1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/assembler.h"
11 #include "src/ast-value-factory.h"
12 #include "src/bailout-reason.h"
13 #include "src/factory.h"
14 #include "src/isolate.h"
15 #include "src/jsregexp.h"
16 #include "src/list-inl.h"
17 #include "src/modules.h"
18 #include "src/runtime/runtime.h"
19 #include "src/small-pointer-list.h"
20 #include "src/smart-pointers.h"
21 #include "src/token.h"
22 #include "src/types.h"
23 #include "src/utils.h"
24 #include "src/variables.h"
29 // The abstract syntax tree is an intermediate, light-weight
30 // representation of the parsed JavaScript code suitable for
31 // compilation to native code.
33 // Nodes are allocated in a separate zone, which allows faster
34 // allocation and constant-time deallocation of the entire syntax
38 // ----------------------------------------------------------------------------
39 // Nodes of the abstract syntax tree. Only concrete classes are
42 #define DECLARATION_NODE_LIST(V) \
43 V(VariableDeclaration) \
44 V(FunctionDeclaration) \
45 V(ImportDeclaration) \
48 #define STATEMENT_NODE_LIST(V) \
50 V(ExpressionStatement) \
53 V(ContinueStatement) \
63 V(TryCatchStatement) \
64 V(TryFinallyStatement) \
67 #define EXPRESSION_NODE_LIST(V) \
70 V(NativeFunctionLiteral) \
93 #define AST_NODE_LIST(V) \
94 DECLARATION_NODE_LIST(V) \
95 STATEMENT_NODE_LIST(V) \
96 EXPRESSION_NODE_LIST(V)
98 // Forward declarations
103 class BreakableStatement;
105 class IterationStatement;
106 class MaterializedLiteral;
108 class TypeFeedbackOracle;
110 class RegExpAlternative;
111 class RegExpAssertion;
113 class RegExpBackReference;
115 class RegExpCharacterClass;
116 class RegExpCompiler;
117 class RegExpDisjunction;
119 class RegExpLookahead;
120 class RegExpQuantifier;
123 #define DEF_FORWARD_DECLARATION(type) class type;
124 AST_NODE_LIST(DEF_FORWARD_DECLARATION)
125 #undef DEF_FORWARD_DECLARATION
128 // Typedef only introduced to avoid unreadable code.
129 // Please do appreciate the required space in "> >".
130 typedef ZoneList<Handle<String> > ZoneStringList;
131 typedef ZoneList<Handle<Object> > ZoneObjectList;
134 #define DECLARE_NODE_TYPE(type) \
135 void Accept(AstVisitor* v) override; \
136 AstNode::NodeType node_type() const final { return AstNode::k##type; } \
137 friend class AstNodeFactory;
140 enum AstPropertiesFlag {
147 class FeedbackVectorRequirements {
149 FeedbackVectorRequirements(int slots, int ic_slots)
150 : slots_(slots), ic_slots_(ic_slots) {}
152 int slots() const { return slots_; }
153 int ic_slots() const { return ic_slots_; }
161 class VariableICSlotPair final {
163 VariableICSlotPair(Variable* variable, FeedbackVectorICSlot slot)
164 : variable_(variable), slot_(slot) {}
166 : variable_(NULL), slot_(FeedbackVectorICSlot::Invalid()) {}
168 Variable* variable() const { return variable_; }
169 FeedbackVectorICSlot slot() const { return slot_; }
173 FeedbackVectorICSlot slot_;
177 typedef List<VariableICSlotPair> ICSlotCache;
180 class AstProperties final BASE_EMBEDDED {
182 class Flags : public EnumSet<AstPropertiesFlag, int> {};
184 explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
186 Flags* flags() { return &flags_; }
187 int node_count() { return node_count_; }
188 void add_node_count(int count) { node_count_ += count; }
190 int slots() const { return spec_.slots(); }
191 void increase_slots(int count) { spec_.increase_slots(count); }
193 int ic_slots() const { return spec_.ic_slots(); }
194 void increase_ic_slots(int count) { spec_.increase_ic_slots(count); }
195 void SetKind(int ic_slot, Code::Kind kind) { spec_.SetKind(ic_slot, kind); }
196 const ZoneFeedbackVectorSpec* get_spec() const { return &spec_; }
201 ZoneFeedbackVectorSpec spec_;
205 class AstNode: public ZoneObject {
207 #define DECLARE_TYPE_ENUM(type) k##type,
209 AST_NODE_LIST(DECLARE_TYPE_ENUM)
212 #undef DECLARE_TYPE_ENUM
214 void* operator new(size_t size, Zone* zone) { return zone->New(size); }
216 explicit AstNode(int position): position_(position) {}
217 virtual ~AstNode() {}
219 virtual void Accept(AstVisitor* v) = 0;
220 virtual NodeType node_type() const = 0;
221 int position() const { return position_; }
223 // Type testing & conversion functions overridden by concrete subclasses.
224 #define DECLARE_NODE_FUNCTIONS(type) \
225 bool Is##type() const { return node_type() == AstNode::k##type; } \
227 return Is##type() ? reinterpret_cast<type*>(this) : NULL; \
229 const type* As##type() const { \
230 return Is##type() ? reinterpret_cast<const type*>(this) : NULL; \
232 AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
233 #undef DECLARE_NODE_FUNCTIONS
235 virtual BreakableStatement* AsBreakableStatement() { return NULL; }
236 virtual IterationStatement* AsIterationStatement() { return NULL; }
237 virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
239 // The interface for feedback slots, with default no-op implementations for
240 // node types which don't actually have this. Note that this is conceptually
241 // not really nice, but multiple inheritance would introduce yet another
242 // vtable entry per node, something we don't want for space reasons.
243 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
244 Isolate* isolate, const ICSlotCache* cache) {
245 return FeedbackVectorRequirements(0, 0);
247 virtual void SetFirstFeedbackSlot(FeedbackVectorSlot slot) { UNREACHABLE(); }
248 virtual void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
249 ICSlotCache* cache) {
252 // Each ICSlot stores a kind of IC which the participating node should know.
253 virtual Code::Kind FeedbackICSlotKind(int index) {
255 return Code::NUMBER_OF_KINDS;
259 // Hidden to prevent accidental usage. It would have to load the
260 // current zone from the TLS.
261 void* operator new(size_t size);
263 friend class CaseClause; // Generates AST IDs.
269 class Statement : public AstNode {
271 explicit Statement(Zone* zone, int position) : AstNode(position) {}
273 bool IsEmpty() { return AsEmptyStatement() != NULL; }
274 virtual bool IsJump() const { return false; }
278 class SmallMapList final {
281 SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
283 void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
284 void Clear() { list_.Clear(); }
285 void Sort() { list_.Sort(); }
287 bool is_empty() const { return list_.is_empty(); }
288 int length() const { return list_.length(); }
290 void AddMapIfMissing(Handle<Map> map, Zone* zone) {
291 if (!Map::TryUpdate(map).ToHandle(&map)) return;
292 for (int i = 0; i < length(); ++i) {
293 if (at(i).is_identical_to(map)) return;
298 void FilterForPossibleTransitions(Map* root_map) {
299 for (int i = list_.length() - 1; i >= 0; i--) {
300 if (at(i)->FindRootMap() != root_map) {
301 list_.RemoveElement(list_.at(i));
306 void Add(Handle<Map> handle, Zone* zone) {
307 list_.Add(handle.location(), zone);
310 Handle<Map> at(int i) const {
311 return Handle<Map>(list_.at(i));
314 Handle<Map> first() const { return at(0); }
315 Handle<Map> last() const { return at(length() - 1); }
318 // The list stores pointers to Map*, that is Map**, so it's GC safe.
319 SmallPointerList<Map*> list_;
321 DISALLOW_COPY_AND_ASSIGN(SmallMapList);
325 class Expression : public AstNode {
328 // Not assigned a context yet, or else will not be visited during
331 // Evaluated for its side effects.
333 // Evaluated for its value (and side effects).
335 // Evaluated for control flow (and side effects).
339 virtual bool IsValidReferenceExpression() const { return false; }
341 // Helpers for ToBoolean conversion.
342 virtual bool ToBooleanIsTrue() const { return false; }
343 virtual bool ToBooleanIsFalse() const { return false; }
345 // Symbols that cannot be parsed as array indices are considered property
346 // names. We do not treat symbols that can be array indexes as property
347 // names because [] for string objects is handled only by keyed ICs.
348 virtual bool IsPropertyName() const { return false; }
350 // True iff the expression is a literal represented as a smi.
351 bool IsSmiLiteral() const;
353 // True iff the expression is a string literal.
354 bool IsStringLiteral() const;
356 // True iff the expression is the null literal.
357 bool IsNullLiteral() const;
359 // True if we can prove that the expression is the undefined literal.
360 bool IsUndefinedLiteral(Isolate* isolate) const;
362 // Expression type bounds
363 Bounds bounds() const { return bounds_; }
364 void set_bounds(Bounds bounds) { bounds_ = bounds; }
366 // Whether the expression is parenthesized
367 bool is_single_parenthesized() const {
368 return IsSingleParenthesizedField::decode(bit_field_);
370 bool is_multi_parenthesized() const {
371 return IsMultiParenthesizedField::decode(bit_field_);
373 void increase_parenthesization_level() {
374 bit_field_ = IsMultiParenthesizedField::update(bit_field_,
375 is_single_parenthesized());
376 bit_field_ = IsSingleParenthesizedField::update(bit_field_, true);
379 // Type feedback information for assignments and properties.
380 virtual bool IsMonomorphic() {
384 virtual SmallMapList* GetReceiverTypes() {
388 virtual KeyedAccessStoreMode GetStoreMode() const {
390 return STANDARD_STORE;
392 virtual IcCheckType GetKeyType() const {
397 // TODO(rossberg): this should move to its own AST node eventually.
398 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
399 byte to_boolean_types() const {
400 return ToBooleanTypesField::decode(bit_field_);
403 void set_base_id(int id) { base_id_ = id; }
404 static int num_ids() { return parent_num_ids() + 2; }
405 BailoutId id() const { return BailoutId(local_id(0)); }
406 TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
409 Expression(Zone* zone, int pos)
411 base_id_(BailoutId::None().ToInt()),
412 bounds_(Bounds::Unbounded(zone)),
414 static int parent_num_ids() { return 0; }
415 void set_to_boolean_types(byte types) {
416 bit_field_ = ToBooleanTypesField::update(bit_field_, types);
419 int base_id() const {
420 DCHECK(!BailoutId(base_id_).IsNone());
425 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
429 class ToBooleanTypesField : public BitField16<byte, 0, 8> {};
430 class IsSingleParenthesizedField : public BitField16<bool, 8, 1> {};
431 class IsMultiParenthesizedField : public BitField16<bool, 9, 1> {};
433 // Ends with 16-bit field; deriving classes in turn begin with
434 // 16-bit fields for optimum packing efficiency.
438 class BreakableStatement : public Statement {
441 TARGET_FOR_ANONYMOUS,
442 TARGET_FOR_NAMED_ONLY
445 // The labels associated with this statement. May be NULL;
446 // if it is != NULL, guaranteed to contain at least one entry.
447 ZoneList<const AstRawString*>* labels() const { return labels_; }
449 // Type testing & conversion.
450 BreakableStatement* AsBreakableStatement() final { return this; }
453 Label* break_target() { return &break_target_; }
456 bool is_target_for_anonymous() const {
457 return breakable_type_ == TARGET_FOR_ANONYMOUS;
460 void set_base_id(int id) { base_id_ = id; }
461 static int num_ids() { return parent_num_ids() + 2; }
462 BailoutId EntryId() const { return BailoutId(local_id(0)); }
463 BailoutId ExitId() const { return BailoutId(local_id(1)); }
466 BreakableStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
467 BreakableType breakable_type, int position)
468 : Statement(zone, position),
470 breakable_type_(breakable_type),
471 base_id_(BailoutId::None().ToInt()) {
472 DCHECK(labels == NULL || labels->length() > 0);
474 static int parent_num_ids() { return 0; }
476 int base_id() const {
477 DCHECK(!BailoutId(base_id_).IsNone());
482 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
484 ZoneList<const AstRawString*>* labels_;
485 BreakableType breakable_type_;
491 class Block final : public BreakableStatement {
493 DECLARE_NODE_TYPE(Block)
495 void AddStatement(Statement* statement, Zone* zone) {
496 statements_.Add(statement, zone);
499 ZoneList<Statement*>* statements() { return &statements_; }
500 bool is_initializer_block() const { return is_initializer_block_; }
502 static int num_ids() { return parent_num_ids() + 1; }
503 BailoutId DeclsId() const { return BailoutId(local_id(0)); }
505 bool IsJump() const override {
506 return !statements_.is_empty() && statements_.last()->IsJump()
507 && labels() == NULL; // Good enough as an approximation...
