1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/assembler.h"
11 #include "src/ast-value-factory.h"
12 #include "src/bailout-reason.h"
13 #include "src/factory.h"
14 #include "src/isolate.h"
15 #include "src/jsregexp.h"
16 #include "src/list-inl.h"
17 #include "src/modules.h"
18 #include "src/runtime/runtime.h"
19 #include "src/small-pointer-list.h"
20 #include "src/smart-pointers.h"
21 #include "src/token.h"
22 #include "src/types.h"
23 #include "src/utils.h"
24 #include "src/variables.h"
29 // The abstract syntax tree is an intermediate, light-weight
30 // representation of the parsed JavaScript code suitable for
31 // compilation to native code.
33 // Nodes are allocated in a separate zone, which allows faster
34 // allocation and constant-time deallocation of the entire syntax
38 // ----------------------------------------------------------------------------
39 // Nodes of the abstract syntax tree. Only concrete classes are
42 #define DECLARATION_NODE_LIST(V) \
43 V(VariableDeclaration) \
44 V(FunctionDeclaration) \
45 V(ModuleDeclaration) \
46 V(ImportDeclaration) \
49 #define MODULE_NODE_LIST(V) \
54 #define STATEMENT_NODE_LIST(V) \
57 V(ExpressionStatement) \
60 V(ContinueStatement) \
70 V(TryCatchStatement) \
71 V(TryFinallyStatement) \
74 #define EXPRESSION_NODE_LIST(V) \
77 V(NativeFunctionLiteral) \
99 #define AST_NODE_LIST(V) \
100 DECLARATION_NODE_LIST(V) \
101 MODULE_NODE_LIST(V) \
102 STATEMENT_NODE_LIST(V) \
103 EXPRESSION_NODE_LIST(V)
105 // Forward declarations
106 class AstNodeFactory;
110 class BreakableStatement;
112 class IterationStatement;
113 class MaterializedLiteral;
115 class TypeFeedbackOracle;
117 class RegExpAlternative;
118 class RegExpAssertion;
120 class RegExpBackReference;
122 class RegExpCharacterClass;
123 class RegExpCompiler;
124 class RegExpDisjunction;
126 class RegExpLookahead;
127 class RegExpQuantifier;
130 #define DEF_FORWARD_DECLARATION(type) class type;
131 AST_NODE_LIST(DEF_FORWARD_DECLARATION)
132 #undef DEF_FORWARD_DECLARATION
135 // Typedef only introduced to avoid unreadable code.
136 // Please do appreciate the required space in "> >".
137 typedef ZoneList<Handle<String> > ZoneStringList;
138 typedef ZoneList<Handle<Object> > ZoneObjectList;
141 #define DECLARE_NODE_TYPE(type) \
142 void Accept(AstVisitor* v) OVERRIDE; \
143 AstNode::NodeType node_type() const FINAL { return AstNode::k##type; } \
144 friend class AstNodeFactory;
147 enum AstPropertiesFlag {
154 class FeedbackVectorRequirements {
156 FeedbackVectorRequirements(int slots, int ic_slots)
157 : slots_(slots), ic_slots_(ic_slots) {}
159 int slots() const { return slots_; }
160 int ic_slots() const { return ic_slots_; }
168 class VariableICSlotPair FINAL {
170 VariableICSlotPair(Variable* variable, FeedbackVectorICSlot slot)
171 : variable_(variable), slot_(slot) {}
173 : variable_(NULL), slot_(FeedbackVectorICSlot::Invalid()) {}
175 Variable* variable() const { return variable_; }
176 FeedbackVectorICSlot slot() const { return slot_; }
180 FeedbackVectorICSlot slot_;
184 typedef List<VariableICSlotPair> ICSlotCache;
187 class AstProperties FINAL BASE_EMBEDDED {
189 class Flags : public EnumSet<AstPropertiesFlag, int> {};
191 explicit AstProperties(Zone* zone) : node_count_(0), spec_(zone) {}
193 Flags* flags() { return &flags_; }
194 int node_count() { return node_count_; }
195 void add_node_count(int count) { node_count_ += count; }
197 int slots() const { return spec_.slots(); }
198 void increase_slots(int count) { spec_.increase_slots(count); }
200 int ic_slots() const { return spec_.ic_slots(); }
201 void increase_ic_slots(int count) { spec_.increase_ic_slots(count); }
202 void SetKind(int ic_slot, Code::Kind kind) { spec_.SetKind(ic_slot, kind); }
203 const ZoneFeedbackVectorSpec* get_spec() const { return &spec_; }
208 ZoneFeedbackVectorSpec spec_;
212 class AstNode: public ZoneObject {
214 #define DECLARE_TYPE_ENUM(type) k##type,
216 AST_NODE_LIST(DECLARE_TYPE_ENUM)
219 #undef DECLARE_TYPE_ENUM
221 void* operator new(size_t size, Zone* zone) { return zone->New(size); }
223 explicit AstNode(int position): position_(position) {}
224 virtual ~AstNode() {}
226 virtual void Accept(AstVisitor* v) = 0;
227 virtual NodeType node_type() const = 0;
228 int position() const { return position_; }
230 // Type testing & conversion functions overridden by concrete subclasses.
231 #define DECLARE_NODE_FUNCTIONS(type) \
232 bool Is##type() const { return node_type() == AstNode::k##type; } \
234 return Is##type() ? reinterpret_cast<type*>(this) : NULL; \
236 const type* As##type() const { \
237 return Is##type() ? reinterpret_cast<const type*>(this) : NULL; \
239 AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
240 #undef DECLARE_NODE_FUNCTIONS
242 virtual BreakableStatement* AsBreakableStatement() { return NULL; }
243 virtual IterationStatement* AsIterationStatement() { return NULL; }
244 virtual MaterializedLiteral* AsMaterializedLiteral() { return NULL; }
246 // The interface for feedback slots, with default no-op implementations for
247 // node types which don't actually have this. Note that this is conceptually
248 // not really nice, but multiple inheritance would introduce yet another
249 // vtable entry per node, something we don't want for space reasons.
250 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
251 Isolate* isolate, const ICSlotCache* cache) {
252 return FeedbackVectorRequirements(0, 0);
254 virtual void SetFirstFeedbackSlot(FeedbackVectorSlot slot) { UNREACHABLE(); }
255 virtual void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
256 ICSlotCache* cache) {
259 // Each ICSlot stores a kind of IC which the participating node should know.
260 virtual Code::Kind FeedbackICSlotKind(int index) {
262 return Code::NUMBER_OF_KINDS;
266 // Hidden to prevent accidental usage. It would have to load the
267 // current zone from the TLS.
268 void* operator new(size_t size);
270 friend class CaseClause; // Generates AST IDs.
276 class Statement : public AstNode {
278 explicit Statement(Zone* zone, int position) : AstNode(position) {}
280 bool IsEmpty() { return AsEmptyStatement() != NULL; }
281 virtual bool IsJump() const { return false; }
285 class SmallMapList FINAL {
288 SmallMapList(int capacity, Zone* zone) : list_(capacity, zone) {}
290 void Reserve(int capacity, Zone* zone) { list_.Reserve(capacity, zone); }
291 void Clear() { list_.Clear(); }
292 void Sort() { list_.Sort(); }
294 bool is_empty() const { return list_.is_empty(); }
295 int length() const { return list_.length(); }
297 void AddMapIfMissing(Handle<Map> map, Zone* zone) {
298 if (!Map::TryUpdate(map).ToHandle(&map)) return;
299 for (int i = 0; i < length(); ++i) {
300 if (at(i).is_identical_to(map)) return;
305 void FilterForPossibleTransitions(Map* root_map) {
306 for (int i = list_.length() - 1; i >= 0; i--) {
307 if (at(i)->FindRootMap() != root_map) {
308 list_.RemoveElement(list_.at(i));
313 void Add(Handle<Map> handle, Zone* zone) {
314 list_.Add(handle.location(), zone);
317 Handle<Map> at(int i) const {
318 return Handle<Map>(list_.at(i));
321 Handle<Map> first() const { return at(0); }
322 Handle<Map> last() const { return at(length() - 1); }
325 // The list stores pointers to Map*, that is Map**, so it's GC safe.
326 SmallPointerList<Map*> list_;
328 DISALLOW_COPY_AND_ASSIGN(SmallMapList);
332 class Expression : public AstNode {
335 // Not assigned a context yet, or else will not be visited during
338 // Evaluated for its side effects.
340 // Evaluated for its value (and side effects).
342 // Evaluated for control flow (and side effects).
346 virtual bool IsValidReferenceExpression() const { return false; }
348 // Helpers for ToBoolean conversion.
349 virtual bool ToBooleanIsTrue() const { return false; }
350 virtual bool ToBooleanIsFalse() const { return false; }
352 // Symbols that cannot be parsed as array indices are considered property
353 // names. We do not treat symbols that can be array indexes as property
354 // names because [] for string objects is handled only by keyed ICs.
355 virtual bool IsPropertyName() const { return false; }
357 // True iff the expression is a literal represented as a smi.
358 bool IsSmiLiteral() const;
360 // True iff the expression is a string literal.
361 bool IsStringLiteral() const;
363 // True iff the expression is the null literal.
364 bool IsNullLiteral() const;
366 // True if we can prove that the expression is the undefined literal.
367 bool IsUndefinedLiteral(Isolate* isolate) const;
369 // Expression type bounds
370 Bounds bounds() const { return bounds_; }
371 void set_bounds(Bounds bounds) { bounds_ = bounds; }
373 // Whether the expression is parenthesized
374 bool is_parenthesized() const {
375 return IsParenthesizedField::decode(bit_field_);
377 bool is_multi_parenthesized() const {
378 return IsMultiParenthesizedField::decode(bit_field_);
380 void increase_parenthesization_level() {
382 IsMultiParenthesizedField::update(bit_field_, is_parenthesized());
383 bit_field_ = IsParenthesizedField::update(bit_field_, true);
386 // Type feedback information for assignments and properties.
387 virtual bool IsMonomorphic() {
391 virtual SmallMapList* GetReceiverTypes() {
395 virtual KeyedAccessStoreMode GetStoreMode() const {
397 return STANDARD_STORE;
399 virtual IcCheckType GetKeyType() const {
404 // TODO(rossberg): this should move to its own AST node eventually.
405 virtual void RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle);
406 byte to_boolean_types() const {
407 return ToBooleanTypesField::decode(bit_field_);
410 void set_base_id(int id) { base_id_ = id; }
411 static int num_ids() { return parent_num_ids() + 2; }
412 BailoutId id() const { return BailoutId(local_id(0)); }
413 TypeFeedbackId test_id() const { return TypeFeedbackId(local_id(1)); }
416 Expression(Zone* zone, int pos)
418 base_id_(BailoutId::None().ToInt()),
419 bounds_(Bounds::Unbounded(zone)),
421 static int parent_num_ids() { return 0; }
422 void set_to_boolean_types(byte types) {
423 bit_field_ = ToBooleanTypesField::update(bit_field_, types);
426 int base_id() const {
427 DCHECK(!BailoutId(base_id_).IsNone());
432 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
436 class ToBooleanTypesField : public BitField16<byte, 0, 8> {};
437 class IsParenthesizedField : public BitField16<bool, 8, 1> {};
438 class IsMultiParenthesizedField : public BitField16<bool, 9, 1> {};
440 // Ends with 16-bit field; deriving classes in turn begin with
441 // 16-bit fields for optimum packing efficiency.
445 class BreakableStatement : public Statement {
448 TARGET_FOR_ANONYMOUS,
449 TARGET_FOR_NAMED_ONLY
452 // The labels associated with this statement. May be NULL;
453 // if it is != NULL, guaranteed to contain at least one entry.
454 ZoneList<const AstRawString*>* labels() const { return labels_; }
456 // Type testing & conversion.
457 BreakableStatement* AsBreakableStatement() FINAL { return this; }
460 Label* break_target() { return &break_target_; }
463 bool is_target_for_anonymous() const {
464 return breakable_type_ == TARGET_FOR_ANONYMOUS;
467 void set_base_id(int id) { base_id_ = id; }
468 static int num_ids() { return parent_num_ids() + 2; }
469 BailoutId EntryId() const { return BailoutId(local_id(0)); }
470 BailoutId ExitId() const { return BailoutId(local_id(1)); }
473 BreakableStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
474 BreakableType breakable_type, int position)
475 : Statement(zone, position),
477 breakable_type_(breakable_type),
478 base_id_(BailoutId::None().ToInt()) {
479 DCHECK(labels == NULL || labels->length() > 0);
481 static int parent_num_ids() { return 0; }
483 int base_id() const {
484 DCHECK(!BailoutId(base_id_).IsNone());
489 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
491 ZoneList<const AstRawString*>* labels_;
492 BreakableType breakable_type_;
498 class Block FINAL : public BreakableStatement {
500 DECLARE_NODE_TYPE(Block)
502 void AddStatement(Statement* statement, Zone* zone) {
503 statements_.Add(statement, zone);
506 ZoneList<Statement*>* statements() { return &statements_; }
507 bool is_initializer_block() const { return is_initializer_block_; }
509 static int num_ids() { return parent_num_ids() + 1; }
510 BailoutId DeclsId() const { return BailoutId(local_id(0)); }
512 bool IsJump() const OVERRIDE {
513 return !statements_.is_empty() && statements_.last()->IsJump()
514 && labels() == NULL; // Good enough as an approximation...
