.num_dimensions(),
70 input.GetNumDimensions(),
74 return arm_compute::CLReduceMean::validate(&aclInputInfo, coords, desc.m_KeepDims, &aclOutputInfo);
77 ClMeanWorkload::ClMeanWorkload(const MeanQueueDescriptor& descriptor, const WorkloadInfo& info)
78 : BaseWorkload<MeanQueueDescriptor>(descriptor, info)
80 m_Data.ValidateInputsOutputs("ClMeanWorkload", 1, 1);
82 arm_compute::ICLTensor& input = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
83 arm_compute::ICLTensor& output = static_cast<IClTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
85 arm_compute::Coordinates coords;
86 ConvertArmnnAxesToAclCoordinates(input.info()->num_dimensions(),
87 info.m_InputTensorInfos[0].GetNumDimensions(),
88 m_Data.m_Parameters.m_Axis,
91 m_Layer.configure(&input, coords, m_Data.m_Parameters.m_KeepDims, &output);
94 void ClMeanWorkload::Execute() const
96 ARMNN_SCOPED_PROFILING_EVENT_CL("ClMeanWorkload_Execute");