510 Scope* scope() const { return scope_; }
511 void set_scope(Scope* scope) { scope_ = scope; }
514 Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
515 bool is_initializer_block, int pos)
516 : BreakableStatement(zone, labels, TARGET_FOR_NAMED_ONLY, pos),
517 statements_(capacity, zone),
518 is_initializer_block_(is_initializer_block),
520 static int parent_num_ids() { return BreakableStatement::num_ids(); }
523 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
525 ZoneList<Statement*> statements_;
526 bool is_initializer_block_;
531 class Declaration : public AstNode {
533 VariableProxy* proxy() const { return proxy_; }
534 VariableMode mode() const { return mode_; }
535 Scope* scope() const { return scope_; }
536 virtual InitializationFlag initialization() const = 0;
537 virtual bool IsInlineable() const;
540 Declaration(Zone* zone, VariableProxy* proxy, VariableMode mode, Scope* scope,
542 : AstNode(pos), mode_(mode), proxy_(proxy), scope_(scope) {
543 DCHECK(IsDeclaredVariableMode(mode));
548 VariableProxy* proxy_;
550 // Nested scope from which the declaration originated.
555 class VariableDeclaration final : public Declaration {
557 DECLARE_NODE_TYPE(VariableDeclaration)
559 InitializationFlag initialization() const override {
560 return mode() == VAR ? kCreatedInitialized : kNeedsInitialization;
563 bool is_class_declaration() const { return is_class_declaration_; }
565 // VariableDeclarations can be grouped into consecutive declaration
566 // groups. Each VariableDeclaration is associated with the start position of
567 // the group it belongs to. The positions are used for strong mode scope
568 // checks for classes and functions.
569 int declaration_group_start() const { return declaration_group_start_; }
572 VariableDeclaration(Zone* zone, VariableProxy* proxy, VariableMode mode,
573 Scope* scope, int pos, bool is_class_declaration = false,
574 int declaration_group_start = -1)
575 : Declaration(zone, proxy, mode, scope, pos),
576 is_class_declaration_(is_class_declaration),
577 declaration_group_start_(declaration_group_start) {}
579 bool is_class_declaration_;
580 int declaration_group_start_;
584 class FunctionDeclaration final : public Declaration {
586 DECLARE_NODE_TYPE(FunctionDeclaration)
588 FunctionLiteral* fun() const { return fun_; }
589 InitializationFlag initialization() const override {
590 return kCreatedInitialized;
592 bool IsInlineable() const override;
595 FunctionDeclaration(Zone* zone,
596 VariableProxy* proxy,
598 FunctionLiteral* fun,
601 : Declaration(zone, proxy, mode, scope, pos),
603 DCHECK(mode == VAR || mode == LET || mode == CONST);
608 FunctionLiteral* fun_;
612 class ImportDeclaration final : public Declaration {
614 DECLARE_NODE_TYPE(ImportDeclaration)
616 const AstRawString* import_name() const { return import_name_; }
617 const AstRawString* module_specifier() const { return module_specifier_; }
618 void set_module_specifier(const AstRawString* module_specifier) {
619 DCHECK(module_specifier_ == NULL);
620 module_specifier_ = module_specifier;
622 InitializationFlag initialization() const override {
623 return kNeedsInitialization;
627 ImportDeclaration(Zone* zone, VariableProxy* proxy,
628 const AstRawString* import_name,
629 const AstRawString* module_specifier, Scope* scope, int pos)
630 : Declaration(zone, proxy, IMPORT, scope, pos),
631 import_name_(import_name),
632 module_specifier_(module_specifier) {}
635 const AstRawString* import_name_;
636 const AstRawString* module_specifier_;
640 class ExportDeclaration final : public Declaration {
642 DECLARE_NODE_TYPE(ExportDeclaration)
644 InitializationFlag initialization() const override {
645 return kCreatedInitialized;
649 ExportDeclaration(Zone* zone, VariableProxy* proxy, Scope* scope, int pos)
650 : Declaration(zone, proxy, LET, scope, pos) {}
654 class Module : public AstNode {
656 ModuleDescriptor* descriptor() const { return descriptor_; }
657 Block* body() const { return body_; }
660 Module(Zone* zone, int pos)
661 : AstNode(pos), descriptor_(ModuleDescriptor::New(zone)), body_(NULL) {}
662 Module(Zone* zone, ModuleDescriptor* descriptor, int pos, Block* body = NULL)
663 : AstNode(pos), descriptor_(descriptor), body_(body) {}
666 ModuleDescriptor* descriptor_;
671 class IterationStatement : public BreakableStatement {
673 // Type testing & conversion.
674 IterationStatement* AsIterationStatement() final { return this; }
676 Statement* body() const { return body_; }
678 static int num_ids() { return parent_num_ids() + 1; }
679 BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
680 virtual BailoutId ContinueId() const = 0;
681 virtual BailoutId StackCheckId() const = 0;
684 Label* continue_target() { return &continue_target_; }
687 IterationStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
688 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
690 static int parent_num_ids() { return BreakableStatement::num_ids(); }
691 void Initialize(Statement* body) { body_ = body; }
694 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
697 Label continue_target_;
701 class DoWhileStatement final : public IterationStatement {
703 DECLARE_NODE_TYPE(DoWhileStatement)
705 void Initialize(Expression* cond, Statement* body) {
706 IterationStatement::Initialize(body);
710 Expression* cond() const { return cond_; }
712 static int num_ids() { return parent_num_ids() + 2; }
713 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
714 BailoutId StackCheckId() const override { return BackEdgeId(); }
715 BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
718 DoWhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
719 : IterationStatement(zone, labels, pos), cond_(NULL) {}
720 static int parent_num_ids() { return IterationStatement::num_ids(); }
723 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
729 class WhileStatement final : public IterationStatement {
731 DECLARE_NODE_TYPE(WhileStatement)
733 void Initialize(Expression* cond, Statement* body) {
734 IterationStatement::Initialize(body);
738 Expression* cond() const { return cond_; }
740 static int num_ids() { return parent_num_ids() + 1; }
741 BailoutId ContinueId() const override { return EntryId(); }
742 BailoutId StackCheckId() const override { return BodyId(); }
743 BailoutId BodyId() const { return BailoutId(local_id(0)); }
746 WhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
747 : IterationStatement(zone, labels, pos), cond_(NULL) {}
748 static int parent_num_ids() { return IterationStatement::num_ids(); }
751 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
757 class ForStatement final : public IterationStatement {
759 DECLARE_NODE_TYPE(ForStatement)
761 void Initialize(Statement* init,
765 IterationStatement::Initialize(body);
771 Statement* init() const { return init_; }
772 Expression* cond() const { return cond_; }
773 Statement* next() const { return next_; }
775 static int num_ids() { return parent_num_ids() + 2; }
776 BailoutId ContinueId() const override { return BailoutId(local_id(0)); }
777 BailoutId StackCheckId() const override { return BodyId(); }
778 BailoutId BodyId() const { return BailoutId(local_id(1)); }
781 ForStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
782 : IterationStatement(zone, labels, pos),
786 static int parent_num_ids() { return IterationStatement::num_ids(); }
789 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
797 class ForEachStatement : public IterationStatement {
800 ENUMERATE, // for (each in subject) body;
801 ITERATE // for (each of subject) body;
804 void Initialize(Expression* each, Expression* subject, Statement* body) {
805 IterationStatement::Initialize(body);
810 Expression* each() const { return each_; }
811 Expression* subject() const { return subject_; }
814 ForEachStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
815 : IterationStatement(zone, labels, pos), each_(NULL), subject_(NULL) {}
819 Expression* subject_;
823 class ForInStatement final : public ForEachStatement {
825 DECLARE_NODE_TYPE(ForInStatement)
827 Expression* enumerable() const {
831 // Type feedback information.
832 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
833 Isolate* isolate, const ICSlotCache* cache) override {
834 return FeedbackVectorRequirements(1, 0);
836 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) override {
837 for_in_feedback_slot_ = slot;
840 FeedbackVectorSlot ForInFeedbackSlot() {
841 DCHECK(!for_in_feedback_slot_.IsInvalid());
842 return for_in_feedback_slot_;
845 enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
846 ForInType for_in_type() const { return for_in_type_; }
847 void set_for_in_type(ForInType type) { for_in_type_ = type; }
849 static int num_ids() { return parent_num_ids() + 6; }
850 BailoutId BodyId() const { return BailoutId(local_id(0)); }
851 BailoutId PrepareId() const { return BailoutId(local_id(1)); }
852 BailoutId EnumId() const { return BailoutId(local_id(2)); }
853 BailoutId ToObjectId() const { return BailoutId(local_id(3)); }
854 BailoutId FilterId() const { return BailoutId(local_id(4)); }
855 BailoutId AssignmentId() const { return BailoutId(local_id(5)); }
856 BailoutId ContinueId() const override { return EntryId(); }
857 BailoutId StackCheckId() const override { return BodyId(); }
860 ForInStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
861 : ForEachStatement(zone, labels, pos),
862 for_in_type_(SLOW_FOR_IN),
863 for_in_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
864 static int parent_num_ids() { return ForEachStatement::num_ids(); }
867 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
869 ForInType for_in_type_;
870 FeedbackVectorSlot for_in_feedback_slot_;
874 class ForOfStatement final : public ForEachStatement {
876 DECLARE_NODE_TYPE(ForOfStatement)
878 void Initialize(Expression* each,
881 Expression* assign_iterator,
882 Expression* next_result,
883 Expression* result_done,
884 Expression* assign_each) {
885 ForEachStatement::Initialize(each, subject, body);
886 assign_iterator_ = assign_iterator;
887 next_result_ = next_result;
888 result_done_ = result_done;
889 assign_each_ = assign_each;
892 Expression* iterable() const {
896 // iterator = subject[Symbol.iterator]()
897 Expression* assign_iterator() const {
898 return assign_iterator_;
901 // result = iterator.next() // with type check
902 Expression* next_result() const {
907 Expression* result_done() const {
911 // each = result.value
912 Expression* assign_each() const {
916 BailoutId ContinueId() const override { return EntryId(); }
917 BailoutId StackCheckId() const override { return BackEdgeId(); }
919 static int num_ids() { return parent_num_ids() + 1; }
920 BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
923 ForOfStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
924 : ForEachStatement(zone, labels, pos),
925 assign_iterator_(NULL),
928 assign_each_(NULL) {}
929 static int parent_num_ids() { return ForEachStatement::num_ids(); }
932 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
934 Expression* assign_iterator_;
935 Expression* next_result_;
936 Expression* result_done_;
937 Expression* assign_each_;
941 class ExpressionStatement final : public Statement {
943 DECLARE_NODE_TYPE(ExpressionStatement)
945 void set_expression(Expression* e) { expression_ = e; }
946 Expression* expression() const { return expression_; }
947 bool IsJump() const override { return expression_->IsThrow(); }
950 ExpressionStatement(Zone* zone, Expression* expression, int pos)
951 : Statement(zone, pos), expression_(expression) { }
954 Expression* expression_;
958 class JumpStatement : public Statement {
960 bool IsJump() const final { return true; }
963 explicit JumpStatement(Zone* zone, int pos) : Statement(zone, pos) {}
967 class ContinueStatement final : public JumpStatement {
969 DECLARE_NODE_TYPE(ContinueStatement)
971 IterationStatement* target() const { return target_; }
974 explicit ContinueStatement(Zone* zone, IterationStatement* target, int pos)
975 : JumpStatement(zone, pos), target_(target) { }
978 IterationStatement* target_;
982 class BreakStatement final : public JumpStatement {
984 DECLARE_NODE_TYPE(BreakStatement)
986 BreakableStatement* target() const { return target_; }
989 explicit BreakStatement(Zone* zone, BreakableStatement* target, int pos)
990 : JumpStatement(zone, pos), target_(target) { }
993 BreakableStatement* target_;
997 class ReturnStatement final : public JumpStatement {
999 DECLARE_NODE_TYPE(ReturnStatement)
1001 Expression* expression() const { return expression_; }
1004 explicit ReturnStatement(Zone* zone, Expression* expression, int pos)
1005 : JumpStatement(zone, pos), expression_(expression) { }
1008 Expression* expression_;
1012 class WithStatement final : public Statement {
1014 DECLARE_NODE_TYPE(WithStatement)
1016 Scope* scope() { return scope_; }
1017 Expression* expression() const { return expression_; }
1018 Statement* statement() const { return statement_; }
1020 void set_base_id(int id) { base_id_ = id; }
1021 static int num_ids() { return parent_num_ids() + 1; }
1022 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1025 WithStatement(Zone* zone, Scope* scope, Expression* expression,
1026 Statement* statement, int pos)
1027 : Statement(zone, pos),
1029 expression_(expression),
1030 statement_(statement),
1031 base_id_(BailoutId::None().ToInt()) {}
1032 static int parent_num_ids() { return 0; }
1034 int base_id() const {
1035 DCHECK(!BailoutId(base_id_).IsNone());
1040 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1043 Expression* expression_;
1044 Statement* statement_;
1049 class CaseClause final : public Expression {
1051 DECLARE_NODE_TYPE(CaseClause)
1053 bool is_default() const { return label_ == NULL; }
1054 Expression* label() const {
1055 CHECK(!is_default());
1058 Label* body_target() { return &body_target_; }
1059 ZoneList<Statement*>* statements() const { return statements_; }
1061 static int num_ids() { return parent_num_ids() + 2; }
1062 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1063 TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
1065 Type* compare_type() { return compare_type_; }
1066 void set_compare_type(Type* type) { compare_type_ = type; }
1069 static int parent_num_ids() { return Expression::num_ids(); }
1072 CaseClause(Zone* zone, Expression* label, ZoneList<Statement*>* statements,
1074 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1078 ZoneList<Statement*>* statements_;
1079 Type* compare_type_;
1083 class SwitchStatement final : public BreakableStatement {
1085 DECLARE_NODE_TYPE(SwitchStatement)
1087 void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
1092 Expression* tag() const { return tag_; }
1093 ZoneList<CaseClause*>* cases() const { return cases_; }
1096 SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
1097 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
1103 ZoneList<CaseClause*>* cases_;
1107 // If-statements always have non-null references to their then- and
1108 // else-parts. When parsing if-statements with no explicit else-part,
1109 // the parser implicitly creates an empty statement. Use the
1110 // HasThenStatement() and HasElseStatement() functions to check if a
1111 // given if-statement has a then- or an else-part containing code.