517 Scope* scope() const { return scope_; }
518 void set_scope(Scope* scope) { scope_ = scope; }
521 Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
522 bool is_initializer_block, int pos)
523 : BreakableStatement(zone, labels, TARGET_FOR_NAMED_ONLY, pos),
524 statements_(capacity, zone),
525 is_initializer_block_(is_initializer_block),
527 static int parent_num_ids() { return BreakableStatement::num_ids(); }
530 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
532 ZoneList<Statement*> statements_;
533 bool is_initializer_block_;
538 class Declaration : public AstNode {
540 VariableProxy* proxy() const { return proxy_; }
541 VariableMode mode() const { return mode_; }
542 Scope* scope() const { return scope_; }
543 virtual InitializationFlag initialization() const = 0;
544 virtual bool IsInlineable() const;
547 Declaration(Zone* zone, VariableProxy* proxy, VariableMode mode, Scope* scope,
549 : AstNode(pos), mode_(mode), proxy_(proxy), scope_(scope) {
550 DCHECK(IsDeclaredVariableMode(mode));
555 VariableProxy* proxy_;
557 // Nested scope from which the declaration originated.
562 class VariableDeclaration FINAL : public Declaration {
564 DECLARE_NODE_TYPE(VariableDeclaration)
566 InitializationFlag initialization() const OVERRIDE {
567 return mode() == VAR ? kCreatedInitialized : kNeedsInitialization;
571 VariableDeclaration(Zone* zone,
572 VariableProxy* proxy,
576 : Declaration(zone, proxy, mode, scope, pos) {
581 class FunctionDeclaration FINAL : public Declaration {
583 DECLARE_NODE_TYPE(FunctionDeclaration)
585 FunctionLiteral* fun() const { return fun_; }
586 InitializationFlag initialization() const OVERRIDE {
587 return kCreatedInitialized;
589 bool IsInlineable() const OVERRIDE;
592 FunctionDeclaration(Zone* zone,
593 VariableProxy* proxy,
595 FunctionLiteral* fun,
598 : Declaration(zone, proxy, mode, scope, pos),
600 DCHECK(mode == VAR || mode == LET || mode == CONST);
605 FunctionLiteral* fun_;
609 class ModuleDeclaration FINAL : public Declaration {
611 DECLARE_NODE_TYPE(ModuleDeclaration)
613 Module* module() const { return module_; }
614 InitializationFlag initialization() const OVERRIDE {
615 return kCreatedInitialized;
619 ModuleDeclaration(Zone* zone, VariableProxy* proxy, Module* module,
620 Scope* scope, int pos)
621 : Declaration(zone, proxy, CONST, scope, pos), module_(module) {}
628 class ImportDeclaration FINAL : public Declaration {
630 DECLARE_NODE_TYPE(ImportDeclaration)
632 const AstRawString* import_name() const { return import_name_; }
633 const AstRawString* module_specifier() const { return module_specifier_; }
634 void set_module_specifier(const AstRawString* module_specifier) {
635 DCHECK(module_specifier_ == NULL);
636 module_specifier_ = module_specifier;
638 InitializationFlag initialization() const OVERRIDE {
639 return kNeedsInitialization;
643 ImportDeclaration(Zone* zone, VariableProxy* proxy,
644 const AstRawString* import_name,
645 const AstRawString* module_specifier, Scope* scope, int pos)
646 : Declaration(zone, proxy, IMPORT, scope, pos),
647 import_name_(import_name),
648 module_specifier_(module_specifier) {}
651 const AstRawString* import_name_;
652 const AstRawString* module_specifier_;
656 class ExportDeclaration FINAL : public Declaration {
658 DECLARE_NODE_TYPE(ExportDeclaration)
660 InitializationFlag initialization() const OVERRIDE {
661 return kCreatedInitialized;
665 ExportDeclaration(Zone* zone, VariableProxy* proxy, Scope* scope, int pos)
666 : Declaration(zone, proxy, LET, scope, pos) {}
670 class Module : public AstNode {
672 ModuleDescriptor* descriptor() const { return descriptor_; }
673 Block* body() const { return body_; }
676 Module(Zone* zone, int pos)
677 : AstNode(pos), descriptor_(ModuleDescriptor::New(zone)), body_(NULL) {}
678 Module(Zone* zone, ModuleDescriptor* descriptor, int pos, Block* body = NULL)
679 : AstNode(pos), descriptor_(descriptor), body_(body) {}
682 ModuleDescriptor* descriptor_;
687 class ModuleLiteral FINAL : public Module {
689 DECLARE_NODE_TYPE(ModuleLiteral)
692 ModuleLiteral(Zone* zone, Block* body, ModuleDescriptor* descriptor, int pos)
693 : Module(zone, descriptor, pos, body) {}
697 class ModulePath FINAL : public Module {
699 DECLARE_NODE_TYPE(ModulePath)
701 Module* module() const { return module_; }
702 Handle<String> name() const { return name_->string(); }
705 ModulePath(Zone* zone, Module* module, const AstRawString* name, int pos)
706 : Module(zone, pos), module_(module), name_(name) {}
710 const AstRawString* name_;
714 class ModuleUrl FINAL : public Module {
716 DECLARE_NODE_TYPE(ModuleUrl)
718 Handle<String> url() const { return url_; }
721 ModuleUrl(Zone* zone, Handle<String> url, int pos)
722 : Module(zone, pos), url_(url) {
730 class ModuleStatement FINAL : public Statement {
732 DECLARE_NODE_TYPE(ModuleStatement)
734 Block* body() const { return body_; }
737 ModuleStatement(Zone* zone, Block* body, int pos)
738 : Statement(zone, pos), body_(body) {}
745 class IterationStatement : public BreakableStatement {
747 // Type testing & conversion.
748 IterationStatement* AsIterationStatement() FINAL { return this; }
750 Statement* body() const { return body_; }
752 static int num_ids() { return parent_num_ids() + 1; }
753 BailoutId OsrEntryId() const { return BailoutId(local_id(0)); }
754 virtual BailoutId ContinueId() const = 0;
755 virtual BailoutId StackCheckId() const = 0;
758 Label* continue_target() { return &continue_target_; }
761 IterationStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
762 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
764 static int parent_num_ids() { return BreakableStatement::num_ids(); }
765 void Initialize(Statement* body) { body_ = body; }
768 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
771 Label continue_target_;
775 class DoWhileStatement FINAL : public IterationStatement {
777 DECLARE_NODE_TYPE(DoWhileStatement)
779 void Initialize(Expression* cond, Statement* body) {
780 IterationStatement::Initialize(body);
784 Expression* cond() const { return cond_; }
786 static int num_ids() { return parent_num_ids() + 2; }
787 BailoutId ContinueId() const OVERRIDE { return BailoutId(local_id(0)); }
788 BailoutId StackCheckId() const OVERRIDE { return BackEdgeId(); }
789 BailoutId BackEdgeId() const { return BailoutId(local_id(1)); }
792 DoWhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
793 : IterationStatement(zone, labels, pos), cond_(NULL) {}
794 static int parent_num_ids() { return IterationStatement::num_ids(); }
797 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
803 class WhileStatement FINAL : public IterationStatement {
805 DECLARE_NODE_TYPE(WhileStatement)
807 void Initialize(Expression* cond, Statement* body) {
808 IterationStatement::Initialize(body);
812 Expression* cond() const { return cond_; }
814 static int num_ids() { return parent_num_ids() + 1; }
815 BailoutId ContinueId() const OVERRIDE { return EntryId(); }
816 BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
817 BailoutId BodyId() const { return BailoutId(local_id(0)); }
820 WhileStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
821 : IterationStatement(zone, labels, pos), cond_(NULL) {}
822 static int parent_num_ids() { return IterationStatement::num_ids(); }
825 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
831 class ForStatement FINAL : public IterationStatement {
833 DECLARE_NODE_TYPE(ForStatement)
835 void Initialize(Statement* init,
839 IterationStatement::Initialize(body);
845 Statement* init() const { return init_; }
846 Expression* cond() const { return cond_; }
847 Statement* next() const { return next_; }
849 static int num_ids() { return parent_num_ids() + 2; }
850 BailoutId ContinueId() const OVERRIDE { return BailoutId(local_id(0)); }
851 BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
852 BailoutId BodyId() const { return BailoutId(local_id(1)); }
855 ForStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
856 : IterationStatement(zone, labels, pos),
860 static int parent_num_ids() { return IterationStatement::num_ids(); }
863 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
871 class ForEachStatement : public IterationStatement {
874 ENUMERATE, // for (each in subject) body;
875 ITERATE // for (each of subject) body;
878 void Initialize(Expression* each, Expression* subject, Statement* body) {
879 IterationStatement::Initialize(body);
884 Expression* each() const { return each_; }
885 Expression* subject() const { return subject_; }
888 ForEachStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
889 : IterationStatement(zone, labels, pos), each_(NULL), subject_(NULL) {}
893 Expression* subject_;
897 class ForInStatement FINAL : public ForEachStatement {
899 DECLARE_NODE_TYPE(ForInStatement)
901 Expression* enumerable() const {
905 // Type feedback information.
906 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
907 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
908 return FeedbackVectorRequirements(1, 0);
910 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
911 for_in_feedback_slot_ = slot;
914 FeedbackVectorSlot ForInFeedbackSlot() {
915 DCHECK(!for_in_feedback_slot_.IsInvalid());
916 return for_in_feedback_slot_;
919 enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
920 ForInType for_in_type() const { return for_in_type_; }
921 void set_for_in_type(ForInType type) { for_in_type_ = type; }
923 static int num_ids() { return parent_num_ids() + 5; }
924 BailoutId BodyId() const { return BailoutId(local_id(0)); }
925 BailoutId PrepareId() const { return BailoutId(local_id(1)); }
926 BailoutId EnumId() const { return BailoutId(local_id(2)); }
927 BailoutId ToObjectId() const { return BailoutId(local_id(3)); }
928 BailoutId AssignmentId() const { return BailoutId(local_id(4)); }
929 BailoutId ContinueId() const OVERRIDE { return EntryId(); }
930 BailoutId StackCheckId() const OVERRIDE { return BodyId(); }
933 ForInStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
934 : ForEachStatement(zone, labels, pos),
935 for_in_type_(SLOW_FOR_IN),
936 for_in_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
937 static int parent_num_ids() { return ForEachStatement::num_ids(); }
940 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
942 ForInType for_in_type_;
943 FeedbackVectorSlot for_in_feedback_slot_;
947 class ForOfStatement FINAL : public ForEachStatement {
949 DECLARE_NODE_TYPE(ForOfStatement)
951 void Initialize(Expression* each,
954 Expression* assign_iterator,
955 Expression* next_result,
956 Expression* result_done,
957 Expression* assign_each) {
958 ForEachStatement::Initialize(each, subject, body);
959 assign_iterator_ = assign_iterator;
960 next_result_ = next_result;
961 result_done_ = result_done;
962 assign_each_ = assign_each;
965 Expression* iterable() const {
969 // iterator = subject[Symbol.iterator]()
970 Expression* assign_iterator() const {
971 return assign_iterator_;
974 // result = iterator.next() // with type check
975 Expression* next_result() const {
980 Expression* result_done() const {
984 // each = result.value
985 Expression* assign_each() const {
989 BailoutId ContinueId() const OVERRIDE { return EntryId(); }
990 BailoutId StackCheckId() const OVERRIDE { return BackEdgeId(); }
992 static int num_ids() { return parent_num_ids() + 1; }
993 BailoutId BackEdgeId() const { return BailoutId(local_id(0)); }
996 ForOfStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
997 : ForEachStatement(zone, labels, pos),
998 assign_iterator_(NULL),
1001 assign_each_(NULL) {}
1002 static int parent_num_ids() { return ForEachStatement::num_ids(); }
1005 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1007 Expression* assign_iterator_;
1008 Expression* next_result_;
1009 Expression* result_done_;
1010 Expression* assign_each_;
1014 class ExpressionStatement FINAL : public Statement {
1016 DECLARE_NODE_TYPE(ExpressionStatement)
1018 void set_expression(Expression* e) { expression_ = e; }
1019 Expression* expression() const { return expression_; }
1020 bool IsJump() const OVERRIDE { return expression_->IsThrow(); }
1023 ExpressionStatement(Zone* zone, Expression* expression, int pos)
1024 : Statement(zone, pos), expression_(expression) { }
1027 Expression* expression_;
1031 class JumpStatement : public Statement {
1033 bool IsJump() const FINAL { return true; }
1036 explicit JumpStatement(Zone* zone, int pos) : Statement(zone, pos) {}
1040 class ContinueStatement FINAL : public JumpStatement {
1042 DECLARE_NODE_TYPE(ContinueStatement)
1044 IterationStatement* target() const { return target_; }
1047 explicit ContinueStatement(Zone* zone, IterationStatement* target, int pos)
1048 : JumpStatement(zone, pos), target_(target) { }
1051 IterationStatement* target_;
1055 class BreakStatement FINAL : public JumpStatement {
1057 DECLARE_NODE_TYPE(BreakStatement)
1059 BreakableStatement* target() const { return target_; }
1062 explicit BreakStatement(Zone* zone, BreakableStatement* target, int pos)
1063 : JumpStatement(zone, pos), target_(target) { }
1066 BreakableStatement* target_;
1070 class ReturnStatement FINAL : public JumpStatement {
1072 DECLARE_NODE_TYPE(ReturnStatement)
1074 Expression* expression() const { return expression_; }
1077 explicit ReturnStatement(Zone* zone, Expression* expression, int pos)
1078 : JumpStatement(zone, pos), expression_(expression) { }
1081 Expression* expression_;
1085 class WithStatement FINAL : public Statement {
1087 DECLARE_NODE_TYPE(WithStatement)
1089 Scope* scope() { return scope_; }
1090 Expression* expression() const { return expression_; }
1091 Statement* statement() const { return statement_; }
1093 void set_base_id(int id) { base_id_ = id; }
1094 static int num_ids() { return parent_num_ids() + 1; }
1095 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1098 WithStatement(Zone* zone, Scope* scope, Expression* expression,
1099 Statement* statement, int pos)
1100 : Statement(zone, pos),
1102 expression_(expression),
1103 statement_(statement),
1104 base_id_(BailoutId::None().ToInt()) {}
1105 static int parent_num_ids() { return 0; }
1107 int base_id() const {
1108 DCHECK(!BailoutId(base_id_).IsNone());
1113 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1116 Expression* expression_;
1117 Statement* statement_;
1122 class CaseClause FINAL : public Expression {
1124 DECLARE_NODE_TYPE(CaseClause)
1126 bool is_default() const { return label_ == NULL; }
1127 Expression* label() const {
1128 CHECK(!is_default());
1131 Label* body_target() { return &body_target_; }
1132 ZoneList<Statement*>* statements() const { return statements_; }
1134 static int num_ids() { return parent_num_ids() + 2; }
1135 BailoutId EntryId() const { return BailoutId(local_id(0)); }
1136 TypeFeedbackId CompareId() { return TypeFeedbackId(local_id(1)); }
1138 Type* compare_type() { return compare_type_; }
1139 void set_compare_type(Type* type) { compare_type_ = type; }
1142 static int parent_num_ids() { return Expression::num_ids(); }
1145 CaseClause(Zone* zone, Expression* label, ZoneList<Statement*>* statements,
1147 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1151 ZoneList<Statement*>* statements_;
1152 Type* compare_type_;
1156 class SwitchStatement FINAL : public BreakableStatement {
1158 DECLARE_NODE_TYPE(SwitchStatement)
1160 void Initialize(Expression* tag, ZoneList<CaseClause*>* cases) {
1165 Expression* tag() const { return tag_; }
1166 ZoneList<CaseClause*>* cases() const { return cases_; }
1169 SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels, int pos)
1170 : BreakableStatement(zone, labels, TARGET_FOR_ANONYMOUS, pos),
1176 ZoneList<CaseClause*>* cases_;
1180 // If-statements always have non-null references to their then- and
1181 // else-parts. When parsing if-statements with no explicit else-part,
1182 // the parser implicitly creates an empty statement. Use the
1183 // HasThenStatement() and HasElseStatement() functions to check if a
1184 // given if-statement has a then- or an else-part containing code.
1185 class IfStatement FINAL : public Statement {
1187 DECLARE_NODE_TYPE(IfStatement)
1189 bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
1190 bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
1192 Expression* condition() const { return condition_; }
1193 Statement* then_statement() const { return then_statement_; }
1194 Statement* else_statement() const { return else_statement_; }
1196 bool IsJump() const OVERRIDE {
1197 return HasThenStatement() && then_statement()->IsJump()
1198 && HasElseStatement() && else_statement()->IsJump();
1201 void set_base_id(int id) { base_id_ = id; }
1202 static int num_ids() { return parent_num_ids() + 3; }
1203 BailoutId IfId() const { return BailoutId(local_id(0)); }
1204 BailoutId ThenId() const { return BailoutId(local_id(1)); }
1205 BailoutId ElseId() const { return BailoutId(local_id(2)); }
1208 IfStatement(Zone* zone, Expression* condition, Statement* then_statement,
1209 Statement* else_statement, int pos)
1210 : Statement(zone, pos),
1211 condition_(condition),
1212 then_statement_(then_statement),
1213 else_statement_(else_statement),
1214 base_id_(BailoutId::None().ToInt()) {}
1215 static int parent_num_ids() { return 0; }
1217 int base_id() const {
1218 DCHECK(!BailoutId(base_id_).IsNone());
1223 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1225 Expression* condition_;
1226 Statement* then_statement_;
1227 Statement* else_statement_;
1232 class TryStatement : public Statement {
1234 int index() const { return index_; }
1235 Block* try_block() const { return try_block_; }
1238 TryStatement(Zone* zone, int index, Block* try_block, int pos)
1239 : Statement(zone, pos), index_(index), try_block_(try_block) {}
1242 // Unique (per-function) index of this handler. This is not an AST ID.
1249 class TryCatchStatement FINAL : public TryStatement {
1251 DECLARE_NODE_TYPE(TryCatchStatement)
1253 Scope* scope() { return scope_; }
1254 Variable* variable() { return variable_; }
1255 Block* catch_block() const { return catch_block_; }
1258 TryCatchStatement(Zone* zone,
1265 : TryStatement(zone, index, try_block, pos),
1267 variable_(variable),
1268 catch_block_(catch_block) {
1273 Variable* variable_;
1274 Block* catch_block_;
1278 class TryFinallyStatement FINAL : public TryStatement {
1280 DECLARE_NODE_TYPE(TryFinallyStatement)
1282 Block* finally_block() const { return finally_block_; }
1285 TryFinallyStatement(
1286 Zone* zone, int index, Block* try_block, Block* finally_block, int pos)
1287 : TryStatement(zone, index, try_block, pos),
1288 finally_block_(finally_block) { }
1291 Block* finally_block_;
1295 class DebuggerStatement FINAL : public Statement {
1297 DECLARE_NODE_TYPE(DebuggerStatement)
1299 void set_base_id(int id) { base_id_ = id; }
1300 static int num_ids() { return parent_num_ids() + 1; }
1301 BailoutId DebugBreakId() const { return BailoutId(local_id(0)); }
1304 explicit DebuggerStatement(Zone* zone, int pos)
1305 : Statement(zone, pos), base_id_(BailoutId::None().ToInt()) {}
1306 static int parent_num_ids() { return 0; }
1308 int base_id() const {
1309 DCHECK(!BailoutId(base_id_).IsNone());
1314 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1320 class EmptyStatement FINAL : public Statement {
1322 DECLARE_NODE_TYPE(EmptyStatement)
1325 explicit EmptyStatement(Zone* zone, int pos): Statement(zone, pos) {}
1329 class Literal FINAL : public Expression {
1331 DECLARE_NODE_TYPE(Literal)
1333 bool IsPropertyName() const OVERRIDE { return value_->IsPropertyName(); }
1335 Handle<String> AsPropertyName() {
1336 DCHECK(IsPropertyName());
1337 return Handle<String>::cast(value());
1340 const AstRawString* AsRawPropertyName() {
1341 DCHECK(IsPropertyName());
1342 return value_->AsString();
1345 bool ToBooleanIsTrue() const OVERRIDE { return value()->BooleanValue(); }
1346 bool ToBooleanIsFalse() const OVERRIDE { return !value()->BooleanValue(); }
1348 Handle<Object> value() const { return value_->value(); }
1349 const AstValue* raw_value() const { return value_; }
1351 // Support for using Literal as a HashMap key. NOTE: Currently, this works
1352 // only for string and number literals!
1354 static bool Match(void* literal1, void* literal2);
1356 static int num_ids() { return parent_num_ids() + 1; }
1357 TypeFeedbackId LiteralFeedbackId() const {
1358 return TypeFeedbackId(local_id(0));
1362 Literal(Zone* zone, const AstValue* value, int position)
1363 : Expression(zone, position), value_(value) {}
1364 static int parent_num_ids() { return Expression::num_ids(); }
1367 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1369 const AstValue* value_;
1373 // Base class for literals that needs space in the corresponding JSFunction.
1374 class MaterializedLiteral : public Expression {
1376 virtual MaterializedLiteral* AsMaterializedLiteral() { return this; }
1378 int literal_index() { return literal_index_; }
1381 // only callable after initialization.
1382 DCHECK(depth_ >= 1);
1387 MaterializedLiteral(Zone* zone, int literal_index, int pos)
1388 : Expression(zone, pos),
1389 literal_index_(literal_index),
1393 // A materialized literal is simple if the values consist of only
1394 // constants and simple object and array literals.
1395 bool is_simple() const { return is_simple_; }
1396 void set_is_simple(bool is_simple) { is_simple_ = is_simple; }
1397 friend class CompileTimeValue;
1399 void set_depth(int depth) {
1404 // Populate the constant properties/elements fixed array.
1405 void BuildConstants(Isolate* isolate);
1406 friend class ArrayLiteral;
1407 friend class ObjectLiteral;
1409 // If the expression is a literal, return the literal value;
1410 // if the expression is a materialized literal and is simple return a
1411 // compile time value as encoded by CompileTimeValue::GetValue().
1412 // Otherwise, return undefined literal as the placeholder
1413 // in the object literal boilerplate.
1414 Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
1423 // Property is used for passing information
1424 // about an object literal's properties from the parser
1425 // to the code generator.
1426 class ObjectLiteralProperty FINAL : public ZoneObject {
1429 CONSTANT, // Property with constant value (compile time).
1430 COMPUTED, // Property with computed value (execution time).
1431 MATERIALIZED_LITERAL, // Property value is a materialized literal.
1432 GETTER, SETTER, // Property is an accessor function.
1433 PROTOTYPE // Property is __proto__.
1436 Expression* key() { return key_; }
1437 Expression* value() { return value_; }
1438 Kind kind() { return kind_; }
1440 // Type feedback information.
1441 bool IsMonomorphic() { return !receiver_type_.is_null(); }
1442 Handle<Map> GetReceiverType() { return receiver_type_; }
1444 bool IsCompileTimeValue();
1446 void set_emit_store(bool emit_store);
1449 bool is_static() const { return is_static_; }
1450 bool is_computed_name() const { return is_computed_name_; }
1452 void set_receiver_type(Handle<Map> map) { receiver_type_ = map; }
1455 friend class AstNodeFactory;
1457 ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
1458 bool is_static, bool is_computed_name);
1459 ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
1460 Expression* value, bool is_static,
1461 bool is_computed_name);
1469 bool is_computed_name_;
1470 Handle<Map> receiver_type_;
1474 // An object literal has a boilerplate object that is used
1475 // for minimizing the work when constructing it at runtime.
1476 class ObjectLiteral FINAL : public MaterializedLiteral {
1478 typedef ObjectLiteralProperty Property;
1480 DECLARE_NODE_TYPE(ObjectLiteral)
1482 Handle<FixedArray> constant_properties() const {
1483 return constant_properties_;
1485 int properties_count() const { return constant_properties_->length() / 2; }
1486 ZoneList<Property*>* properties() const { return properties_; }
1487 bool fast_elements() const { return fast_elements_; }
1488 bool may_store_doubles() const { return may_store_doubles_; }
1489 bool has_function() const { return has_function_; }
1490 bool has_elements() const { return has_elements_; }
1492 // Decide if a property should be in the object boilerplate.
1493 static bool IsBoilerplateProperty(Property* property);
1495 // Populate the constant properties fixed array.
1496 void BuildConstantProperties(Isolate* isolate);
1498 // Mark all computed expressions that are bound to a key that
1499 // is shadowed by a later occurrence of the same key. For the
1500 // marked expressions, no store code is emitted.
1501 void CalculateEmitStore(Zone* zone);
1503 // Assemble bitfield of flags for the CreateObjectLiteral helper.
1504 int ComputeFlags(bool disable_mementos = false) const {
1505 int flags = fast_elements() ? kFastElements : kNoFlags;
1506 flags |= has_function() ? kHasFunction : kNoFlags;
1507 if (disable_mementos) {
1508 flags |= kDisableMementos;
1516 kHasFunction = 1 << 1,
1517 kDisableMementos = 1 << 2
1520 struct Accessors: public ZoneObject {
1521 Accessors() : getter(NULL), setter(NULL) {}
1526 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1528 // Return an AST id for a property that is used in simulate instructions.
1529 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 1)); }
1531 // Unlike other AST nodes, this number of bailout IDs allocated for an
1532 // ObjectLiteral can vary, so num_ids() is not a static method.