1112 class IfStatement final : public Statement {
1114 DECLARE_NODE_TYPE(IfStatement)
1116 bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
1117 bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
1119 Expression* condition() const { return condition_; }
1120 Statement* then_statement() const { return then_statement_; }
1121 Statement* else_statement() const { return else_statement_; }
1123 bool IsJump() const override {
1124 return HasThenStatement() && then_statement()->IsJump()
1125 && HasElseStatement() && else_statement()->IsJump();
1128 void set_base_id(int id) { base_id_ = id; }
1129 static int num_ids() { return parent_num_ids() + 3; }
1130 BailoutId IfId() const { return BailoutId(local_id(0)); }
1131 BailoutId ThenId() const { return BailoutId(local_id(1)); }
1132 BailoutId ElseId() const { return BailoutId(local_id(2)); }
1135 IfStatement(Zone* zone, Expression* condition, Statement* then_statement,
1136 Statement* else_statement, int pos)
1137 : Statement(zone, pos),
1138 condition_(condition),
1139 then_statement_(then_statement),
1140 else_statement_(else_statement),
1141 base_id_(BailoutId::None().ToInt()) {}
1142 static int parent_num_ids() { return 0; }
1144 int base_id() const {
1145 DCHECK(!BailoutId(base_id_).IsNone());
1150 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1152 Expression* condition_;
1153 Statement* then_statement_;
1154 Statement* else_statement_;
1159 class TryStatement : public Statement {
1161 int index() const { return index_; }
1162 Block* try_block() const { return try_block_; }
1165 TryStatement(Zone* zone, int index, Block* try_block, int pos)
1166 : Statement(zone, pos), index_(index), try_block_(try_block) {}
1169 // Unique (per-function) index of this handler. This is not an AST ID.
1176 class TryCatchStatement final : public TryStatement {
1178 DECLARE_NODE_TYPE(TryCatchStatement)
1180 Scope* scope() { return scope_; }
1181 Variable* variable() { return variable_; }
1182 Block* catch_block() const { return catch_block_; }
1185 TryCatchStatement(Zone* zone,
1192 : TryStatement(zone, index, try_block, pos),
1194 variable_(variable),
1195 catch_block_(catch_block) {
1200 Variable* variable_;
1201 Block* catch_block_;
1205 class TryFinallyStatement final : public TryStatement {
1207 DECLARE_NODE_TYPE(TryFinallyStatement)
1209 Block* finally_block() const { return finally_block_; }
1212 TryFinallyStatement(
1213 Zone* zone, int index, Block* try_block, Block* finally_block, int pos)
1214 : TryStatement(zone, index, try_block, pos),
1215 finally_block_(finally_block) { }
1218 Block* finally_block_;
1222 class DebuggerStatement final : public Statement {
1224 DECLARE_NODE_TYPE(DebuggerStatement)
1226 void set_base_id(int id) { base_id_ = id; }
1227 static int num_ids() { return parent_num_ids() + 1; }
1228 BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
1231 explicit DebuggerStatement(Zone* zone, int pos)
1232 : Statement(zone, pos), base_id_(BailoutId::None().ToInt()) {}
1233 static int parent_num_ids() { return 0; }
1235 int base_id() const {
1236 DCHECK(!BailoutId(base_id_).IsNone());
1241 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1247 class EmptyStatement final : public Statement {
1249 DECLARE_NODE_TYPE(EmptyStatement)
1252 explicit EmptyStatement(Zone* zone, int pos): Statement(zone, pos) {}
1256 class Literal final : public Expression {
1258 DECLARE_NODE_TYPE(Literal)
1260 bool IsPropertyName() const override { return value_->IsPropertyName(); }
1262 Handle<String> AsPropertyName() {
1263 DCHECK(IsPropertyName());
1264 return Handle<String>::cast(value());
1267 const AstRawString* AsRawPropertyName() {
1268 DCHECK(IsPropertyName());
1269 return value_->AsString();
1272 bool ToBooleanIsTrue() const override { return value()->BooleanValue(); }
1273 bool ToBooleanIsFalse() const override { return !value()->BooleanValue(); }
1275 Handle<Object> value() const { return value_->value(); }
1276 const AstValue* raw_value() const { return value_; }
1278 // Support for using Literal as a HashMap key. NOTE: Currently, this works
1279 // only for string and number literals!
1281 static bool Match(void* literal1, void* literal2);
1283 static int num_ids() { return parent_num_ids() + 1; }
1284 TypeFeedbackId LiteralFeedbackId() const {
1285 return TypeFeedbackId(local_id(0));
1289 Literal(Zone* zone, const AstValue* value, int position)
1290 : Expression(zone, position), value_(value) {}
1291 static int parent_num_ids() { return Expression::num_ids(); }
1294 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1296 const AstValue* value_;
1300 // Base class for literals that needs space in the corresponding JSFunction.
1301 class MaterializedLiteral : public Expression {
1303 virtual MaterializedLiteral* AsMaterializedLiteral() { return this; }
1305 int literal_index() { return literal_index_; }
1308 // only callable after initialization.
1309 DCHECK(depth_ >= 1);
1314 MaterializedLiteral(Zone* zone, int literal_index, int pos)
1315 : Expression(zone, pos),
1316 literal_index_(literal_index),
1320 // A materialized literal is simple if the values consist of only
1321 // constants and simple object and array literals.
1322 bool is_simple() const { return is_simple_; }
1323 void set_is_simple(bool is_simple) { is_simple_ = is_simple; }
1324 friend class CompileTimeValue;
1326 void set_depth(int depth) {
1331 // Populate the constant properties/elements fixed array.
1332 void BuildConstants(Isolate* isolate);
1333 friend class ArrayLiteral;
1334 friend class ObjectLiteral;
1336 // If the expression is a literal, return the literal value;
1337 // if the expression is a materialized literal and is simple return a
1338 // compile time value as encoded by CompileTimeValue::GetValue().
1339 // Otherwise, return undefined literal as the placeholder
1340 // in the object literal boilerplate.
1341 Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
1350 // Property is used for passing information
1351 // about an object literal's properties from the parser
1352 // to the code generator.
1353 class ObjectLiteralProperty final : public ZoneObject {
1356 CONSTANT, // Property with constant value (compile time).
1357 COMPUTED, // Property with computed value (execution time).
1358 MATERIALIZED_LITERAL, // Property value is a materialized literal.
1359 GETTER, SETTER, // Property is an accessor function.
1360 PROTOTYPE // Property is __proto__.
1363 Expression* key() { return key_; }
1364 Expression* value() { return value_; }
1365 Kind kind() { return kind_; }
1367 // Type feedback information.
1368 bool IsMonomorphic() { return !receiver_type_.is_null(); }
1369 Handle<Map> GetReceiverType() { return receiver_type_; }
1371 bool IsCompileTimeValue();
1373 void set_emit_store(bool emit_store);
1376 bool is_static() const { return is_static_; }
1377 bool is_computed_name() const { return is_computed_name_; }
1379 void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
1382 friend class AstNodeFactory;
1384 ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
1385 bool is_static, bool is_computed_name);
1386 ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
1387 Expression* value, bool is_static,
1388 bool is_computed_name);
1396 bool is_computed_name_;
1397 Handle<Map> receiver_type_;
1401 // An object literal has a boilerplate object that is used
1402 // for minimizing the work when constructing it at runtime.
1403 class ObjectLiteral final : public MaterializedLiteral {
1405 typedef ObjectLiteralProperty Property;
1407 DECLARE_NODE_TYPE(ObjectLiteral)
1409 Handle<FixedArray> constant_properties() const {
1410 return constant_properties_;
1412 int properties_count() const { return constant_properties_->length() / 2; }
1413 ZoneList<Property*>* properties() const { return properties_; }
1414 bool fast_elements() const { return fast_elements_; }
1415 bool may_store_doubles() const { return may_store_doubles_; }
1416 bool has_function() const { return has_function_; }
1417 bool has_elements() const { return has_elements_; }
1419 // Decide if a property should be in the object boilerplate.
1420 static bool IsBoilerplateProperty(Property* property);
1422 // Populate the constant properties fixed array.
1423 void BuildConstantProperties(Isolate* isolate);
1425 // Mark all computed expressions that are bound to a key that
1426 // is shadowed by a later occurrence of the same key. For the
1427 // marked expressions, no store code is emitted.
1428 void CalculateEmitStore(Zone* zone);
1430 // Assemble bitfield of flags for the CreateObjectLiteral helper.
1431 int ComputeFlags(bool disable_mementos = false) const {
1432 int flags = fast_elements() ? kFastElements : kNoFlags;
1433 flags |= has_function() ? kHasFunction : kNoFlags;
1434 if (depth() == 1 && !has_elements() && !may_store_doubles()) {
1435 flags |= kShallowProperties;
1437 if (disable_mementos) {
1438 flags |= kDisableMementos;
1446 kHasFunction = 1 << 1,
1447 kShallowProperties = 1 << 2,
1448 kDisableMementos = 1 << 3
1451 struct Accessors: public ZoneObject {
1452 Accessors() : getter(NULL), setter(NULL) {}
1457 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1459 // Return an AST id for a property that is used in simulate instructions.
1460 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 1)); }
1462 // Unlike other AST nodes, this number of bailout IDs allocated for an
1463 // ObjectLiteral can vary, so num_ids() is not a static method.
1464 int num_ids() const { return parent_num_ids() + 1 + properties()->length(); }
1467 ObjectLiteral(Zone* zone, ZoneList<Property*>* properties, int literal_index,
1468 int boilerplate_properties, bool has_function, int pos)
1469 : MaterializedLiteral(zone, literal_index, pos),
1470 properties_(properties),
1471 boilerplate_properties_(boilerplate_properties),
1472 fast_elements_(false),
1473 has_elements_(false),
1474 may_store_doubles_(false),
1475 has_function_(has_function) {}
1476 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1479 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1480 Handle<FixedArray> constant_properties_;
1481 ZoneList<Property*>* properties_;
1482 int boilerplate_properties_;
1483 bool fast_elements_;
1485 bool may_store_doubles_;
1490 // Node for capturing a regexp literal.
1491 class RegExpLiteral final : public MaterializedLiteral {
1493 DECLARE_NODE_TYPE(RegExpLiteral)
1495 Handle<String> pattern() const { return pattern_->string(); }
1496 Handle<String> flags() const { return flags_->string(); }
1499 RegExpLiteral(Zone* zone, const AstRawString* pattern,
1500 const AstRawString* flags, int literal_index, int pos)
1501 : MaterializedLiteral(zone, literal_index, pos),
1508 const AstRawString* pattern_;
1509 const AstRawString* flags_;
1513 // An array literal has a literals object that is used
1514 // for minimizing the work when constructing it at runtime.
1515 class ArrayLiteral final : public MaterializedLiteral {
1517 DECLARE_NODE_TYPE(ArrayLiteral)
1519 Handle<FixedArray> constant_elements() const { return constant_elements_; }
1520 ElementsKind constant_elements_kind() const {
1521 DCHECK_EQ(2, constant_elements_->length());
1522 return static_cast<ElementsKind>(
1523 Smi::cast(constant_elements_->get(0))->value());
1526 ZoneList<Expression*>* values() const { return values_; }
1528 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1530 // Return an AST id for an element that is used in simulate instructions.
1531 BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
1533 // Unlike other AST nodes, this number of bailout IDs allocated for an
1534 // ArrayLiteral can vary, so num_ids() is not a static method.
1535 int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
1537 // Populate the constant elements fixed array.
1538 void BuildConstantElements(Isolate* isolate);
1540 // Assemble bitfield of flags for the CreateArrayLiteral helper.
1541 int ComputeFlags(bool disable_mementos = false) const {
1542 int flags = depth() == 1 ? kShallowElements : kNoFlags;
1543 if (disable_mementos) {
1544 flags |= kDisableMementos;
1551 kShallowElements = 1,
1552 kDisableMementos = 1 << 1
1556 ArrayLiteral(Zone* zone, ZoneList<Expression*>* values, int literal_index,
1558 : MaterializedLiteral(zone, literal_index, pos), values_(values) {}
1559 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1562 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1564 Handle<FixedArray> constant_elements_;
1565 ZoneList<Expression*>* values_;
1569 class VariableProxy final : public Expression {
1571 DECLARE_NODE_TYPE(VariableProxy)
1573 bool IsValidReferenceExpression() const override { return !is_this(); }
1575 bool IsArguments() const { return is_resolved() && var()->is_arguments(); }
1577 Handle<String> name() const { return raw_name()->string(); }
1578 const AstRawString* raw_name() const {
1579 return is_resolved() ? var_->raw_name() : raw_name_;
1582 Variable* var() const {
1583 DCHECK(is_resolved());
1586 void set_var(Variable* v) {
1587 DCHECK(!is_resolved());
1592 bool is_this() const { return IsThisField::decode(bit_field_); }
1594 bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
1595 void set_is_assigned() {
1596 bit_field_ = IsAssignedField::update(bit_field_, true);
1599 bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
1600 void set_is_resolved() {
1601 bit_field_ = IsResolvedField::update(bit_field_, true);
1604 int end_position() const { return end_position_; }
1606 // Bind this proxy to the variable var.
1607 void BindTo(Variable* var);
1609 bool UsesVariableFeedbackSlot() const {
1610 return FLAG_vector_ics && (var()->IsUnallocated() || var()->IsLookupSlot());
1613 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1614 Isolate* isolate, const ICSlotCache* cache) override;
1616 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1617 ICSlotCache* cache) override;
1618 Code::Kind FeedbackICSlotKind(int index) override { return Code::LOAD_IC; }
1619 FeedbackVectorICSlot VariableFeedbackSlot() {
1620 DCHECK(!UsesVariableFeedbackSlot() || !variable_feedback_slot_.IsInvalid());
1621 return variable_feedback_slot_;
1625 VariableProxy(Zone* zone, Variable* var, int start_position,
1628 VariableProxy(Zone* zone, const AstRawString* name,
1629 Variable::Kind variable_kind, int start_position,
1632 class IsThisField : public BitField8<bool, 0, 1> {};
1633 class IsAssignedField : public BitField8<bool, 1, 1> {};
1634 class IsResolvedField : public BitField8<bool, 2, 1> {};
1636 // Start with 16-bit (or smaller) field, which should get packed together
1637 // with Expression's trailing 16-bit field.
1639 FeedbackVectorICSlot variable_feedback_slot_;
1641 const AstRawString* raw_name_; // if !is_resolved_
1642 Variable* var_; // if is_resolved_
1644 // Position is stored in the AstNode superclass, but VariableProxy needs to
1645 // know its end position too (for error messages). It cannot be inferred from
1646 // the variable name length because it can contain escapes.
1651 class Property final : public Expression {
1653 DECLARE_NODE_TYPE(Property)
1655 bool IsValidReferenceExpression() const override { return true; }
1657 Expression* obj() const { return obj_; }
1658 Expression* key() const { return key_; }
1660 static int num_ids() { return parent_num_ids() + 2; }
1661 BailoutId LoadId() const { return BailoutId(local_id(0)); }
1662 TypeFeedbackId PropertyFeedbackId() { return TypeFeedbackId(local_id(1)); }
1664 bool IsStringAccess() const {
1665 return IsStringAccessField::decode(bit_field_);
1668 // Type feedback information.
1669 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
1670 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
1671 KeyedAccessStoreMode GetStoreMode() const override { return STANDARD_STORE; }
1672 IcCheckType GetKeyType() const override {
1673 return KeyTypeField::decode(bit_field_);
1675 bool IsUninitialized() const {
1676 return !is_for_call() && HasNoTypeInformation();
1678 bool HasNoTypeInformation() const {
1679 return GetInlineCacheState() == UNINITIALIZED;
1681 InlineCacheState GetInlineCacheState() const {
1682 return InlineCacheStateField::decode(bit_field_);
1684 void set_is_string_access(bool b) {
1685 bit_field_ = IsStringAccessField::update(bit_field_, b);
1687 void set_key_type(IcCheckType key_type) {
1688 bit_field_ = KeyTypeField::update(bit_field_, key_type);
1690 void set_inline_cache_state(InlineCacheState state) {
1691 bit_field_ = InlineCacheStateField::update(bit_field_, state);
1693 void mark_for_call() {
1694 bit_field_ = IsForCallField::update(bit_field_, true);
1696 bool is_for_call() const { return IsForCallField::decode(bit_field_); }
1698 bool IsSuperAccess() {
1699 return obj()->IsSuperReference();
1702 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1703 Isolate* isolate, const ICSlotCache* cache) override {
1704 return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
1706 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1707 ICSlotCache* cache) override {
1708 property_feedback_slot_ = slot;
1710 Code::Kind FeedbackICSlotKind(int index) override {
1711 return key()->IsPropertyName() ? Code::LOAD_IC : Code::KEYED_LOAD_IC;
1714 FeedbackVectorICSlot PropertyFeedbackSlot() const {
1715 DCHECK(!FLAG_vector_ics || !property_feedback_slot_.IsInvalid());
1716 return property_feedback_slot_;
1720 Property(Zone* zone, Expression* obj, Expression* key, int pos)
1721 : Expression(zone, pos),
1722 bit_field_(IsForCallField::encode(false) |
1723 IsStringAccessField::encode(false) |
1724 InlineCacheStateField::encode(UNINITIALIZED)),
1725 property_feedback_slot_(FeedbackVectorICSlot::Invalid()),
1728 static int parent_num_ids() { return Expression::num_ids(); }
1731 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1733 class IsForCallField : public BitField8<bool, 0, 1> {};
1734 class IsStringAccessField : public BitField8<bool, 1, 1> {};
1735 class KeyTypeField : public BitField8<IcCheckType, 2, 1> {};
1736 class InlineCacheStateField : public BitField8<InlineCacheState, 3, 4> {};
1738 FeedbackVectorICSlot property_feedback_slot_;
1741 SmallMapList receiver_types_;
1745 class Call final : public Expression {
1747 DECLARE_NODE_TYPE(Call)
1749 Expression* expression() const { return expression_; }
1750 ZoneList<Expression*>* arguments() const { return arguments_; }
1752 // Type feedback information.
1753 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1754 Isolate* isolate, const ICSlotCache* cache) override;
1755 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1756 ICSlotCache* cache) override {
1757 ic_slot_or_slot_ = slot.ToInt();
1759 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) override {
1760 ic_slot_or_slot_ = slot.ToInt();
1762 Code::Kind FeedbackICSlotKind(int index) override { return Code::CALL_IC; }
1764 FeedbackVectorSlot CallFeedbackSlot() const {
1765 DCHECK(ic_slot_or_slot_ != FeedbackVectorSlot::Invalid().ToInt());
1766 return FeedbackVectorSlot(ic_slot_or_slot_);
1769 FeedbackVectorICSlot CallFeedbackICSlot() const {
1770 DCHECK(ic_slot_or_slot_ != FeedbackVectorICSlot::Invalid().ToInt());
1771 return FeedbackVectorICSlot(ic_slot_or_slot_);
1774 SmallMapList* GetReceiverTypes() override {
1775 if (expression()->IsProperty()) {
1776 return expression()->AsProperty()->GetReceiverTypes();
1781 bool IsMonomorphic() override {
1782 if (expression()->IsProperty()) {
1783 return expression()->AsProperty()->IsMonomorphic();
1785 return !target_.is_null();
1788 bool global_call() const {
1789 VariableProxy* proxy = expression_->AsVariableProxy();
1790 return proxy != NULL && proxy->var()->IsUnallocated();
1793 bool known_global_function() const {
1794 return global_call() && !target_.is_null();
1797 Handle<JSFunction> target() { return target_; }
1799 Handle<AllocationSite> allocation_site() { return allocation_site_; }
1801 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1803 set_is_uninitialized(false);
1805 void set_target(Handle<JSFunction> target) { target_ = target; }
1806 void set_allocation_site(Handle<AllocationSite> site) {
1807 allocation_site_ = site;
1810 static int num_ids() { return parent_num_ids() + 2; }
1811 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1812 BailoutId EvalOrLookupId() const { return BailoutId(local_id(1)); }
1814 bool is_uninitialized() const {
1815 return IsUninitializedField::decode(bit_field_);
1817 void set_is_uninitialized(bool b) {
1818 bit_field_ = IsUninitializedField::update(bit_field_, b);
1821 void MarkShouldHandleMinusZeroResult() {
1822 bit_field_ = ShouldHandleMinusZeroResultField::update(bit_field_, true);
1824 bool ShouldHandleMinusZeroResult() {
1825 return ShouldHandleMinusZeroResultField::decode(bit_field_);
1837 // Helpers to determine how to handle the call.
1838 CallType GetCallType(Isolate* isolate) const;
1839 bool IsUsingCallFeedbackSlot(Isolate* isolate) const;
1840 bool IsUsingCallFeedbackICSlot(Isolate* isolate) const;
1843 // Used to assert that the FullCodeGenerator records the return site.
1844 bool return_is_recorded_;
1848 Call(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
1850 : Expression(zone, pos),
1851 ic_slot_or_slot_(FeedbackVectorICSlot::Invalid().ToInt()),
1852 expression_(expression),
1853 arguments_(arguments),
1854 bit_field_(IsUninitializedField::encode(false) |
1855 ShouldHandleMinusZeroResultField::encode(false)) {
1856 if (expression->IsProperty()) {
1857 expression->AsProperty()->mark_for_call();
1860 static int parent_num_ids() { return Expression::num_ids(); }
1863 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1865 // We store this as an integer because we don't know if we have a slot or
1866 // an ic slot until scoping time.
1867 int ic_slot_or_slot_;
1868 Expression* expression_;
1869 ZoneList<Expression*>* arguments_;
1870 Handle<JSFunction> target_;
1871 Handle<AllocationSite> allocation_site_;
1872 class IsUninitializedField : public BitField8<bool, 0, 1> {};
1873 class ShouldHandleMinusZeroResultField : public BitField8<bool, 1, 1> {};
1878 class CallNew final : public Expression {
1880 DECLARE_NODE_TYPE(CallNew)
1882 Expression* expression() const { return expression_; }
1883 ZoneList<Expression*>* arguments() const { return arguments_; }
1885 // Type feedback information.