1533 int num_ids() const { return parent_num_ids() + 1 + properties()->length(); }
1536 ObjectLiteral(Zone* zone, ZoneList<Property*>* properties, int literal_index,
1537 int boilerplate_properties, bool has_function, int pos)
1538 : MaterializedLiteral(zone, literal_index, pos),
1539 properties_(properties),
1540 boilerplate_properties_(boilerplate_properties),
1541 fast_elements_(false),
1542 has_elements_(false),
1543 may_store_doubles_(false),
1544 has_function_(has_function) {}
1545 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1548 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1549 Handle<FixedArray> constant_properties_;
1550 ZoneList<Property*>* properties_;
1551 int boilerplate_properties_;
1552 bool fast_elements_;
1554 bool may_store_doubles_;
1559 // Node for capturing a regexp literal.
1560 class RegExpLiteral FINAL : public MaterializedLiteral {
1562 DECLARE_NODE_TYPE(RegExpLiteral)
1564 Handle<String> pattern() const { return pattern_->string(); }
1565 Handle<String> flags() const { return flags_->string(); }
1568 RegExpLiteral(Zone* zone, const AstRawString* pattern,
1569 const AstRawString* flags, int literal_index, int pos)
1570 : MaterializedLiteral(zone, literal_index, pos),
1577 const AstRawString* pattern_;
1578 const AstRawString* flags_;
1582 // An array literal has a literals object that is used
1583 // for minimizing the work when constructing it at runtime.
1584 class ArrayLiteral FINAL : public MaterializedLiteral {
1586 DECLARE_NODE_TYPE(ArrayLiteral)
1588 Handle<FixedArray> constant_elements() const { return constant_elements_; }
1589 ElementsKind constant_elements_kind() const {
1590 DCHECK_EQ(2, constant_elements_->length());
1591 return static_cast<ElementsKind>(
1592 Smi::cast(constant_elements_->get(0))->value());
1595 ZoneList<Expression*>* values() const { return values_; }
1597 BailoutId CreateLiteralId() const { return BailoutId(local_id(0)); }
1599 // Return an AST id for an element that is used in simulate instructions.
1600 BailoutId GetIdForElement(int i) { return BailoutId(local_id(i + 1)); }
1602 // Unlike other AST nodes, this number of bailout IDs allocated for an
1603 // ArrayLiteral can vary, so num_ids() is not a static method.
1604 int num_ids() const { return parent_num_ids() + 1 + values()->length(); }
1606 // Populate the constant elements fixed array.
1607 void BuildConstantElements(Isolate* isolate);
1609 // Assemble bitfield of flags for the CreateArrayLiteral helper.
1610 int ComputeFlags(bool disable_mementos = false) const {
1611 int flags = depth() == 1 ? kShallowElements : kNoFlags;
1612 if (disable_mementos) {
1613 flags |= kDisableMementos;
1620 kShallowElements = 1,
1621 kDisableMementos = 1 << 1
1625 ArrayLiteral(Zone* zone, ZoneList<Expression*>* values, int literal_index,
1627 : MaterializedLiteral(zone, literal_index, pos), values_(values) {}
1628 static int parent_num_ids() { return MaterializedLiteral::num_ids(); }
1631 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1633 Handle<FixedArray> constant_elements_;
1634 ZoneList<Expression*>* values_;
1638 class VariableProxy FINAL : public Expression {
1640 DECLARE_NODE_TYPE(VariableProxy)
1642 bool IsValidReferenceExpression() const OVERRIDE { return !is_this(); }
1644 bool IsArguments() const { return is_resolved() && var()->is_arguments(); }
1646 Handle<String> name() const { return raw_name()->string(); }
1647 const AstRawString* raw_name() const {
1648 return is_resolved() ? var_->raw_name() : raw_name_;
1651 Variable* var() const {
1652 DCHECK(is_resolved());
1655 void set_var(Variable* v) {
1656 DCHECK(!is_resolved());
1661 bool is_this() const { return IsThisField::decode(bit_field_); }
1663 bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
1664 void set_is_assigned() {
1665 bit_field_ = IsAssignedField::update(bit_field_, true);
1668 bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
1669 void set_is_resolved() {
1670 bit_field_ = IsResolvedField::update(bit_field_, true);
1673 int end_position() const { return end_position_; }
1675 // Bind this proxy to the variable var.
1676 void BindTo(Variable* var);
1678 bool UsesVariableFeedbackSlot() const {
1679 return FLAG_vector_ics && (var()->IsUnallocated() || var()->IsLookupSlot());
1682 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1683 Isolate* isolate, const ICSlotCache* cache) OVERRIDE;
1685 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1686 ICSlotCache* cache) OVERRIDE;
1687 Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
1688 FeedbackVectorICSlot VariableFeedbackSlot() {
1689 DCHECK(!UsesVariableFeedbackSlot() || !variable_feedback_slot_.IsInvalid());
1690 return variable_feedback_slot_;
1694 VariableProxy(Zone* zone, Variable* var, int start_position,
1697 VariableProxy(Zone* zone, const AstRawString* name,
1698 Variable::Kind variable_kind, int start_position,
1701 class IsThisField : public BitField8<bool, 0, 1> {};
1702 class IsAssignedField : public BitField8<bool, 1, 1> {};
1703 class IsResolvedField : public BitField8<bool, 2, 1> {};
1705 // Start with 16-bit (or smaller) field, which should get packed together
1706 // with Expression's trailing 16-bit field.
1708 FeedbackVectorICSlot variable_feedback_slot_;
1710 const AstRawString* raw_name_; // if !is_resolved_
1711 Variable* var_; // if is_resolved_
1713 // Position is stored in the AstNode superclass, but VariableProxy needs to
1714 // know its end position too (for error messages). It cannot be inferred from
1715 // the variable name length because it can contain escapes.
1720 class Property FINAL : public Expression {
1722 DECLARE_NODE_TYPE(Property)
1724 bool IsValidReferenceExpression() const OVERRIDE { return true; }
1726 Expression* obj() const { return obj_; }
1727 Expression* key() const { return key_; }
1729 static int num_ids() { return parent_num_ids() + 2; }
1730 BailoutId LoadId() const { return BailoutId(local_id(0)); }
1731 TypeFeedbackId PropertyFeedbackId() { return TypeFeedbackId(local_id(1)); }
1733 bool IsStringAccess() const {
1734 return IsStringAccessField::decode(bit_field_);
1737 // Type feedback information.
1738 bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
1739 SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
1740 KeyedAccessStoreMode GetStoreMode() const OVERRIDE { return STANDARD_STORE; }
1741 IcCheckType GetKeyType() const OVERRIDE {
1742 return KeyTypeField::decode(bit_field_);
1744 bool IsUninitialized() const {
1745 return !is_for_call() && HasNoTypeInformation();
1747 bool HasNoTypeInformation() const {
1748 return IsUninitializedField::decode(bit_field_);
1750 void set_is_uninitialized(bool b) {
1751 bit_field_ = IsUninitializedField::update(bit_field_, b);
1753 void set_is_string_access(bool b) {
1754 bit_field_ = IsStringAccessField::update(bit_field_, b);
1756 void set_key_type(IcCheckType key_type) {
1757 bit_field_ = KeyTypeField::update(bit_field_, key_type);
1759 void mark_for_call() {
1760 bit_field_ = IsForCallField::update(bit_field_, true);
1762 bool is_for_call() const { return IsForCallField::decode(bit_field_); }
1764 bool IsSuperAccess() {
1765 return obj()->IsSuperReference();
1768 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1769 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
1770 return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
1772 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1773 ICSlotCache* cache) OVERRIDE {
1774 property_feedback_slot_ = slot;
1776 Code::Kind FeedbackICSlotKind(int index) OVERRIDE {
1777 return key()->IsPropertyName() ? Code::LOAD_IC : Code::KEYED_LOAD_IC;
1780 FeedbackVectorICSlot PropertyFeedbackSlot() const {
1781 DCHECK(!FLAG_vector_ics || !property_feedback_slot_.IsInvalid());
1782 return property_feedback_slot_;
1786 Property(Zone* zone, Expression* obj, Expression* key, int pos)
1787 : Expression(zone, pos),
1788 bit_field_(IsForCallField::encode(false) |
1789 IsUninitializedField::encode(false) |
1790 IsStringAccessField::encode(false)),
1791 property_feedback_slot_(FeedbackVectorICSlot::Invalid()),
1794 static int parent_num_ids() { return Expression::num_ids(); }
1797 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1799 class IsForCallField : public BitField8<bool, 0, 1> {};
1800 class IsUninitializedField : public BitField8<bool, 1, 1> {};
1801 class IsStringAccessField : public BitField8<bool, 2, 1> {};
1802 class KeyTypeField : public BitField8<IcCheckType, 3, 1> {};
1804 FeedbackVectorICSlot property_feedback_slot_;
1807 SmallMapList receiver_types_;
1811 class Call FINAL : public Expression {
1813 DECLARE_NODE_TYPE(Call)
1815 Expression* expression() const { return expression_; }
1816 ZoneList<Expression*>* arguments() const { return arguments_; }
1818 // Type feedback information.
1819 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1820 Isolate* isolate, const ICSlotCache* cache) OVERRIDE;
1821 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
1822 ICSlotCache* cache) OVERRIDE {
1823 ic_slot_or_slot_ = slot.ToInt();
1825 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
1826 ic_slot_or_slot_ = slot.ToInt();
1828 Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::CALL_IC; }
1830 FeedbackVectorSlot CallFeedbackSlot() const {
1831 DCHECK(ic_slot_or_slot_ != FeedbackVectorSlot::Invalid().ToInt());
1832 return FeedbackVectorSlot(ic_slot_or_slot_);
1835 FeedbackVectorICSlot CallFeedbackICSlot() const {
1836 DCHECK(ic_slot_or_slot_ != FeedbackVectorICSlot::Invalid().ToInt());
1837 return FeedbackVectorICSlot(ic_slot_or_slot_);
1840 SmallMapList* GetReceiverTypes() OVERRIDE {
1841 if (expression()->IsProperty()) {
1842 return expression()->AsProperty()->GetReceiverTypes();
1847 bool IsMonomorphic() OVERRIDE {
1848 if (expression()->IsProperty()) {
1849 return expression()->AsProperty()->IsMonomorphic();
1851 return !target_.is_null();
1854 bool global_call() const {
1855 VariableProxy* proxy = expression_->AsVariableProxy();
1856 return proxy != NULL && proxy->var()->IsUnallocated();
1859 bool known_global_function() const {
1860 return global_call() && !target_.is_null();
1863 Handle<JSFunction> target() { return target_; }
1865 Handle<AllocationSite> allocation_site() { return allocation_site_; }
1867 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1869 set_is_uninitialized(false);
1871 void set_target(Handle<JSFunction> target) { target_ = target; }
1872 void set_allocation_site(Handle<AllocationSite> site) {
1873 allocation_site_ = site;
1876 static int num_ids() { return parent_num_ids() + 2; }
1877 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1878 BailoutId EvalOrLookupId() const { return BailoutId(local_id(1)); }
1880 bool is_uninitialized() const {
1881 return IsUninitializedField::decode(bit_field_);
1883 void set_is_uninitialized(bool b) {
1884 bit_field_ = IsUninitializedField::update(bit_field_, b);
1896 // Helpers to determine how to handle the call.
1897 CallType GetCallType(Isolate* isolate) const;
1898 bool IsUsingCallFeedbackSlot(Isolate* isolate) const;
1899 bool IsUsingCallFeedbackICSlot(Isolate* isolate) const;
1902 // Used to assert that the FullCodeGenerator records the return site.
1903 bool return_is_recorded_;
1907 Call(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
1909 : Expression(zone, pos),
1910 ic_slot_or_slot_(FeedbackVectorICSlot::Invalid().ToInt()),
1911 expression_(expression),
1912 arguments_(arguments),
1913 bit_field_(IsUninitializedField::encode(false)) {
1914 if (expression->IsProperty()) {
1915 expression->AsProperty()->mark_for_call();
1918 static int parent_num_ids() { return Expression::num_ids(); }
1921 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1923 // We store this as an integer because we don't know if we have a slot or
1924 // an ic slot until scoping time.
1925 int ic_slot_or_slot_;
1926 Expression* expression_;
1927 ZoneList<Expression*>* arguments_;
1928 Handle<JSFunction> target_;
1929 Handle<AllocationSite> allocation_site_;
1930 class IsUninitializedField : public BitField8<bool, 0, 1> {};
1935 class CallNew FINAL : public Expression {
1937 DECLARE_NODE_TYPE(CallNew)
1939 Expression* expression() const { return expression_; }
1940 ZoneList<Expression*>* arguments() const { return arguments_; }
1942 // Type feedback information.
1943 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
1944 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
1945 return FeedbackVectorRequirements(FLAG_pretenuring_call_new ? 2 : 1, 0);
1947 void SetFirstFeedbackSlot(FeedbackVectorSlot slot) OVERRIDE {
1948 callnew_feedback_slot_ = slot;
1951 FeedbackVectorSlot CallNewFeedbackSlot() {
1952 DCHECK(!callnew_feedback_slot_.IsInvalid());
1953 return callnew_feedback_slot_;
1955 FeedbackVectorSlot AllocationSiteFeedbackSlot() {
1956 DCHECK(FLAG_pretenuring_call_new);
1957 return CallNewFeedbackSlot().next();
1960 bool IsMonomorphic() OVERRIDE { return is_monomorphic_; }
1961 Handle<JSFunction> target() const { return target_; }
1962 Handle<AllocationSite> allocation_site() const {
1963 return allocation_site_;
1966 static int num_ids() { return parent_num_ids() + 1; }
1967 static int feedback_slots() { return 1; }
1968 BailoutId ReturnId() const { return BailoutId(local_id(0)); }
1970 void set_allocation_site(Handle<AllocationSite> site) {
1971 allocation_site_ = site;
1973 void set_is_monomorphic(bool monomorphic) { is_monomorphic_ = monomorphic; }
1974 void set_target(Handle<JSFunction> target) { target_ = target; }
1975 void SetKnownGlobalTarget(Handle<JSFunction> target) {
1977 is_monomorphic_ = true;
1981 CallNew(Zone* zone, Expression* expression, ZoneList<Expression*>* arguments,
1983 : Expression(zone, pos),
1984 expression_(expression),
1985 arguments_(arguments),
1986 is_monomorphic_(false),
1987 callnew_feedback_slot_(FeedbackVectorSlot::Invalid()) {}
1989 static int parent_num_ids() { return Expression::num_ids(); }
1992 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
1994 Expression* expression_;
1995 ZoneList<Expression*>* arguments_;
1996 bool is_monomorphic_;
1997 Handle<JSFunction> target_;
1998 Handle<AllocationSite> allocation_site_;
1999 FeedbackVectorSlot callnew_feedback_slot_;
2003 // The CallRuntime class does not represent any official JavaScript
2004 // language construct. Instead it is used to call a C or JS function
2005 // with a set of arguments. This is used from the builtins that are
2006 // implemented in JavaScript (see "v8natives.js").
2007 class CallRuntime FINAL : public Expression {
2009 DECLARE_NODE_TYPE(CallRuntime)
2011 Handle<String> name() const { return raw_name_->string(); }
2012 const AstRawString* raw_name() const { return raw_name_; }
2013 const Runtime::Function* function() const { return function_; }
2014 ZoneList<Expression*>* arguments() const { return arguments_; }
2015 bool is_jsruntime() const { return function_ == NULL; }
2017 // Type feedback information.
2018 bool HasCallRuntimeFeedbackSlot() const {
2019 return FLAG_vector_ics && is_jsruntime();
2021 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
2022 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
2023 return FeedbackVectorRequirements(0, HasCallRuntimeFeedbackSlot() ? 1 : 0);
2025 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
2026 ICSlotCache* cache) OVERRIDE {
2027 callruntime_feedback_slot_ = slot;
2029 Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
2031 FeedbackVectorICSlot CallRuntimeFeedbackSlot() {
2032 DCHECK(!HasCallRuntimeFeedbackSlot() ||
2033 !callruntime_feedback_slot_.IsInvalid());
2034 return callruntime_feedback_slot_;
2037 static int num_ids() { return parent_num_ids() + 1; }
2038 TypeFeedbackId CallRuntimeFeedbackId() const {
2039 return TypeFeedbackId(local_id(0));
2043 CallRuntime(Zone* zone, const AstRawString* name,
2044 const Runtime::Function* function,
2045 ZoneList<Expression*>* arguments, int pos)
2046 : Expression(zone, pos),
2048 function_(function),
2049 arguments_(arguments),
2050 callruntime_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
2051 static int parent_num_ids() { return Expression::num_ids(); }
2054 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2056 const AstRawString* raw_name_;
2057 const Runtime::Function* function_;
2058 ZoneList<Expression*>* arguments_;
2059 FeedbackVectorICSlot callruntime_feedback_slot_;
2063 class UnaryOperation FINAL : public Expression {
2065 DECLARE_NODE_TYPE(UnaryOperation)
2067 Token::Value op() const { return op_; }
2068 Expression* expression() const { return expression_; }
2070 // For unary not (Token::NOT), the AST ids where true and false will
2071 // actually be materialized, respectively.
2072 static int num_ids() { return parent_num_ids() + 2; }
2073 BailoutId MaterializeTrueId() const { return BailoutId(local_id(0)); }
2074 BailoutId MaterializeFalseId() const { return BailoutId(local_id(1)); }
2076 virtual void RecordToBooleanTypeFeedback(
2077 TypeFeedbackOracle* oracle) OVERRIDE;
2080 UnaryOperation(Zone* zone, Token::Value op, Expression* expression, int pos)
2081 : Expression(zone, pos), op_(op), expression_(expression) {
2082 DCHECK(Token::IsUnaryOp(op));
2084 static int parent_num_ids() { return Expression::num_ids(); }
2087 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2090 Expression* expression_;
2094 class BinaryOperation FINAL : public Expression {
2096 DECLARE_NODE_TYPE(BinaryOperation)
2098 Token::Value op() const { return static_cast<Token::Value>(op_); }
2099 Expression* left() const { return left_; }
2100 Expression* right() const { return right_; }
2101 Handle<AllocationSite> allocation_site() const { return allocation_site_; }
2102 void set_allocation_site(Handle<AllocationSite> allocation_site) {
2103 allocation_site_ = allocation_site;
2106 // The short-circuit logical operations need an AST ID for their
2107 // right-hand subexpression.
2108 static int num_ids() { return parent_num_ids() + 2; }
2109 BailoutId RightId() const { return BailoutId(local_id(0)); }
2111 TypeFeedbackId BinaryOperationFeedbackId() const {
2112 return TypeFeedbackId(local_id(1));
2114 Maybe<int> fixed_right_arg() const {
2115 return has_fixed_right_arg_ ? Just(fixed_right_arg_value_) : Nothing<int>();
2117 void set_fixed_right_arg(Maybe<int> arg) {
2118 has_fixed_right_arg_ = arg.IsJust();
2119 if (arg.IsJust()) fixed_right_arg_value_ = arg.FromJust();
2122 virtual void RecordToBooleanTypeFeedback(
2123 TypeFeedbackOracle* oracle) OVERRIDE;
2126 BinaryOperation(Zone* zone, Token::Value op, Expression* left,
2127 Expression* right, int pos)
2128 : Expression(zone, pos),
2129 op_(static_cast<byte>(op)),
2130 has_fixed_right_arg_(false),
2131 fixed_right_arg_value_(0),
2134 DCHECK(Token::IsBinaryOp(op));
2136 static int parent_num_ids() { return Expression::num_ids(); }
2139 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2141 const byte op_; // actually Token::Value
2142 // TODO(rossberg): the fixed arg should probably be represented as a Constant
2143 // type for the RHS. Currenty it's actually a Maybe<int>
2144 bool has_fixed_right_arg_;
2145 int fixed_right_arg_value_;
2148 Handle<AllocationSite> allocation_site_;
2152 class CountOperation FINAL : public Expression {
2154 DECLARE_NODE_TYPE(CountOperation)
2156 bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
2157 bool is_postfix() const { return !is_prefix(); }
2159 Token::Value op() const { return TokenField::decode(bit_field_); }
2160 Token::Value binary_op() {
2161 return (op() == Token::INC) ? Token::ADD : Token::SUB;
2164 Expression* expression() const { return expression_; }
2166 bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
2167 SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
2168 IcCheckType GetKeyType() const OVERRIDE {
2169 return KeyTypeField::decode(bit_field_);
2171 KeyedAccessStoreMode GetStoreMode() const OVERRIDE {
2172 return StoreModeField::decode(bit_field_);
2174 Type* type() const { return type_; }
2175 void set_key_type(IcCheckType type) {
2176 bit_field_ = KeyTypeField::update(bit_field_, type);
2178 void set_store_mode(KeyedAccessStoreMode mode) {
2179 bit_field_ = StoreModeField::update(bit_field_, mode);
2181 void set_type(Type* type) { type_ = type; }
2183 static int num_ids() { return parent_num_ids() + 4; }
2184 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2185 BailoutId ToNumberId() const { return BailoutId(local_id(1)); }
2186 TypeFeedbackId CountBinOpFeedbackId() const {
2187 return TypeFeedbackId(local_id(2));
2189 TypeFeedbackId CountStoreFeedbackId() const {
2190 return TypeFeedbackId(local_id(3));
2194 CountOperation(Zone* zone, Token::Value op, bool is_prefix, Expression* expr,
2196 : Expression(zone, pos),
2197 bit_field_(IsPrefixField::encode(is_prefix) |
2198 KeyTypeField::encode(ELEMENT) |
2199 StoreModeField::encode(STANDARD_STORE) |
2200 TokenField::encode(op)),
2202 expression_(expr) {}
2203 static int parent_num_ids() { return Expression::num_ids(); }
2206 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2208 class IsPrefixField : public BitField16<bool, 0, 1> {};
2209 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2210 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
2211 class TokenField : public BitField16<Token::Value, 6, 8> {};
2213 // Starts with 16-bit field, which should get packed together with
2214 // Expression's trailing 16-bit field.
2215 uint16_t bit_field_;
2217 Expression* expression_;
2218 SmallMapList receiver_types_;
2222 class CompareOperation FINAL : public Expression {
2224 DECLARE_NODE_TYPE(CompareOperation)
2226 Token::Value op() const { return op_; }
2227 Expression* left() const { return left_; }
2228 Expression* right() const { return right_; }
2230 // Type feedback information.
2231 static int num_ids() { return parent_num_ids() + 1; }
2232 TypeFeedbackId CompareOperationFeedbackId() const {
2233 return TypeFeedbackId(local_id(0));
2235 Type* combined_type() const { return combined_type_; }
2236 void set_combined_type(Type* type) { combined_type_ = type; }
2238 // Match special cases.
2239 bool IsLiteralCompareTypeof(Expression** expr, Handle<String>* check);
2240 bool IsLiteralCompareUndefined(Expression** expr, Isolate* isolate);
2241 bool IsLiteralCompareNull(Expression** expr);
2244 CompareOperation(Zone* zone, Token::Value op, Expression* left,
2245 Expression* right, int pos)
2246 : Expression(zone, pos),
2250 combined_type_(Type::None(zone)) {
2251 DCHECK(Token::IsCompareOp(op));
2253 static int parent_num_ids() { return Expression::num_ids(); }
2256 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2262 Type* combined_type_;
2266 class Conditional FINAL : public Expression {
2268 DECLARE_NODE_TYPE(Conditional)
2270 Expression* condition() const { return condition_; }
2271 Expression* then_expression() const { return then_expression_; }
2272 Expression* else_expression() const { return else_expression_; }
2274 static int num_ids() { return parent_num_ids() + 2; }
2275 BailoutId ThenId() const { return BailoutId(local_id(0)); }
2276 BailoutId ElseId() const { return BailoutId(local_id(1)); }
2279 Conditional(Zone* zone, Expression* condition, Expression* then_expression,
2280 Expression* else_expression, int position)
2281 : Expression(zone, position),
2282 condition_(condition),
2283 then_expression_(then_expression),
2284 else_expression_(else_expression) {}
2285 static int parent_num_ids() { return Expression::num_ids(); }
2288 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2290 Expression* condition_;
2291 Expression* then_expression_;
2292 Expression* else_expression_;
2296 class Assignment FINAL : public Expression {
2298 DECLARE_NODE_TYPE(Assignment)
2300 Assignment* AsSimpleAssignment() { return !is_compound() ? this : NULL; }
2302 Token::Value binary_op() const;
2304 Token::Value op() const { return TokenField::decode(bit_field_); }
2305 Expression* target() const { return target_; }
2306 Expression* value() const { return value_; }
2307 BinaryOperation* binary_operation() const { return binary_operation_; }
2309 // This check relies on the definition order of token in token.h.
2310 bool is_compound() const { return op() > Token::ASSIGN; }
2312 static int num_ids() { return parent_num_ids() + 2; }
2313 BailoutId AssignmentId() const { return BailoutId(local_id(0)); }
2315 // Type feedback information.
2316 TypeFeedbackId AssignmentFeedbackId() { return TypeFeedbackId(local_id(1)); }
2317 bool IsMonomorphic() OVERRIDE { return receiver_types_.length() == 1; }
2318 bool IsUninitialized() const {
2319 return IsUninitializedField::decode(bit_field_);
2321 bool HasNoTypeInformation() {
2322 return IsUninitializedField::decode(bit_field_);
2324 SmallMapList* GetReceiverTypes() OVERRIDE { return &receiver_types_; }
2325 IcCheckType GetKeyType() const OVERRIDE {
2326 return KeyTypeField::decode(bit_field_);
2328 KeyedAccessStoreMode GetStoreMode() const OVERRIDE {
2329 return StoreModeField::decode(bit_field_);
2331 void set_is_uninitialized(bool b) {
2332 bit_field_ = IsUninitializedField::update(bit_field_, b);
2334 void set_key_type(IcCheckType key_type) {
2335 bit_field_ = KeyTypeField::update(bit_field_, key_type);
2337 void set_store_mode(KeyedAccessStoreMode mode) {
2338 bit_field_ = StoreModeField::update(bit_field_, mode);
2342 Assignment(Zone* zone, Token::Value op, Expression* target, Expression* value,
2344 static int parent_num_ids() { return Expression::num_ids(); }
2347 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2349 class IsUninitializedField : public BitField16<bool, 0, 1> {};
2350 class KeyTypeField : public BitField16<IcCheckType, 1, 1> {};
2351 class StoreModeField : public BitField16<KeyedAccessStoreMode, 2, 4> {};
2352 class TokenField : public BitField16<Token::Value, 6, 8> {};
2354 // Starts with 16-bit field, which should get packed together with
2355 // Expression's trailing 16-bit field.