1886 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1887 Isolate* isolate, const ICSlotCache* cache) override {
1888 return FeedbackVectorRequirements(FLAG_pretenuring_call_new ? 2 : 1, 0);
1890 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) override {
1891 callnew_feedback_slot_ = slot;
1894 FeedbackVectorSlot CallNewFeedbackSlot() {
1895 DCHECK(!callnew_feedback_slot_.IsInvalid());
1896 return callnew_feedback_slot_;
1898 FeedbackVectorSlot AllocationSiteFeedbackSlot() {
1899 DCHECK(FLAG_pretenuring_call_new);
1900 return CallNewFeedbackSlot().next();
1903 bool IsMonomorphic() override { return is_monomorphic_; }
1904 Handle<JSFunction> target() const { return target_; }
1905 Handle<AllocationSite> allocation_site() const {
1906 return allocation_site_;
1909 static int num_ids() { return parent_num_ids() + 1; }
1910 static int feedback_slots() { return 1; }
1911 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1913 void set_allocation_site(Handle<AllocationSite> site) {
1914 allocation_site_ = site;
1916 void set_is_monomorphic(bool monomorphic) { is_monomorphic_ = monomorphic; }
1917 void set_target(Handle<JSFunction> target) { target_ = target; }
1918 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1920 is_monomorphic_ = true;
1924 CallNew(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
1926 : Expression(zone, pos),
1927 expression_(expression),
1928 arguments_(arguments),
1929 is_monomorphic_(false),
1930 callnew_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
1932 static int parent_num_ids() { return Expression::num_ids(); }
1935 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1937 Expression* expression_;
1938 ZoneList<Expression*>* arguments_;
1939 bool is_monomorphic_;
1940 Handle<JSFunction> target_;
1941 Handle<AllocationSite> allocation_site_;
1942 FeedbackVectorSlot callnew_feedback_slot_;
1946 // The CallRuntime class does not represent any official JavaScript
1947 // language construct. Instead it is used to call a C or JS function
1948 // with a set of arguments. This is used from the builtins that are
1949 // implemented in JavaScript (see "v8natives.js").
1950 class CallRuntime final : public Expression {
1952 DECLARE_NODE_TYPE(CallRuntime)
1954 Handle<String> name() const { return raw_name_->string(); }
1955 const AstRawString* raw_name() const { return raw_name_; }
1956 const Runtime::Function* function() const { return function_; }
1957 ZoneList<Expression*>* arguments() const { return arguments_; }
1958 bool is_jsruntime() const { return function_ == NULL; }
1960 // Type feedback information.
1961 bool HasCallRuntimeFeedbackSlot() const {
1962 return FLAG_vector_ics && is_jsruntime();
1964 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1965 Isolate* isolate, const ICSlotCache* cache) override {
1966 return FeedbackVectorRequirements(0, HasCallRuntimeFeedbackSlot() ? 1 : 0);
1968 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1969 ICSlotCache* cache) override {
1970 callruntime_feedback_slot_ = slot;
1972 Code::Kind FeedbackICSlotKind(int index) override { return Code::LOAD_IC; }
1974 FeedbackVectorICSlot CallRuntimeFeedbackSlot() {
1975 DCHECK(!HasCallRuntimeFeedbackSlot() ||
1976 !callruntime_feedback_slot_.IsInvalid());
1977 return callruntime_feedback_slot_;
1980 static int num_ids() { return parent_num_ids() + 1; }
1981 TypeFeedbackId CallRuntimeFeedbackId() const {
1982 return TypeFeedbackId(local_id(0));
1986 CallRuntime(Zone* zone, const AstRawString* name,
1987 const Runtime::Function* function,
1988 ZoneList<Expression*>* arguments, int pos)
1989 : Expression(zone, pos),
1991 function_(function),
1992 arguments_(arguments),
1993 callruntime_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
1994 static int parent_num_ids() { return Expression::num_ids(); }
1997 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1999 const AstRawString* raw_name_;
2000 const Runtime::Function* function_;
2001 ZoneList<Expression*>* arguments_;
2002 FeedbackVectorICSlot callruntime_feedback_slot_;
2006 class UnaryOperation final : public Expression {
2008 DECLARE_NODE_TYPE(UnaryOperation)
2010 Token::Value op() const { return op_; }
2011 Expression* expression() const { return expression_; }
2013 // For unary not (Token::NOT), the AST ids where true and false will
2014 // actually be materialized, respectively.
2015 static int num_ids() { return parent_num_ids() + 2; }
2016 BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
2017 BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
2019 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2022 UnaryOperation(Zone* zone, Token::Value op, Expression* expression, int pos)
2023 : Expression(zone, pos), op_(op), expression_(expression) {
2024 DCHECK(Token::IsUnaryOp(op));
2026 static int parent_num_ids() { return Expression::num_ids(); }
2029 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2032 Expression* expression_;
2036 class BinaryOperation final : public Expression {
2038 DECLARE_NODE_TYPE(BinaryOperation)
2040 Token::Value op() const { return static_cast<Token::Value>(op_); }
2041 Expression* left() const { return left_; }
2042 Expression* right() const { return right_; }
2043 Handle<AllocationSite> allocation_site() const { return allocation_site_; }
2044 void set_allocation_site(Handle<AllocationSite> allocation_site) {
2045 allocation_site_ = allocation_site;
2048 // The short-circuit logical operations need an AST ID for their
2049 // right-hand subexpression.
2050 static int num_ids() { return parent_num_ids() + 2; }
2051 BailoutId RightId() const { return BailoutId(local_id(0)); }
2053 TypeFeedbackId BinaryOperationFeedbackId() const {
2054 return TypeFeedbackId(local_id(1));
2056 Maybe<int> fixed_right_arg() const {
2057 return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
2059 void set_fixed_right_arg(Maybe<int> arg) {
2060 has_fixed_right_arg_ = arg.IsJust();
2061 if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
2064 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) override;
2067 BinaryOperation(Zone* zone, Token::Value op, Expression* left,
2068 Expression* right, int pos)
2069 : Expression(zone, pos),
2070 op_(static_cast<byte>(op)),
2071 has_fixed_right_arg_(false),
2072 fixed_right_arg_value_(0),
2075 DCHECK(Token::IsBinaryOp(op));
2077 static int parent_num_ids() { return Expression::num_ids(); }
2080 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2082 const byte op_; // actually Token::Value
2083 // TODO(rossberg): the fixed arg should probably be represented as a Constant
2084 // type for the RHS. Currenty it's actually a Maybe<int>
2085 bool has_fixed_right_arg_;
2086 int fixed_right_arg_value_;
2089 Handle<AllocationSite> allocation_site_;
2093 class CountOperation final : public Expression {
2095 DECLARE_NODE_TYPE(CountOperation)
2097 bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
2098 bool is_postfix() const { return !is_prefix(); }
2100 Token::Value op() const { return TokenField::decode(bit_field_); }
2101 Token::Value binary_op() {
2102 return (op() == Token::INC) ? Token::ADD : Token::SUB;
2105 Expression* expression() const { return expression_; }
2107 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2108 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2109 IcCheckType GetKeyType() const override {
2110 return KeyTypeField::decode(bit_field_);
2112 KeyedAccessStoreMode GetStoreMode() const override {
2113 return StoreModeField::decode(bit_field_);
2115 Type* type() const { return type_; }
2116 void set_key_type(IcCheckType type) {
2117 bit_field_ = KeyTypeField::update(bit_field_, type);
2119 void set_store_mode(KeyedAccessStoreMode mode) {
2120 bit_field_ = StoreModeField::update(bit_field_, mode);
2122 void set_type(Type* type) { type_ = type; }
2124 static int num_ids() { return parent_num_ids() + 4; }
2125 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2126 BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
2127 TypeFeedbackId CountBinOpFeedbackId() const {
2128 return TypeFeedbackId(local_id(2));
2130 TypeFeedbackId CountStoreFeedbackId() const {
2131 return TypeFeedbackId(local_id(3));
2135 CountOperation(Zone* zone, Token::Value op, bool is_prefix, Expression* expr,
2137 : Expression(zone, pos),
2138 bit_field_(IsPrefixField::encode(is_prefix) |
2139 KeyTypeField::encode(ELEMENT) |
2140 StoreModeField::encode(STANDARD_STORE) |
2141 TokenField::encode(op)),
2143 expression_(expr) {}
2144 static int parent_num_ids() { return Expression::num_ids(); }
2147 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2149 class IsPrefixField : public BitField16<bool, 0, 1> {};
2150 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2151 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
2152 class TokenField : public BitField16<Token::Value, 6, 8> {};
2154 // Starts with 16-bit field, which should get packed together with
2155 // Expression's trailing 16-bit field.
2156 uint16_t bit_field_;
2158 Expression* expression_;
2159 SmallMapList receiver_types_;
2163 class CompareOperation final : public Expression {
2165 DECLARE_NODE_TYPE(CompareOperation)
2167 Token::Value op() const { return op_; }
2168 Expression* left() const { return left_; }
2169 Expression* right() const { return right_; }
2171 // Type feedback information.
2172 static int num_ids() { return parent_num_ids() + 1; }
2173 TypeFeedbackId CompareOperationFeedbackId() const {
2174 return TypeFeedbackId(local_id(0));
2176 Type* combined_type() const { return combined_type_; }
2177 void set_combined_type(Type* type) { combined_type_ = type; }
2179 // Match special cases.
2180 bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
2181 bool IsLiteralCompareUndefined(Expression** expr, Isolate* isolate);
2182 bool IsLiteralCompareNull(Expression** expr);
2185 CompareOperation(Zone* zone, Token::Value op, Expression* left,
2186 Expression* right, int pos)
2187 : Expression(zone, pos),
2191 combined_type_(Type::None(zone)) {
2192 DCHECK(Token::IsCompareOp(op));
2194 static int parent_num_ids() { return Expression::num_ids(); }
2197 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2203 Type* combined_type_;
2207 class Spread final : public Expression {
2209 DECLARE_NODE_TYPE(Spread)
2211 Expression* expression() const { return expression_; }
2213 static int num_ids() { return parent_num_ids(); }
2216 Spread(Zone* zone, Expression* expression, int pos)
2217 : Expression(zone, pos), expression_(expression) {}
2218 static int parent_num_ids() { return Expression::num_ids(); }
2221 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2223 Expression* expression_;
2227 class Conditional final : public Expression {
2229 DECLARE_NODE_TYPE(Conditional)
2231 Expression* condition() const { return condition_; }
2232 Expression* then_expression() const { return then_expression_; }
2233 Expression* else_expression() const { return else_expression_; }
2235 static int num_ids() { return parent_num_ids() + 2; }
2236 BailoutId ThenId() const { return BailoutId(local_id(0)); }
2237 BailoutId ElseId() const { return BailoutId(local_id(1)); }
2240 Conditional(Zone* zone, Expression* condition, Expression* then_expression,
2241 Expression* else_expression, int position)
2242 : Expression(zone, position),
2243 condition_(condition),
2244 then_expression_(then_expression),
2245 else_expression_(else_expression) {}
2246 static int parent_num_ids() { return Expression::num_ids(); }
2249 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2251 Expression* condition_;
2252 Expression* then_expression_;
2253 Expression* else_expression_;
2257 class Assignment final : public Expression {
2259 DECLARE_NODE_TYPE(Assignment)
2261 Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
2263 Token::Value binary_op() const;
2265 Token::Value op() const { return TokenField::decode(bit_field_); }
2266 Expression* target() const { return target_; }
2267 Expression* value() const { return value_; }
2268 BinaryOperation* binary_operation() const { return binary_operation_; }
2270 // This check relies on the definition order of token in token.h.
2271 bool is_compound() const { return op() > Token::ASSIGN; }
2273 static int num_ids() { return parent_num_ids() + 2; }
2274 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2276 // Type feedback information.