2356 uint16_t bit_field_;
2357 Expression* target_;
2359 BinaryOperation* binary_operation_;
2360 SmallMapList receiver_types_;
2364 class Yield FINAL : public Expression {
2366 DECLARE_NODE_TYPE(Yield)
2369 kInitial, // The initial yield that returns the unboxed generator object.
2370 kSuspend, // A normal yield: { value: EXPRESSION, done: false }
2371 kDelegating, // A yield*.
2372 kFinal // A return: { value: EXPRESSION, done: true }
2375 Expression* generator_object() const { return generator_object_; }
2376 Expression* expression() const { return expression_; }
2377 Kind yield_kind() const { return yield_kind_; }
2379 // Delegating yield surrounds the "yield" in a "try/catch". This index
2380 // locates the catch handler in the handler table, and is equivalent to
2381 // TryCatchStatement::index().
2383 DCHECK_EQ(kDelegating, yield_kind());
2386 void set_index(int index) {
2387 DCHECK_EQ(kDelegating, yield_kind());
2391 // Type feedback information.
2392 bool HasFeedbackSlots() const {
2393 return FLAG_vector_ics && (yield_kind() == kDelegating);
2395 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
2396 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
2397 return FeedbackVectorRequirements(0, HasFeedbackSlots() ? 3 : 0);
2399 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
2400 ICSlotCache* cache) OVERRIDE {
2401 yield_first_feedback_slot_ = slot;
2403 Code::Kind FeedbackICSlotKind(int index) OVERRIDE {
2404 return index == 0 ? Code::KEYED_LOAD_IC : Code::LOAD_IC;
2407 FeedbackVectorICSlot KeyedLoadFeedbackSlot() {
2408 DCHECK(!HasFeedbackSlots() || !yield_first_feedback_slot_.IsInvalid());
2409 return yield_first_feedback_slot_;
2412 FeedbackVectorICSlot DoneFeedbackSlot() {
2413 return KeyedLoadFeedbackSlot().next();
2416 FeedbackVectorICSlot ValueFeedbackSlot() { return DoneFeedbackSlot().next(); }
2419 Yield(Zone* zone, Expression* generator_object, Expression* expression,
2420 Kind yield_kind, int pos)
2421 : Expression(zone, pos),
2422 generator_object_(generator_object),
2423 expression_(expression),
2424 yield_kind_(yield_kind),
2426 yield_first_feedback_slot_(FeedbackVectorICSlot::Invalid()) {}
2429 Expression* generator_object_;
2430 Expression* expression_;
2433 FeedbackVectorICSlot yield_first_feedback_slot_;
2437 class Throw FINAL : public Expression {
2439 DECLARE_NODE_TYPE(Throw)
2441 Expression* exception() const { return exception_; }
2444 Throw(Zone* zone, Expression* exception, int pos)
2445 : Expression(zone, pos), exception_(exception) {}
2448 Expression* exception_;
2452 class FunctionLiteral FINAL : public Expression {
2455 ANONYMOUS_EXPRESSION,
2460 enum ParameterFlag {
2461 kNoDuplicateParameters = 0,
2462 kHasDuplicateParameters = 1
2465 enum IsFunctionFlag {
2470 enum IsParenthesizedFlag {
2475 enum ArityRestriction {
2481 DECLARE_NODE_TYPE(FunctionLiteral)
2483 Handle<String> name() const { return raw_name_->string(); }
2484 const AstRawString* raw_name() const { return raw_name_; }
2485 Scope* scope() const { return scope_; }
2486 ZoneList<Statement*>* body() const { return body_; }
2487 void set_function_token_position(int pos) { function_token_position_ = pos; }
2488 int function_token_position() const { return function_token_position_; }
2489 int start_position() const;
2490 int end_position() const;
2491 int SourceSize() const { return end_position() - start_position(); }
2492 bool is_expression() const { return IsExpression::decode(bitfield_); }
2493 bool is_anonymous() const { return IsAnonymous::decode(bitfield_); }
2494 LanguageMode language_mode() const;
2495 bool uses_super_property() const;
2497 static bool NeedsHomeObject(Expression* literal) {
2498 return literal != NULL && literal->IsFunctionLiteral() &&
2499 literal->AsFunctionLiteral()->uses_super_property();
2502 int materialized_literal_count() { return materialized_literal_count_; }
2503 int expected_property_count() { return expected_property_count_; }
2504 int handler_count() { return handler_count_; }
2505 int parameter_count() { return parameter_count_; }
2507 bool AllowsLazyCompilation();
2508 bool AllowsLazyCompilationWithoutContext();
2510 void InitializeSharedInfo(Handle<Code> code);
2512 Handle<String> debug_name() const {
2513 if (raw_name_ != NULL && !raw_name_->IsEmpty()) {
2514 return raw_name_->string();
2516 return inferred_name();
2519 Handle<String> inferred_name() const {
2520 if (!inferred_name_.is_null()) {
2521 DCHECK(raw_inferred_name_ == NULL);
2522 return inferred_name_;
2524 if (raw_inferred_name_ != NULL) {
2525 return raw_inferred_name_->string();
2528 return Handle<String>();
2531 // Only one of {set_inferred_name, set_raw_inferred_name} should be called.
2532 void set_inferred_name(Handle<String> inferred_name) {
2533 DCHECK(!inferred_name.is_null());
2534 inferred_name_ = inferred_name;
2535 DCHECK(raw_inferred_name_== NULL || raw_inferred_name_->IsEmpty());
2536 raw_inferred_name_ = NULL;
2539 void set_raw_inferred_name(const AstString* raw_inferred_name) {
2540 DCHECK(raw_inferred_name != NULL);
2541 raw_inferred_name_ = raw_inferred_name;
2542 DCHECK(inferred_name_.is_null());
2543 inferred_name_ = Handle<String>();
2546 // shared_info may be null if it's not cached in full code.
2547 Handle<SharedFunctionInfo> shared_info() { return shared_info_; }
2549 bool pretenure() { return Pretenure::decode(bitfield_); }
2550 void set_pretenure() { bitfield_ |= Pretenure::encode(true); }
2552 bool has_duplicate_parameters() {
2553 return HasDuplicateParameters::decode(bitfield_);
2556 bool is_function() { return IsFunction::decode(bitfield_) == kIsFunction; }
2558 // This is used as a heuristic on when to eagerly compile a function
2559 // literal. We consider the following constructs as hints that the
2560 // function will be called immediately:
2561 // - (function() { ... })();
2562 // - var x = function() { ... }();
2563 bool is_parenthesized() {
2564 return IsParenthesized::decode(bitfield_) == kIsParenthesized;
2566 void set_parenthesized() {
2567 bitfield_ = IsParenthesized::update(bitfield_, kIsParenthesized);
2570 FunctionKind kind() { return FunctionKindBits::decode(bitfield_); }
2572 int ast_node_count() { return ast_properties_.node_count(); }
2573 AstProperties::Flags* flags() { return ast_properties_.flags(); }
2574 void set_ast_properties(AstProperties* ast_properties) {
2575 ast_properties_ = *ast_properties;
2577 const ZoneFeedbackVectorSpec* feedback_vector_spec() const {
2578 return ast_properties_.get_spec();
2580 bool dont_optimize() { return dont_optimize_reason_ != kNoReason; }
2581 BailoutReason dont_optimize_reason() { return dont_optimize_reason_; }
2582 void set_dont_optimize_reason(BailoutReason reason) {
2583 dont_optimize_reason_ = reason;
2587 FunctionLiteral(Zone* zone, const AstRawString* name,
2588 AstValueFactory* ast_value_factory, Scope* scope,
2589 ZoneList<Statement*>* body, int materialized_literal_count,
2590 int expected_property_count, int handler_count,
2591 int parameter_count, FunctionType function_type,
2592 ParameterFlag has_duplicate_parameters,
2593 IsFunctionFlag is_function,
2594 IsParenthesizedFlag is_parenthesized, FunctionKind kind,
2596 : Expression(zone, position),
2600 raw_inferred_name_(ast_value_factory->empty_string()),
2601 ast_properties_(zone),
2602 dont_optimize_reason_(kNoReason),
2603 materialized_literal_count_(materialized_literal_count),
2604 expected_property_count_(expected_property_count),
2605 handler_count_(handler_count),
2606 parameter_count_(parameter_count),
2607 function_token_position_(RelocInfo::kNoPosition) {
2608 bitfield_ = IsExpression::encode(function_type != DECLARATION) |
2609 IsAnonymous::encode(function_type == ANONYMOUS_EXPRESSION) |
2610 Pretenure::encode(false) |
2611 HasDuplicateParameters::encode(has_duplicate_parameters) |
2612 IsFunction::encode(is_function) |
2613 IsParenthesized::encode(is_parenthesized) |
2614 FunctionKindBits::encode(kind);
2615 DCHECK(IsValidFunctionKind(kind));
2619 const AstRawString* raw_name_;
2620 Handle<String> name_;
2621 Handle<SharedFunctionInfo> shared_info_;
2623 ZoneList<Statement*>* body_;
2624 const AstString* raw_inferred_name_;
2625 Handle<String> inferred_name_;
2626 AstProperties ast_properties_;
2627 BailoutReason dont_optimize_reason_;
2629 int materialized_literal_count_;
2630 int expected_property_count_;
2632 int parameter_count_;
2633 int function_token_position_;
2636 class IsExpression : public BitField<bool, 0, 1> {};
2637 class IsAnonymous : public BitField<bool, 1, 1> {};
2638 class Pretenure : public BitField<bool, 2, 1> {};
2639 class HasDuplicateParameters : public BitField<ParameterFlag, 3, 1> {};
2640 class IsFunction : public BitField<IsFunctionFlag, 4, 1> {};
2641 class IsParenthesized : public BitField<IsParenthesizedFlag, 5, 1> {};
2642 class FunctionKindBits : public BitField<FunctionKind, 6, 8> {};
2646 class ClassLiteral FINAL : public Expression {
2648 typedef ObjectLiteralProperty Property;
2650 DECLARE_NODE_TYPE(ClassLiteral)
2652 Handle<String> name() const { return raw_name_->string(); }
2653 const AstRawString* raw_name() const { return raw_name_; }
2654 Scope* scope() const { return scope_; }
2655 VariableProxy* class_variable_proxy() const { return class_variable_proxy_; }
2656 Expression* extends() const { return extends_; }
2657 FunctionLiteral* constructor() const { return constructor_; }
2658 ZoneList<Property*>* properties() const { return properties_; }
2659 int start_position() const { return position(); }
2660 int end_position() const { return end_position_; }
2662 BailoutId EntryId() const { return BailoutId(local_id(0)); }
2663 BailoutId DeclsId() const { return BailoutId(local_id(1)); }
2664 BailoutId ExitId() { return BailoutId(local_id(2)); }
2666 // Return an AST id for a property that is used in simulate instructions.
2667 BailoutId GetIdForProperty(int i) { return BailoutId(local_id(i + 3)); }
2669 // Unlike other AST nodes, this number of bailout IDs allocated for an
2670 // ClassLiteral can vary, so num_ids() is not a static method.
2671 int num_ids() const { return parent_num_ids() + 3 + properties()->length(); }
2674 ClassLiteral(Zone* zone, const AstRawString* name, Scope* scope,
2675 VariableProxy* class_variable_proxy, Expression* extends,
2676 FunctionLiteral* constructor, ZoneList<Property*>* properties,
2677 int start_position, int end_position)
2678 : Expression(zone, start_position),
2681 class_variable_proxy_(class_variable_proxy),
2683 constructor_(constructor),
2684 properties_(properties),
2685 end_position_(end_position) {}
2686 static int parent_num_ids() { return Expression::num_ids(); }
2689 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2691 const AstRawString* raw_name_;
2693 VariableProxy* class_variable_proxy_;
2694 Expression* extends_;
2695 FunctionLiteral* constructor_;
2696 ZoneList<Property*>* properties_;
2701 class NativeFunctionLiteral FINAL : public Expression {
2703 DECLARE_NODE_TYPE(NativeFunctionLiteral)
2705 Handle<String> name() const { return name_->string(); }
2706 v8::Extension* extension() const { return extension_; }
2709 NativeFunctionLiteral(Zone* zone, const AstRawString* name,
2710 v8::Extension* extension, int pos)
2711 : Expression(zone, pos), name_(name), extension_(extension) {}
2714 const AstRawString* name_;
2715 v8::Extension* extension_;
2719 class ThisFunction FINAL : public Expression {
2721 DECLARE_NODE_TYPE(ThisFunction)
2724 ThisFunction(Zone* zone, int pos) : Expression(zone, pos) {}
2728 class SuperReference FINAL : public Expression {
2730 DECLARE_NODE_TYPE(SuperReference)
2732 VariableProxy* this_var() const { return this_var_; }
2734 static int num_ids() { return parent_num_ids() + 1; }
2735 TypeFeedbackId HomeObjectFeedbackId() { return TypeFeedbackId(local_id(0)); }
2737 // Type feedback information.
2738 virtual FeedbackVectorRequirements ComputeFeedbackRequirements(
2739 Isolate* isolate, const ICSlotCache* cache) OVERRIDE {
2740 return FeedbackVectorRequirements(0, FLAG_vector_ics ? 1 : 0);
2742 void SetFirstFeedbackICSlot(FeedbackVectorICSlot slot,
2743 ICSlotCache* cache) OVERRIDE {
2744 homeobject_feedback_slot_ = slot;
2746 Code::Kind FeedbackICSlotKind(int index) OVERRIDE { return Code::LOAD_IC; }
2748 FeedbackVectorICSlot HomeObjectFeedbackSlot() {
2749 DCHECK(!FLAG_vector_ics || !homeobject_feedback_slot_.IsInvalid());
2750 return homeobject_feedback_slot_;
2754 SuperReference(Zone* zone, VariableProxy* this_var, int pos)
2755 : Expression(zone, pos),
2756 this_var_(this_var),
2757 homeobject_feedback_slot_(FeedbackVectorICSlot::Invalid()) {
2758 DCHECK(this_var->is_this());
2760 static int parent_num_ids() { return Expression::num_ids(); }
2763 int local_id(int n) const { return base_id() + parent_num_ids() + n; }
2765 VariableProxy* this_var_;
2766 FeedbackVectorICSlot homeobject_feedback_slot_;
2770 #undef DECLARE_NODE_TYPE
2773 // ----------------------------------------------------------------------------
2774 // Regular expressions
2777 class RegExpVisitor BASE_EMBEDDED {
2779 virtual ~RegExpVisitor() { }
2780 #define MAKE_CASE(Name) \
2781 virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
2782 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
2787 class RegExpTree : public ZoneObject {
2789 static const int kInfinity = kMaxInt;
2790 virtual ~RegExpTree() {}
2791 virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
2792 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2793 RegExpNode* on_success) = 0;
2794 virtual bool IsTextElement() { return false; }
2795 virtual bool IsAnchoredAtStart() { return false; }
2796 virtual bool IsAnchoredAtEnd() { return false; }
2797 virtual int min_match() = 0;
2798 virtual int max_match() = 0;
2799 // Returns the interval of registers used for captures within this
2801 virtual Interval CaptureRegisters() { return Interval::Empty(); }
2802 virtual void AppendToText(RegExpText* text, Zone* zone);
2803 std::ostream& Print(std::ostream& os, Zone* zone); // NOLINT
2804 #define MAKE_ASTYPE(Name) \
2805 virtual RegExp##Name* As##Name(); \
2806 virtual bool Is##Name();
2807 FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
2812 class RegExpDisjunction FINAL : public RegExpTree {
2814 explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
2815 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2816 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2817 RegExpNode* on_success) OVERRIDE;
2818 RegExpDisjunction* AsDisjunction() OVERRIDE;
2819 Interval CaptureRegisters() OVERRIDE;
2820 bool IsDisjunction() OVERRIDE;
2821 bool IsAnchoredAtStart() OVERRIDE;
2822 bool IsAnchoredAtEnd() OVERRIDE;
2823 int min_match() OVERRIDE { return min_match_; }
2824 int max_match() OVERRIDE { return max_match_; }
2825 ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
2827 ZoneList<RegExpTree*>* alternatives_;
2833 class RegExpAlternative FINAL : public RegExpTree {
2835 explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
2836 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2837 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2838 RegExpNode* on_success) OVERRIDE;
2839 RegExpAlternative* AsAlternative() OVERRIDE;
2840 Interval CaptureRegisters() OVERRIDE;
2841 bool IsAlternative() OVERRIDE;
2842 bool IsAnchoredAtStart() OVERRIDE;
2843 bool IsAnchoredAtEnd() OVERRIDE;
2844 int min_match() OVERRIDE { return min_match_; }
2845 int max_match() OVERRIDE { return max_match_; }
2846 ZoneList<RegExpTree*>* nodes() { return nodes_; }
2848 ZoneList<RegExpTree*>* nodes_;
2854 class RegExpAssertion FINAL : public RegExpTree {
2856 enum AssertionType {
2864 explicit RegExpAssertion(AssertionType type) : assertion_type_(type) { }
2865 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2866 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2867 RegExpNode* on_success) OVERRIDE;
2868 RegExpAssertion* AsAssertion() OVERRIDE;
2869 bool IsAssertion() OVERRIDE;
2870 bool IsAnchoredAtStart() OVERRIDE;
2871 bool IsAnchoredAtEnd() OVERRIDE;
2872 int min_match() OVERRIDE { return 0; }
2873 int max_match() OVERRIDE { return 0; }
2874 AssertionType assertion_type() { return assertion_type_; }
2876 AssertionType assertion_type_;
2880 class CharacterSet FINAL BASE_EMBEDDED {
2882 explicit CharacterSet(uc16 standard_set_type)
2884 standard_set_type_(standard_set_type) {}
2885 explicit CharacterSet(ZoneList<CharacterRange>* ranges)
2887 standard_set_type_(0) {}
2888 ZoneList<CharacterRange>* ranges(Zone* zone);
2889 uc16 standard_set_type() { return standard_set_type_; }
2890 void set_standard_set_type(uc16 special_set_type) {
2891 standard_set_type_ = special_set_type;
2893 bool is_standard() { return standard_set_type_ != 0; }
2894 void Canonicalize();
2896 ZoneList<CharacterRange>* ranges_;
2897 // If non-zero, the value represents a standard set (e.g., all whitespace
2898 // characters) without having to expand the ranges.
2899 uc16 standard_set_type_;
2903 class RegExpCharacterClass FINAL : public RegExpTree {
2905 RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
2907 is_negated_(is_negated) { }
2908 explicit RegExpCharacterClass(uc16 type)
2910 is_negated_(false) { }
2911 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2912 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2913 RegExpNode* on_success) OVERRIDE;
2914 RegExpCharacterClass* AsCharacterClass() OVERRIDE;
2915 bool IsCharacterClass() OVERRIDE;
2916 bool IsTextElement() OVERRIDE { return true; }
2917 int min_match() OVERRIDE { return 1; }
2918 int max_match() OVERRIDE { return 1; }
2919 void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
2920 CharacterSet character_set() { return set_; }
2921 // TODO(lrn): Remove need for complex version if is_standard that
2922 // recognizes a mangled standard set and just do { return set_.is_special(); }
2923 bool is_standard(Zone* zone);
2924 // Returns a value representing the standard character set if is_standard()
2926 // Currently used values are:
2927 // s : unicode whitespace
2928 // S : unicode non-whitespace
2929 // w : ASCII word character (digit, letter, underscore)
2930 // W : non-ASCII word character
2932 // D : non-ASCII digit
2933 // . : non-unicode non-newline
2934 // * : All characters
2935 uc16 standard_type() { return set_.standard_set_type(); }
2936 ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
2937 bool is_negated() { return is_negated_; }
2945 class RegExpAtom FINAL : public RegExpTree {
2947 explicit RegExpAtom(Vector<const uc16> data) : data_(data) { }
2948 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2949 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2950 RegExpNode* on_success) OVERRIDE;
2951 RegExpAtom* AsAtom() OVERRIDE;
2952 bool IsAtom() OVERRIDE;
2953 bool IsTextElement() OVERRIDE { return true; }
2954 int min_match() OVERRIDE { return data_.length(); }
2955 int max_match() OVERRIDE { return data_.length(); }
2956 void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
2957 Vector<const uc16> data() { return data_; }
2958 int length() { return data_.length(); }
2960 Vector<const uc16> data_;
2964 class RegExpText FINAL : public RegExpTree {
2966 explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
2967 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
2968 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
2969 RegExpNode* on_success) OVERRIDE;
2970 RegExpText* AsText() OVERRIDE;
2971 bool IsText() OVERRIDE;
2972 bool IsTextElement() OVERRIDE { return true; }
2973 int min_match() OVERRIDE { return length_; }
2974 int max_match() OVERRIDE { return length_; }
2975 void AppendToText(RegExpText* text, Zone* zone) OVERRIDE;
2976 void AddElement(TextElement elm, Zone* zone) {
2977 elements_.Add(elm, zone);
2978 length_ += elm.length();
2980 ZoneList<TextElement>* elements() { return &elements_; }
2982 ZoneList<TextElement> elements_;
2987 class RegExpQuantifier FINAL : public RegExpTree {
2989 enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
2990 RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
2994 min_match_(min * body->min_match()),
2995 quantifier_type_(type) {
2996 if (max > 0 && body->max_match() > kInfinity / max) {
2997 max_match_ = kInfinity;
2999 max_match_ = max * body->max_match();
3002 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
3003 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3004 RegExpNode* on_success) OVERRIDE;
3005 static RegExpNode* ToNode(int min,
3009 RegExpCompiler* compiler,
3010 RegExpNode* on_success,
3011 bool not_at_start = false);
3012 RegExpQuantifier* AsQuantifier() OVERRIDE;
3013 Interval CaptureRegisters() OVERRIDE;
3014 bool IsQuantifier() OVERRIDE;
3015 int min_match() OVERRIDE { return min_match_; }
3016 int max_match() OVERRIDE { return max_match_; }
3017 int min() { return min_; }
3018 int max() { return max_; }
3019 bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
3020 bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
3021 bool is_greedy() { return quantifier_type_ == GREEDY; }
3022 RegExpTree* body() { return body_; }
3030 QuantifierType quantifier_type_;
3034 class RegExpCapture FINAL : public RegExpTree {
3036 explicit RegExpCapture(RegExpTree* body, int index)
3037 : body_(body), index_(index) { }
3038 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
3039 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3040 RegExpNode* on_success) OVERRIDE;
3041 static RegExpNode* ToNode(RegExpTree* body,
3043 RegExpCompiler* compiler,
3044 RegExpNode* on_success);
3045 RegExpCapture* AsCapture() OVERRIDE;
3046 bool IsAnchoredAtStart() OVERRIDE;
3047 bool IsAnchoredAtEnd() OVERRIDE;
3048 Interval CaptureRegisters() OVERRIDE;
3049 bool IsCapture() OVERRIDE;
3050 int min_match() OVERRIDE { return body_->min_match(); }
3051 int max_match() OVERRIDE { return body_->max_match(); }
3052 RegExpTree* body() { return body_; }
3053 int index() { return index_; }
3054 static int StartRegister(int index) { return index * 2; }
3055 static int EndRegister(int index) { return index * 2 + 1; }
3063 class RegExpLookahead FINAL : public RegExpTree {
3065 RegExpLookahead(RegExpTree* body,
3070 is_positive_(is_positive),
3071 capture_count_(capture_count),
3072 capture_from_(capture_from) { }
3074 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
3075 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3076 RegExpNode* on_success) OVERRIDE;
3077 RegExpLookahead* AsLookahead() OVERRIDE;
3078 Interval CaptureRegisters() OVERRIDE;
3079 bool IsLookahead() OVERRIDE;
3080 bool IsAnchoredAtStart() OVERRIDE;
3081 int min_match() OVERRIDE { return 0; }
3082 int max_match() OVERRIDE { return 0; }
3083 RegExpTree* body() { return body_; }
3084 bool is_positive() { return is_positive_; }
3085 int capture_count() { return capture_count_; }
3086 int capture_from() { return capture_from_; }
3096 class RegExpBackReference FINAL : public RegExpTree {
3098 explicit RegExpBackReference(RegExpCapture* capture)
3099 : capture_(capture) { }
3100 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
3101 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3102 RegExpNode* on_success) OVERRIDE;
3103 RegExpBackReference* AsBackReference() OVERRIDE;
3104 bool IsBackReference() OVERRIDE;
3105 int min_match() OVERRIDE { return 0; }
3106 int max_match() OVERRIDE { return capture_->max_match(); }
3107 int index() { return capture_->index(); }
3108 RegExpCapture* capture() { return capture_; }
3110 RegExpCapture* capture_;
3114 class RegExpEmpty FINAL : public RegExpTree {
3117 void* Accept(RegExpVisitor* visitor, void* data) OVERRIDE;
3118 virtual RegExpNode* ToNode(RegExpCompiler* compiler,
3119 RegExpNode* on_success) OVERRIDE;
3120 RegExpEmpty* AsEmpty() OVERRIDE;
3121 bool IsEmpty() OVERRIDE;
3122 int min_match() OVERRIDE { return 0; }
3123 int max_match() OVERRIDE { return 0; }
3127 // ----------------------------------------------------------------------------
3129 // - leaf node visitors are abstract.
3131 class AstVisitor BASE_EMBEDDED {
3134 virtual ~AstVisitor() {}
3136 // Stack overflow check and dynamic dispatch.