2277 TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
2278 bool IsMonomorphic() override { return receiver_types_.length() == 1; }
2279 bool IsUninitialized() const {
2280 return IsUninitializedField::decode(bit_field_);
2282 bool HasNoTypeInformation() {
2283 return IsUninitializedField::decode(bit_field_);
2285 SmallMapList* GetReceiverTypes() override { return &receiver_types_; }
2286 IcCheckType GetKeyType() const override {
2287 return KeyTypeField::decode(bit_field_);
2289 KeyedAccessStoreMode GetStoreMode() const override {
2290 return StoreModeField::decode(bit_field_);
2292 void set_is_uninitialized(bool b) {
2293 bit_field_ = IsUninitializedField::update(bit_field_, b);
2295 void set_key_type(IcCheckType key_type) {
2296 bit_field_ = KeyTypeField::update(bit_field_, key_type);
2298 void set_store_mode(KeyedAccessStoreMode mode) {
2299 bit_field_ = StoreModeField::update(bit_field_, mode);
2303 Assignment(Zone* zone, Token::Value op, Expression* target, Expression* value,
2305 static int parent_num_ids() { return Expression::num_ids(); }
2308 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2310 class IsUninitializedField : public BitField16<bool, 0, 1> {};
2311 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2312 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
2313 class TokenField : public BitField16<Token::Value, 6, 8> {};
2315 // Starts with 16-bit field, which should get packed together with
2316 // Expression's trailing 16-bit field.
2317 uint16_t bit_field_;
2318 Expression* target_;
2320 BinaryOperation* binary_operation_;
2321 SmallMapList receiver_types_;
2325 class Yield final : public Expression {
2327 DECLARE_NODE_TYPE(Yield)
2330 kInitial, // The initial yield that returns the unboxed generator object.
2331 kSuspend, // A normal yield: { value: EXPRESSION, done: false }
2332 kDelegating, // A yield*.
2333 kFinal // A return: { value: EXPRESSION, done: true }
2336 Expression* generator_object() const { return generator_object_; }
2337 Expression* expression() const { return expression_; }
2338 Kind yield_kind() const { return yield_kind_; }
2340 // Delegating yield surrounds the "yield" in a "try/catch". This index
2341 // locates the catch handler in the handler table, and is equivalent to
2342 // TryCatchStatement::index().
2344 DCHECK_EQ(kDelegating, yield_kind());
2347 void set_index(int index) {
2348 DCHECK_EQ(kDelegating, yield_kind());
2352 // Type feedback information.
2353 bool HasFeedbackSlots() const {
2354 return FLAG_vector_ics && (yield_kind() == kDelegating);
2356 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
2357 Isolate* isolate, const ICSlotCache* cache) override {
2358 return FeedbackVectorRequirements(0, HasFeedbackSlots() ? 3 : 0);
2360 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
2361 ICSlotCache* cache) override {
2362 yield_first_feedback_slot_ = slot;
2364 Code::Kind FeedbackICSlotKind(int index) override {
2365 return index == 0 ? Code::KEYED_LOAD_IC : Code::LOAD_IC;
2368 FeedbackVectorICSlot KeyedLoadFeedbackSlot() {
2369 DCHECK(!HasFeedbackSlots() || !yield_first_feedback_slot_.IsInvalid());
2370 return yield_first_feedback_slot_;
2373 FeedbackVectorICSlot DoneFeedbackSlot() {
2374 return KeyedLoadFeedbackSlot().next();
2377 FeedbackVectorICSlot ValueFeedbackSlot() { return DoneFeedbackSlot().next(); }
2380 Yield(Zone* zone, Expression* generator_object, Expression* expression,
2381 Kind yield_kind, int pos)
2382 : Expression(zone, pos),
2383 generator_object_(generator_object),
2384 expression_(expression),
2385 yield_kind_(yield_kind),
2387 yield_first_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
2390 Expression* generator_object_;
2391 Expression* expression_;
2394 FeedbackVectorICSlot yield_first_feedback_slot_;
2398 class Throw final : public Expression {
2400 DECLARE_NODE_TYPE(Throw)
2402 Expression* exception() const { return exception_; }
2405 Throw(Zone* zone, Expression* exception, int pos)
2406 : Expression(zone, pos), exception_(exception) {}
2409 Expression* exception_;
2413 class FunctionLiteral final : public Expression {
2416 ANONYMOUS_EXPRESSION,
2421 enum ParameterFlag {
2422 kNoDuplicateParameters = 0,
2423 kHasDuplicateParameters = 1
2426 enum IsFunctionFlag {
2431 enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
2433 enum ArityRestriction {
2439 DECLARE_NODE_TYPE(FunctionLiteral)
2441 Handle<String> name() const { return raw_name_->string(); }
2442 const AstRawString* raw_name() const { return raw_name_; }
2443 Scope* scope() const { return scope_; }
2444 ZoneList<Statement*>* body() const { return body_; }
2445 void set_function_token_position(int pos) { function_token_position_ = pos; }
2446 int function_token_position() const { return function_token_position_; }
2447 int start_position() const;
2448 int end_position() const;
2449 int SourceSize() const { return end_position() - start_position(); }
2450 bool is_expression() const { return IsExpression::decode(bitfield_); }
2451 bool is_anonymous() const { return IsAnonymous::decode(bitfield_); }
2452 LanguageMode language_mode() const;
2453 bool uses_super_property() const;
2455 static bool NeedsHomeObject(Expression* literal) {
2456 return literal != NULL && literal->IsFunctionLiteral() &&
2457 literal->AsFunctionLiteral()->uses_super_property();
2460 int materialized_literal_count() { return materialized_literal_count_; }
2461 int expected_property_count() { return expected_property_count_; }
2462 int handler_count() { return handler_count_; }
2463 int parameter_count() { return parameter_count_; }
2465 bool AllowsLazyCompilation();
2466 bool AllowsLazyCompilationWithoutContext();
2468 void InitializeSharedInfo(Handle<Code> code);
2470 Handle<String> debug_name() const {
2471 if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
2472 return raw_name_->string();
2474 return inferred_name();
2477 Handle<String> inferred_name() const {
2478 if (!inferred_name_.is_null()) {
2479 DCHECK(raw_inferred_name_ == NULL);
2480 return inferred_name_;
2482 if (raw_inferred_name_ != NULL) {
2483 return raw_inferred_name_->string();
2486 return Handle<String>();
2489 // Only one of {set_inferred_name, set_raw_inferred_name} should be called.
2490 void set_inferred_name(Handle<String> inferred_name) {
2491 DCHECK(!inferred_name.is_null());
2492 inferred_name_ = inferred_name;
2493 DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
2494 raw_inferred_name_ = NULL;
2497 void set_raw_inferred_name(const AstString* raw_inferred_name) {
2498 DCHECK(raw_inferred_name != NULL);
2499 raw_inferred_name_ = raw_inferred_name;
2500 DCHECK(inferred_name_.is_null());
2501 inferred_name_ = Handle<String>();
2504 // shared_info may be null if it's not cached in full code.
2505 Handle<SharedFunctionInfo> shared_info() { return shared_info_; }
2507 bool pretenure() { return Pretenure::decode(bitfield_); }
2508 void set_pretenure() { bitfield_ |= Pretenure::encode(true); }
2510 bool has_duplicate_parameters() {
2511 return HasDuplicateParameters::decode(bitfield_);
2514 bool is_function() { return IsFunction::decode(bitfield_) == kIsFunction; }
2516 // This is used as a heuristic on when to eagerly compile a function
2517 // literal. We consider the following constructs as hints that the
2518 // function will be called immediately:
2519 // - (function() { ... })();
2520 // - var x = function() { ... }();
2521 bool should_eager_compile() const {
2522 return EagerCompileHintBit::decode(bitfield_) == kShouldEagerCompile;
2524 void set_should_eager_compile() {
2525 bitfield_ = EagerCompileHintBit::update(bitfield_, kShouldEagerCompile);
2528 FunctionKind kind() { return FunctionKindBits::decode(bitfield_); }
2530 int ast_node_count() { return ast_properties_.node_count(); }
2531 AstProperties::Flags* flags() { return ast_properties_.flags(); }
2532 void set_ast_properties(AstProperties* ast_properties) {
2533 ast_properties_ = *ast_properties;
2535 const ZoneFeedbackVectorSpec* feedback_vector_spec() const {
2536 return ast_properties_.get_spec();
2538 bool dont_optimize() { return dont_optimize_reason_ != kNoReason; }
2539 BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
2540 void set_dont_optimize_reason(BailoutReason reason) {
2541 dont_optimize_reason_ = reason;
2545 FunctionLiteral(Zone* zone, const AstRawString* name,
2546 AstValueFactory* ast_value_factory, Scope* scope,
2547 ZoneList<Statement*>* body, int materialized_literal_count,
2548 int expected_property_count, int handler_count,
2549 int parameter_count, FunctionType function_type,
2550 ParameterFlag has_duplicate_parameters,
2551 IsFunctionFlag is_function,
2552 EagerCompileHint eager_compile_hint, FunctionKind kind,
2554 : Expression(zone, position),
2558 raw_inferred_name_(ast_value_factory->empty_string()),
2559 ast_properties_(zone),
2560 dont_optimize_reason_(kNoReason),
2561 materialized_literal_count_(materialized_literal_count),
2562 expected_property_count_(expected_property_count),
2563 handler_count_(handler_count),
2564 parameter_count_(parameter_count),
2565 function_token_position_(RelocInfo::kNoPosition) {
2566 bitfield_ = IsExpression::encode(function_type != DECLARATION) |
2567 IsAnonymous::encode(function_type == ANONYMOUS_EXPRESSION) |
2568 Pretenure::encode(false) |
2569 HasDuplicateParameters::encode(has_duplicate_parameters) |
2570 IsFunction::encode(is_function) |
2571 EagerCompileHintBit::encode(eager_compile_hint) |
2572 FunctionKindBits::encode(kind);
2573 DCHECK(IsValidFunctionKind(kind));
2577 const AstRawString* raw_name_;
2578 Handle<String> name_;
2579 Handle<SharedFunctionInfo> shared_info_;
2581 ZoneList<Statement*>* body_;
2582 const AstString* raw_inferred_name_;
2583 Handle<String> inferred_name_;
2584 AstProperties ast_properties_;
2585 BailoutReason dont_optimize_reason_;
2587 int materialized_literal_count_;
2588 int expected_property_count_;
2590 int parameter_count_;
2591 int function_token_position_;
2594 class IsExpression : public BitField<bool, 0, 1> {};
2595 class IsAnonymous : public BitField<bool, 1, 1> {};
2596 class Pretenure : public BitField<bool, 2, 1> {};
2597 class HasDuplicateParameters : public BitField<ParameterFlag, 3, 1> {};
2598 class IsFunction : public BitField<IsFunctionFlag, 4, 1> {};
2599 class EagerCompileHintBit : public BitField<EagerCompileHint, 5, 1> {};
2600 class FunctionKindBits : public BitField<FunctionKind, 6, 8> {};
2604 class ClassLiteral final : public Expression {
2606 typedef ObjectLiteralProperty Property;
2608 DECLARE_NODE_TYPE(ClassLiteral)
2610 Handle<String> name() const { return raw_name_->string(); }
2611 const AstRawString* raw_name() const { return raw_name_; }
2612 Scope* scope() const { return scope_; }
2613 VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
2614 Expression* extends() const { return extends_; }
2615 FunctionLiteral* constructor() const { return constructor_; }
2616 ZoneList<Property*>* properties() const { return properties_; }
2617 int start_position() const { return position(); }
2618 int end_position() const { return end_position_; }
2620 BailoutId EntryId() const { return BailoutId(local_id(0)); }
2621 BailoutId DeclsId() const { return BailoutId(local_id(1)); }
2622 BailoutId ExitId() { return BailoutId(local_id(2)); }
2623 BailoutId CreateLiteralId() const { return BailoutId(local_id(3)); }
2625 // Return an AST id for a property that is used in simulate instructions.
2626 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 4)); }
2628 // Unlike other AST nodes, this number of bailout IDs allocated for an
2629 // ClassLiteral can vary, so num_ids() is not a static method.
2630 int num_ids() const { return parent_num_ids() + 4 + properties()->length(); }
2633 ClassLiteral(Zone* zone, const AstRawString* name, Scope* scope,
2634 VariableProxy* class_variable_proxy, Expression* extends,
2635 FunctionLiteral* constructor, ZoneList<Property*>* properties,
2636 int start_position, int end_position)
2637 : Expression(zone, start_position),
2640 class_variable_proxy_(class_variable_proxy),
2642 constructor_(constructor),
2643 properties_(properties),
2644 end_position_(end_position) {}
2645 static int parent_num_ids() { return Expression::num_ids(); }
2648 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2650 const AstRawString* raw_name_;
2652 VariableProxy* class_variable_proxy_;
2653 Expression* extends_;
2654 FunctionLiteral* constructor_;
2655 ZoneList<Property*>* properties_;
2660 class NativeFunctionLiteral final : public Expression {
2662 DECLARE_NODE_TYPE(NativeFunctionLiteral)
2664 Handle<String> name() const { return name_->string(); }
2665 v8::Extension* extension() const { return extension_; }
2668 NativeFunctionLiteral(Zone* zone, const AstRawString* name,
2669 v8::Extension* extension, int pos)
2670 : Expression(zone, pos), name_(name), extension_(extension) {}
2673 const AstRawString* name_;
2674 v8::Extension* extension_;
2678 class ThisFunction final : public Expression {
2680 DECLARE_NODE_TYPE(ThisFunction)
2683 ThisFunction(Zone* zone, int pos) : Expression(zone, pos) {}
2687 class SuperReference final : public Expression {
2689 DECLARE_NODE_TYPE(SuperReference)
2691 VariableProxy* this_var() const { return this_var_; }
2693 static int num_ids() { return parent_num_ids() + 1; }
2694 TypeFeedbackId HomeObjectFeedbackId() { return TypeFeedbackId(local_id(0)); }
2696 // Type feedback information.
2697 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
2698 Isolate* isolate, const ICSlotCache* cache) override {
2699 return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
2701 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
2702 ICSlotCache* cache) override {
2703 homeobject_feedback_slot_ = slot;
2705 Code::Kind FeedbackICSlotKind(int index) override { return Code::LOAD_IC; }
2707 FeedbackVectorICSlot HomeObjectFeedbackSlot() {
2708 DCHECK(!FLAG_vector_ics || !homeobject_feedback_slot_.IsInvalid());
2709 return homeobject_feedback_slot_;
2713 SuperReference(Zone* zone, VariableProxy* this_var, int pos)
2714 : Expression(zone, pos),
2715 this_var_(this_var),
2716 homeobject_feedback_slot_(FeedbackVectorICSlot::Invalid()) {
2717 DCHECK(this_var->is_this());
2719 static int parent_num_ids() { return Expression::num_ids(); }
2722 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2724 VariableProxy* this_var_;
2725 FeedbackVectorICSlot homeobject_feedback_slot_;
2729 #undef DECLARE_NODE_TYPE
2732 // ----------------------------------------------------------------------------
2733 // Regular expressions
2736 class RegExpVisitor BASE_EMBEDDED {
2738 virtual ~RegExpVisitor() { }
2739 #define MAKE_CASE(Name) \
2740 virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
2741 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
2746 class RegExpTree : public ZoneObject {
2748 static const int kInfinity = kMaxInt;
2749 virtual ~RegExpTree() {}
2750 virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
2751 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2752 RegExpNode* on_success) = 0;
2753 virtual bool IsTextElement() { return false; }
2754 virtual bool IsAnchoredAtStart() { return false; }
2755 virtual bool IsAnchoredAtEnd() { return false; }
2756 virtual int min_match() = 0;
2757 virtual int max_match() = 0;
2758 // Returns the interval of registers used for captures within this
2760 virtual Interval CaptureRegisters() { return Interval::Empty(); }
2761 virtual void AppendToText(RegExpText* text, Zone* zone);
2762 std::ostream& Print(std::ostream& os, Zone* zone); // NOLINT
2763 #define MAKE_ASTYPE(Name) \
2764 virtual RegExp##Name* As##Name(); \
2765 virtual bool Is##Name();
2766 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
2771 class RegExpDisjunction final : public RegExpTree {
2773 explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
2774 void* Accept(RegExpVisitor* visitor, void* data) override;
2775 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2776 RegExpNode* on_success) override;
2777 RegExpDisjunction* AsDisjunction() override;
2778 Interval CaptureRegisters() override;
2779 bool IsDisjunction() override;
2780 bool IsAnchoredAtStart() override;
2781 bool IsAnchoredAtEnd() override;
2782 int min_match() override { return min_match_; }
2783 int max_match() override { return max_match_; }
2784 ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
2786 ZoneList<RegExpTree*>* alternatives_;
2792 class RegExpAlternative final : public RegExpTree {
2794 explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
2795 void* Accept(RegExpVisitor* visitor, void* data) override;
2796 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2797 RegExpNode* on_success) override;
2798 RegExpAlternative* AsAlternative() override;
2799 Interval CaptureRegisters() override;
2800 bool IsAlternative() override;
2801 bool IsAnchoredAtStart() override;
2802 bool IsAnchoredAtEnd() override;
2803 int min_match() override { return min_match_; }
2804 int max_match() override { return max_match_; }
2805 ZoneList<RegExpTree*>* nodes() { return nodes_; }
2807 ZoneList<RegExpTree*>* nodes_;
2813 class RegExpAssertion final : public RegExpTree {
2815 enum AssertionType {
2823 explicit RegExpAssertion(AssertionType type) : assertion_type_(type) { }
2824 void* Accept(RegExpVisitor* visitor, void* data) override;
2825 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2826 RegExpNode* on_success) override;
2827 RegExpAssertion* AsAssertion() override;
2828 bool IsAssertion() override;
2829 bool IsAnchoredAtStart() override;
2830 bool IsAnchoredAtEnd() override;
2831 int min_match() override { return 0; }
2832 int max_match() override { return 0; }
2833 AssertionType assertion_type() { return assertion_type_; }
2835 AssertionType assertion_type_;
2839 class CharacterSet final BASE_EMBEDDED {
2841 explicit CharacterSet(uc16 standard_set_type)
2843 standard_set_type_(standard_set_type) {}
2844 explicit CharacterSet(ZoneList<CharacterRange>* ranges)
2846 standard_set_type_(0) {}
2847 ZoneList<CharacterRange>* ranges(Zone* zone);
2848 uc16 standard_set_type() { return standard_set_type_; }
2849 void set_standard_set_type(uc16 special_set_type) {
2850 standard_set_type_ = special_set_type;
2852 bool is_standard() { return standard_set_type_ != 0; }
2853 void Canonicalize();
2855 ZoneList<CharacterRange>* ranges_;
2856 // If non-zero, the value represents a standard set (e.g., all whitespace
2857 // characters) without having to expand the ranges.
2858 uc16 standard_set_type_;
2862 class RegExpCharacterClass final : public RegExpTree {
2864 RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
2866 is_negated_(is_negated) { }
2867 explicit RegExpCharacterClass(uc16 type)
2869 is_negated_(false) { }
2870 void* Accept(RegExpVisitor* visitor, void* data) override;
2871 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2872 RegExpNode* on_success) override;
2873 RegExpCharacterClass* AsCharacterClass() override;
2874 bool IsCharacterClass() override;
2875 bool IsTextElement() override { return true; }
2876 int min_match() override { return 1; }
2877 int max_match() override { return 1; }
2878 void AppendToText(RegExpText* text, Zone* zone) override;
2879 CharacterSet character_set() { return set_; }
2880 // TODO(lrn): Remove need for complex version if is_standard that
2881 // recognizes a mangled standard set and just do { return set_.is_special(); }
2882 bool is_standard(Zone* zone);
2883 // Returns a value representing the standard character set if is_standard()
2885 // Currently used values are:
2886 // s : unicode whitespace
2887 // S : unicode non-whitespace
2888 // w : ASCII word character (digit, letter, underscore)
2889 // W : non-ASCII word character
2891 // D : non-ASCII digit
2892 // . : non-unicode non-newline
2893 // * : All characters
2894 uc16 standard_type() { return set_.standard_set_type(); }
2895 ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
2896 bool is_negated() { return is_negated_; }
2904 class RegExpAtom final : public RegExpTree {
2906 explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
2907 void* Accept(RegExpVisitor* visitor, void* data) override;
2908 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2909 RegExpNode* on_success) override;
2910 RegExpAtom* AsAtom() override;
2911 bool IsAtom() override;
2912 bool IsTextElement() override { return true; }
2913 int min_match() override { return data_.length(); }
2914 int max_match() override { return data_.length(); }
2915 void AppendToText(RegExpText* text, Zone* zone) override;
2916 Vector<const uc16> data() { return data_; }
2917 int length() { return data_.length(); }
2919 Vector<const uc16> data_;
2923 class RegExpText final : public RegExpTree {
2925 explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
2926 void* Accept(RegExpVisitor* visitor, void* data) override;
2927 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2928 RegExpNode* on_success) override;
2929 RegExpText* AsText() override;
2930 bool IsText() override;
2931 bool IsTextElement() override { return true; }
2932 int min_match() override { return length_; }
2933 int max_match() override { return length_; }
2934 void AppendToText(RegExpText* text, Zone* zone) override;
2935 void AddElement(TextElement elm, Zone* zone) {
2936 elements_.Add(elm, zone);
2937 length_ += elm.length();
2939 ZoneList<TextElement>* elements() { return &elements_; }
2941 ZoneList<TextElement> elements_;
2946 class RegExpQuantifier final : public RegExpTree {
2948 enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
2949 RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
2953 min_match_(min * body->min_match()),
2954 quantifier_type_(type) {
2955 if (max > 0 && body->max_match() > kInfinity / max) {
2956 max_match_ = kInfinity;
2958 max_match_ = max * body->max_match();
2961 void* Accept(RegExpVisitor* visitor, void* data) override;
2962 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2963 RegExpNode* on_success) override;
2964 static RegExpNode* ToNode(int min,
2968 RegExpCompiler* compiler,
2969 RegExpNode* on_success,
2970 bool not_at_start = false);
2971 RegExpQuantifier* AsQuantifier() override;
2972 Interval CaptureRegisters() override;
2973 bool IsQuantifier() override;
2974 int min_match() override { return min_match_; }
2975 int max_match() override { return max_match_; }
2976 int min() { return min_; }
2977 int max() { return max_; }
2978 bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
2979 bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
2980 bool is_greedy() { return quantifier_type_ == GREEDY; }
2981 RegExpTree* body() { return body_; }
2989 QuantifierType quantifier_type_;
2993 class RegExpCapture final : public RegExpTree {
2995 explicit RegExpCapture(RegExpTree* body, int index)
2996 : body_(body), index_(index) { }
2997 void* Accept(RegExpVisitor* visitor, void* data) override;
2998 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2999 RegExpNode* on_success) override;
3000 static RegExpNode* ToNode(RegExpTree* body,
3002 RegExpCompiler* compiler,
3003 RegExpNode* on_success);
3004 RegExpCapture* AsCapture() override;
3005 bool IsAnchoredAtStart() override;
3006 bool IsAnchoredAtEnd() override;
3007 Interval CaptureRegisters() override;
3008 bool IsCapture() override;
3009 int min_match() override { return body_->min_match(); }
3010 int max_match() override { return body_->max_match(); }
3011 RegExpTree* body() { return body_; }
3012 int index() { return index_; }
3013 static int StartRegister(int index) { return index * 2; }
3014 static int EndRegister(int index) { return index * 2 + 1; }
3022 class RegExpLookahead final : public RegExpTree {
3024 RegExpLookahead(RegExpTree* body,
3029 is_positive_(is_positive),
3030 capture_count_(capture_count),
3031 capture_from_(capture_from) { }
3033 void* Accept(RegExpVisitor* visitor, void* data) override;
3034 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3035 RegExpNode* on_success) override;
3036 RegExpLookahead* AsLookahead() override;
3037 Interval CaptureRegisters() override;
3038 bool IsLookahead() override;
3039 bool IsAnchoredAtStart() override;
3040 int min_match() override { return 0; }
3041 int max_match() override { return 0; }
3042 RegExpTree* body() { return body_; }
3043 bool is_positive() { return is_positive_; }
3044 int capture_count() { return capture_count_; }
3045 int capture_from() { return capture_from_; }
3055 class RegExpBackReference final : public RegExpTree {
3057 explicit RegExpBackReference(RegExpCapture* capture)
3058 : capture_(capture) { }
3059 void* Accept(RegExpVisitor* visitor, void* data) override;
3060 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3061 RegExpNode* on_success) override;
3062 RegExpBackReference* AsBackReference() override;
3063 bool IsBackReference() override;
3064 int min_match() override { return 0; }
3065 int max_match() override { return capture_->max_match(); }
3066 int index() { return capture_->index(); }
3067 RegExpCapture* capture() { return capture_; }
3069 RegExpCapture* capture_;
3073 class RegExpEmpty final : public RegExpTree {
3076 void* Accept(RegExpVisitor* visitor, void* data) override;
3077 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3078 RegExpNode* on_success) override;
3079 RegExpEmpty* AsEmpty() override;
3080 bool IsEmpty() override;
3081 int min_match() override { return 0; }
3082 int max_match() override { return 0; }
3086 // ----------------------------------------------------------------------------
3088 // - leaf node visitors are abstract.
3090 class AstVisitor BASE_EMBEDDED {
3093 virtual ~AstVisitor() {}
3095 // Stack overflow check and dynamic dispatch.
3096 virtual void Visit(AstNode* node) = 0;
3098 // Iteration left-to-right.
3099 virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
3100 virtual void VisitStatements(ZoneList<Statement*>* statements);
3101 virtual void VisitExpressions(ZoneList<Expression*>* expressions);
3103 // Individual AST nodes.
3104 #define DEF_VISIT(type) \
3105 virtual void Visit##type(type* node) = 0;
3106 AST_NODE_LIST(DEF_VISIT)
3111 #define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
3113 void Visit(AstNode* node) final { \
3114 if (!CheckStackOverflow()) node->Accept(this); \
3117 void SetStackOverflow() { stack_overflow_ = true; } \
3118 void ClearStackOverflow() { stack_overflow_ = false; } \
3119 bool HasStackOverflow() const { return stack_overflow_; } \
3121 bool CheckStackOverflow() { \
3122 if (stack_overflow_) return true; \
3123 StackLimitCheck check(isolate_); \
3124 if (!check.HasOverflowed()) return false; \
3125 stack_overflow_ = true; \
3130 void InitializeAstVisitor(Isolate* isolate, Zone* zone) { \
3131 isolate_ = isolate; \
3133 stack_overflow_ = false; \
3135 Zone* zone() { return zone_; } \
3136 Isolate* isolate() { return isolate_; } \
3138 Isolate* isolate_; \
3140 bool stack_overflow_
3143 // ----------------------------------------------------------------------------
3146 class AstNodeFactory final BASE_EMBEDDED {
3148 explicit AstNodeFactory(AstValueFactory* ast_value_factory)
3149 : zone_(ast_value_factory->zone()),
3150 ast_value_factory_(ast_value_factory) {}
3152 VariableDeclaration* NewVariableDeclaration(
3153 VariableProxy* proxy, VariableMode mode, Scope* scope, int pos,
3154 bool is_class_declaration = false, int declaration_group_start = -1) {
3156 VariableDeclaration(zone_, proxy, mode, scope, pos,
3157 is_class_declaration, declaration_group_start);
3160 FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
3162 FunctionLiteral* fun,
3165 return new (zone_) FunctionDeclaration(zone_, proxy, mode, fun, scope, pos);
3168 ImportDeclaration* NewImportDeclaration(VariableProxy* proxy,
3169 const AstRawString* import_name,
3170 const AstRawString* module_specifier,
3171 Scope* scope, int pos) {
3172 return new (zone_) ImportDeclaration(zone_, proxy, import_name,
3173 module_specifier, scope, pos);
3176 ExportDeclaration* NewExportDeclaration(VariableProxy* proxy,
3179 return new (zone_) ExportDeclaration(zone_, proxy, scope, pos);
3182 Block* NewBlock(ZoneList<const AstRawString*>* labels,
3184 bool is_initializer_block,
3187 Block(zone_, labels, capacity, is_initializer_block, pos);
3190 #define STATEMENT_WITH_LABELS(NodeType) \
3191 NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
3192 return new (zone_) NodeType(zone_, labels, pos); \
3194 STATEMENT_WITH_LABELS(DoWhileStatement)
3195 STATEMENT_WITH_LABELS(WhileStatement)
3196 STATEMENT_WITH_LABELS(ForStatement)
3197 STATEMENT_WITH_LABELS(SwitchStatement)
3198 #undef STATEMENT_WITH_LABELS
3200 ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
3201 ZoneList<const AstRawString*>* labels,
3203 switch (visit_mode) {
3204 case ForEachStatement::ENUMERATE: {
3205 return new (zone_) ForInStatement(zone_, labels, pos);
3207 case ForEachStatement::ITERATE: {
3208 return new (zone_) ForOfStatement(zone_, labels, pos);
3215 ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
3216 return new (zone_) ExpressionStatement(zone_, expression, pos);
3219 ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
3220 return new (zone_) ContinueStatement(zone_, target, pos);
3223 BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
3224 return new (zone_) BreakStatement(zone_, target, pos);
3227 ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
3228 return new (zone_) ReturnStatement(zone_, expression, pos);
3231 WithStatement* NewWithStatement(Scope* scope,
3232 Expression* expression,
3233 Statement* statement,
3235 return new (zone_) WithStatement(zone_, scope, expression, statement, pos);
3238 IfStatement* NewIfStatement(Expression* condition,
3239 Statement* then_statement,
3240 Statement* else_statement,
3243 IfStatement(zone_, condition, then_statement, else_statement, pos);
3246 TryCatchStatement* NewTryCatchStatement(int index,
3252 return new (zone_) TryCatchStatement(zone_, index, try_block, scope,
3253 variable, catch_block, pos);
3256 TryFinallyStatement* NewTryFinallyStatement(int index,
3258 Block* finally_block,
3261 TryFinallyStatement(zone_, index, try_block, finally_block, pos);
3264 DebuggerStatement* NewDebuggerStatement(int pos) {
3265 return new (zone_) DebuggerStatement(zone_, pos);
3268 EmptyStatement* NewEmptyStatement(int pos) {
3269 return new(zone_) EmptyStatement(zone_, pos);
3272 CaseClause* NewCaseClause(
3273 Expression* label, ZoneList<Statement*>* statements, int pos) {
3274 return new (zone_) CaseClause(zone_, label, statements, pos);
3277 Literal* NewStringLiteral(const AstRawString* string, int pos) {
3279 Literal(zone_, ast_value_factory_->NewString(string), pos);
3282 // A JavaScript symbol (ECMA-262 edition 6).
3283 Literal* NewSymbolLiteral(const char* name, int pos) {
3284 return new (zone_) Literal(zone_, ast_value_factory_->NewSymbol(name), pos);
3287 Literal* NewNumberLiteral(double number, int pos) {
3289 Literal(zone_, ast_value_factory_->NewNumber(number), pos);
3292 Literal* NewSmiLiteral(int number, int pos) {
3293 return new (zone_) Literal(zone_, ast_value_factory_->NewSmi(number), pos);
3296 Literal* NewBooleanLiteral(bool b, int pos) {
3297 return new (zone_) Literal(zone_, ast_value_factory_->NewBoolean(b), pos);
3300 Literal* NewNullLiteral(int pos) {
3301 return new (zone_) Literal(zone_, ast_value_factory_->NewNull(), pos);
3304 Literal* NewUndefinedLiteral(int pos) {
3305 return new (zone_) Literal(zone_, ast_value_factory_->NewUndefined(), pos);
3308 Literal* NewTheHoleLiteral(int pos) {
3309 return new (zone_) Literal(zone_, ast_value_factory_->NewTheHole(), pos);
3312 ObjectLiteral* NewObjectLiteral(
3313 ZoneList<ObjectLiteral::Property*>* properties,
3315 int boilerplate_properties,
3318 return new (zone_) ObjectLiteral(zone_, properties, literal_index,
3319 boilerplate_properties, has_function, pos);
3322 ObjectLiteral::Property* NewObjectLiteralProperty(
3323 Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
3324 bool is_static, bool is_computed_name) {
3326 ObjectLiteral::Property(key, value, kind, is_static, is_computed_name);
3329 ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
3332 bool is_computed_name) {
3333 return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
3334 is_static, is_computed_name);
3337 RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern,
3338 const AstRawString* flags,
3341 return new (zone_) RegExpLiteral(zone_, pattern, flags, literal_index, pos);
3344 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3347 return new (zone_) ArrayLiteral(zone_, values, literal_index, pos);
3350 VariableProxy* NewVariableProxy(Variable* var,
3351 int start_position = RelocInfo::kNoPosition,
3352 int end_position = RelocInfo::kNoPosition) {
3353 return new (zone_) VariableProxy(zone_, var, start_position, end_position);
3356 VariableProxy* NewVariableProxy(const AstRawString* name,
3357 Variable::Kind variable_kind,
3358 int start_position = RelocInfo::kNoPosition,
3359 int end_position = RelocInfo::kNoPosition) {
3361 VariableProxy(zone_, name, variable_kind, start_position, end_position);
3364 Property* NewProperty(Expression* obj, Expression* key, int pos) {
3365 return new (zone_) Property(zone_, obj, key, pos);
3368 Call* NewCall(Expression* expression,
3369 ZoneList<Expression*>* arguments,
3371 return new (zone_) Call(zone_, expression, arguments, pos);
3374 CallNew* NewCallNew(Expression* expression,
3375 ZoneList<Expression*>* arguments,
3377 return new (zone_) CallNew(zone_, expression, arguments, pos);
3380 CallRuntime* NewCallRuntime(const AstRawString* name,
3381 const Runtime::Function* function,
3382 ZoneList<Expression*>* arguments,
3384 return new (zone_) CallRuntime(zone_, name, function, arguments, pos);
3387 UnaryOperation* NewUnaryOperation(Token::Value op,
3388 Expression* expression,
3390 return new (zone_) UnaryOperation(zone_, op, expression, pos);
3393 BinaryOperation* NewBinaryOperation(Token::Value op,
3397 return new (zone_) BinaryOperation(zone_, op, left, right, pos);
3400 CountOperation* NewCountOperation(Token::Value op,
3404 return new (zone_) CountOperation(zone_, op, is_prefix, expr, pos);
3407 CompareOperation* NewCompareOperation(Token::Value op,
3411 return new (zone_) CompareOperation(zone_, op, left, right, pos);
3414 Spread* NewSpread(Expression* expression, int pos) {
3415 return new (zone_) Spread(zone_, expression, pos);
3418 Conditional* NewConditional(Expression* condition,
3419 Expression* then_expression,
3420 Expression* else_expression,
3422 return new (zone_) Conditional(zone_, condition, then_expression,
3423 else_expression, position);
3426 Assignment* NewAssignment(Token::Value op,
3430 DCHECK(Token::IsAssignmentOp(op));
3431 Assignment* assign = new (zone_) Assignment(zone_, op, target, value, pos);
3432 if (assign->is_compound()) {
3433 DCHECK(Token::IsAssignmentOp(op));
3434 assign->binary_operation_ =
3435 NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
3440 Yield* NewYield(Expression *generator_object,
3441 Expression* expression,
3442 Yield::Kind yield_kind,
3444 if (!expression) expression = NewUndefinedLiteral(pos);
3446 Yield(zone_, generator_object, expression, yield_kind, pos);
3449 Throw* NewThrow(Expression* exception, int pos) {
3450 return new (zone_) Throw(zone_, exception, pos);
3453 FunctionLiteral* NewFunctionLiteral(
3454 const AstRawString* name, AstValueFactory* ast_value_factory,
3455 Scope* scope, ZoneList<Statement*>* body, int materialized_literal_count,
3456 int expected_property_count, int handler_count, int parameter_count,
3457 FunctionLiteral::ParameterFlag has_duplicate_parameters,
3458 FunctionLiteral::FunctionType function_type,
3459 FunctionLiteral::IsFunctionFlag is_function,
3460 FunctionLiteral::EagerCompileHint eager_compile_hint, FunctionKind kind,
3462 return new (zone_) FunctionLiteral(
3463 zone_, name, ast_value_factory, scope, body, materialized_literal_count,
3464 expected_property_count, handler_count, parameter_count, function_type,
3465 has_duplicate_parameters, is_function, eager_compile_hint, kind,
3469 ClassLiteral* NewClassLiteral(const AstRawString* name, Scope* scope,
3470 VariableProxy* proxy, Expression* extends,
3471 FunctionLiteral* constructor,
3472 ZoneList<ObjectLiteral::Property*>* properties,
3473 int start_position, int end_position) {
3475 ClassLiteral(zone_, name, scope, proxy, extends, constructor,
3476 properties, start_position, end_position);
3479 NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
3480 v8::Extension* extension,
3482 return new (zone_) NativeFunctionLiteral(zone_, name, extension, pos);
3485 ThisFunction* NewThisFunction(int pos) {
3486 return new (zone_) ThisFunction(zone_, pos);
3489 SuperReference* NewSuperReference(VariableProxy* this_var, int pos) {
3490 return new (zone_) SuperReference(zone_, this_var, pos);
3495 AstValueFactory* ast_value_factory_;
3499 } } // namespace v8::internal