3137 virtual void Visit(AstNode* node) = 0;
3139 // Iteration left-to-right.
3140 virtual void VisitDeclarations(ZoneList<Declaration*>* declarations);
3141 virtual void VisitStatements(ZoneList<Statement*>* statements);
3142 virtual void VisitExpressions(ZoneList<Expression*>* expressions);
3144 // Individual AST nodes.
3145 #define DEF_VISIT(type) \
3146 virtual void Visit##type(type* node) = 0;
3147 AST_NODE_LIST(DEF_VISIT)
3152 #define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
3154 void Visit(AstNode* node) FINAL { \
3155 if (!CheckStackOverflow()) node->Accept(this); \
3158 void SetStackOverflow() { stack_overflow_ = true; } \
3159 void ClearStackOverflow() { stack_overflow_ = false; } \
3160 bool HasStackOverflow() const { return stack_overflow_; } \
3162 bool CheckStackOverflow() { \
3163 if (stack_overflow_) return true; \
3164 StackLimitCheck check(isolate_); \
3165 if (!check.HasOverflowed()) return false; \
3166 stack_overflow_ = true; \
3171 void InitializeAstVisitor(Isolate* isolate, Zone* zone) { \
3172 isolate_ = isolate; \
3174 stack_overflow_ = false; \
3176 Zone* zone() { return zone_; } \
3177 Isolate* isolate() { return isolate_; } \
3179 Isolate* isolate_; \
3181 bool stack_overflow_
3184 // ----------------------------------------------------------------------------
3187 class AstNodeFactory FINAL BASE_EMBEDDED {
3189 explicit AstNodeFactory(AstValueFactory* ast_value_factory)
3190 : zone_(ast_value_factory->zone()),
3191 ast_value_factory_(ast_value_factory) {}
3193 VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy,
3197 return new (zone_) VariableDeclaration(zone_, proxy, mode, scope, pos);
3200 FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
3202 FunctionLiteral* fun,
3205 return new (zone_) FunctionDeclaration(zone_, proxy, mode, fun, scope, pos);
3208 ModuleDeclaration* NewModuleDeclaration(VariableProxy* proxy,
3212 return new (zone_) ModuleDeclaration(zone_, proxy, module, scope, pos);
3215 ImportDeclaration* NewImportDeclaration(VariableProxy* proxy,
3216 const AstRawString* import_name,
3217 const AstRawString* module_specifier,
3218 Scope* scope, int pos) {
3219 return new (zone_) ImportDeclaration(zone_, proxy, import_name,
3220 module_specifier, scope, pos);
3223 ExportDeclaration* NewExportDeclaration(VariableProxy* proxy,
3226 return new (zone_) ExportDeclaration(zone_, proxy, scope, pos);
3229 ModuleLiteral* NewModuleLiteral(Block* body, ModuleDescriptor* descriptor,
3231 return new (zone_) ModuleLiteral(zone_, body, descriptor, pos);
3234 ModulePath* NewModulePath(Module* origin, const AstRawString* name, int pos) {
3235 return new (zone_) ModulePath(zone_, origin, name, pos);
3238 ModuleUrl* NewModuleUrl(Handle<String> url, int pos) {
3239 return new (zone_) ModuleUrl(zone_, url, pos);
3242 Block* NewBlock(ZoneList<const AstRawString*>* labels,
3244 bool is_initializer_block,
3247 Block(zone_, labels, capacity, is_initializer_block, pos);
3250 #define STATEMENT_WITH_LABELS(NodeType) \
3251 NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
3252 return new (zone_) NodeType(zone_, labels, pos); \
3254 STATEMENT_WITH_LABELS(DoWhileStatement)
3255 STATEMENT_WITH_LABELS(WhileStatement)
3256 STATEMENT_WITH_LABELS(ForStatement)
3257 STATEMENT_WITH_LABELS(SwitchStatement)
3258 #undef STATEMENT_WITH_LABELS
3260 ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
3261 ZoneList<const AstRawString*>* labels,
3263 switch (visit_mode) {
3264 case ForEachStatement::ENUMERATE: {
3265 return new (zone_) ForInStatement(zone_, labels, pos);
3267 case ForEachStatement::ITERATE: {
3268 return new (zone_) ForOfStatement(zone_, labels, pos);
3275 ModuleStatement* NewModuleStatement(Block* body, int pos) {
3276 return new (zone_) ModuleStatement(zone_, body, pos);
3279 ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
3280 return new (zone_) ExpressionStatement(zone_, expression, pos);
3283 ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
3284 return new (zone_) ContinueStatement(zone_, target, pos);
3287 BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
3288 return new (zone_) BreakStatement(zone_, target, pos);
3291 ReturnStatement* NewReturnStatement(Expression* expression, int pos) {
3292 return new (zone_) ReturnStatement(zone_, expression, pos);
3295 WithStatement* NewWithStatement(Scope* scope,
3296 Expression* expression,
3297 Statement* statement,
3299 return new (zone_) WithStatement(zone_, scope, expression, statement, pos);
3302 IfStatement* NewIfStatement(Expression* condition,
3303 Statement* then_statement,
3304 Statement* else_statement,
3307 IfStatement(zone_, condition, then_statement, else_statement, pos);
3310 TryCatchStatement* NewTryCatchStatement(int index,
3316 return new (zone_) TryCatchStatement(zone_, index, try_block, scope,
3317 variable, catch_block, pos);
3320 TryFinallyStatement* NewTryFinallyStatement(int index,
3322 Block* finally_block,
3325 TryFinallyStatement(zone_, index, try_block, finally_block, pos);
3328 DebuggerStatement* NewDebuggerStatement(int pos) {
3329 return new (zone_) DebuggerStatement(zone_, pos);
3332 EmptyStatement* NewEmptyStatement(int pos) {
3333 return new(zone_) EmptyStatement(zone_, pos);
3336 CaseClause* NewCaseClause(
3337 Expression* label, ZoneList<Statement*>* statements, int pos) {
3338 return new (zone_) CaseClause(zone_, label, statements, pos);
3341 Literal* NewStringLiteral(const AstRawString* string, int pos) {
3343 Literal(zone_, ast_value_factory_->NewString(string), pos);
3346 // A JavaScript symbol (ECMA-262 edition 6).
3347 Literal* NewSymbolLiteral(const char* name, int pos) {
3348 return new (zone_) Literal(zone_, ast_value_factory_->NewSymbol(name), pos);
3351 Literal* NewNumberLiteral(double number, int pos) {
3353 Literal(zone_, ast_value_factory_->NewNumber(number), pos);
3356 Literal* NewSmiLiteral(int number, int pos) {
3357 return new (zone_) Literal(zone_, ast_value_factory_->NewSmi(number), pos);
3360 Literal* NewBooleanLiteral(bool b, int pos) {
3361 return new (zone_) Literal(zone_, ast_value_factory_->NewBoolean(b), pos);
3364 Literal* NewNullLiteral(int pos) {
3365 return new (zone_) Literal(zone_, ast_value_factory_->NewNull(), pos);
3368 Literal* NewUndefinedLiteral(int pos) {
3369 return new (zone_) Literal(zone_, ast_value_factory_->NewUndefined(), pos);
3372 Literal* NewTheHoleLiteral(int pos) {
3373 return new (zone_) Literal(zone_, ast_value_factory_->NewTheHole(), pos);
3376 ObjectLiteral* NewObjectLiteral(
3377 ZoneList<ObjectLiteral::Property*>* properties,
3379 int boilerplate_properties,
3382 return new (zone_) ObjectLiteral(zone_, properties, literal_index,
3383 boilerplate_properties, has_function, pos);
3386 ObjectLiteral::Property* NewObjectLiteralProperty(
3387 Expression* key, Expression* value, ObjectLiteralProperty::Kind kind,
3388 bool is_static, bool is_computed_name) {
3390 ObjectLiteral::Property(key, value, kind, is_static, is_computed_name);
3393 ObjectLiteral::Property* NewObjectLiteralProperty(Expression* key,
3396 bool is_computed_name) {
3397 return new (zone_) ObjectLiteral::Property(ast_value_factory_, key, value,
3398 is_static, is_computed_name);
3401 RegExpLiteral* NewRegExpLiteral(const AstRawString* pattern,
3402 const AstRawString* flags,
3405 return new (zone_) RegExpLiteral(zone_, pattern, flags, literal_index, pos);
3408 ArrayLiteral* NewArrayLiteral(ZoneList<Expression*>* values,
3411 return new (zone_) ArrayLiteral(zone_, values, literal_index, pos);
3414 VariableProxy* NewVariableProxy(Variable* var,
3415 int start_position = RelocInfo::kNoPosition,
3416 int end_position = RelocInfo::kNoPosition) {
3417 return new (zone_) VariableProxy(zone_, var, start_position, end_position);
3420 VariableProxy* NewVariableProxy(const AstRawString* name,
3421 Variable::Kind variable_kind,
3422 int start_position = RelocInfo::kNoPosition,
3423 int end_position = RelocInfo::kNoPosition) {
3425 VariableProxy(zone_, name, variable_kind, start_position, end_position);
3428 Property* NewProperty(Expression* obj, Expression* key, int pos) {
3429 return new (zone_) Property(zone_, obj, key, pos);
3432 Call* NewCall(Expression* expression,
3433 ZoneList<Expression*>* arguments,
3435 return new (zone_) Call(zone_, expression, arguments, pos);
3438 CallNew* NewCallNew(Expression* expression,
3439 ZoneList<Expression*>* arguments,
3441 return new (zone_) CallNew(zone_, expression, arguments, pos);
3444 CallRuntime* NewCallRuntime(const AstRawString* name,
3445 const Runtime::Function* function,
3446 ZoneList<Expression*>* arguments,
3448 return new (zone_) CallRuntime(zone_, name, function, arguments, pos);
3451 UnaryOperation* NewUnaryOperation(Token::Value op,
3452 Expression* expression,
3454 return new (zone_) UnaryOperation(zone_, op, expression, pos);
3457 BinaryOperation* NewBinaryOperation(Token::Value op,
3461 return new (zone_) BinaryOperation(zone_, op, left, right, pos);
3464 CountOperation* NewCountOperation(Token::Value op,
3468 return new (zone_) CountOperation(zone_, op, is_prefix, expr, pos);
3471 CompareOperation* NewCompareOperation(Token::Value op,
3475 return new (zone_) CompareOperation(zone_, op, left, right, pos);
3478 Conditional* NewConditional(Expression* condition,
3479 Expression* then_expression,
3480 Expression* else_expression,
3482 return new (zone_) Conditional(zone_, condition, then_expression,
3483 else_expression, position);
3486 Assignment* NewAssignment(Token::Value op,
3490 DCHECK(Token::IsAssignmentOp(op));
3491 Assignment* assign = new (zone_) Assignment(zone_, op, target, value, pos);
3492 if (assign->is_compound()) {
3493 DCHECK(Token::IsAssignmentOp(op));
3494 assign->binary_operation_ =
3495 NewBinaryOperation(assign->binary_op(), target, value, pos + 1);
3500 Yield* NewYield(Expression *generator_object,
3501 Expression* expression,
3502 Yield::Kind yield_kind,
3504 if (!expression) expression = NewUndefinedLiteral(pos);
3506 Yield(zone_, generator_object, expression, yield_kind, pos);
3509 Throw* NewThrow(Expression* exception, int pos) {
3510 return new (zone_) Throw(zone_, exception, pos);
3513 FunctionLiteral* NewFunctionLiteral(
3514 const AstRawString* name, AstValueFactory* ast_value_factory,
3515 Scope* scope, ZoneList<Statement*>* body, int materialized_literal_count,
3516 int expected_property_count, int handler_count, int parameter_count,
3517 FunctionLiteral::ParameterFlag has_duplicate_parameters,
3518 FunctionLiteral::FunctionType function_type,
3519 FunctionLiteral::IsFunctionFlag is_function,
3520 FunctionLiteral::IsParenthesizedFlag is_parenthesized, FunctionKind kind,
3522 return new (zone_) FunctionLiteral(
3523 zone_, name, ast_value_factory, scope, body, materialized_literal_count,
3524 expected_property_count, handler_count, parameter_count, function_type,
3525 has_duplicate_parameters, is_function, is_parenthesized, kind,
3529 ClassLiteral* NewClassLiteral(const AstRawString* name, Scope* scope,
3530 VariableProxy* proxy, Expression* extends,
3531 FunctionLiteral* constructor,
3532 ZoneList<ObjectLiteral::Property*>* properties,
3533 int start_position, int end_position) {
3535 ClassLiteral(zone_, name, scope, proxy, extends, constructor,
3536 properties, start_position, end_position);
3539 NativeFunctionLiteral* NewNativeFunctionLiteral(const AstRawString* name,
3540 v8::Extension* extension,
3542 return new (zone_) NativeFunctionLiteral(zone_, name, extension, pos);
3545 ThisFunction* NewThisFunction(int pos) {
3546 return new (zone_) ThisFunction(zone_, pos);
3549 SuperReference* NewSuperReference(VariableProxy* this_var, int pos) {
3550 return new (zone_) SuperReference(zone_, this_var, pos);
3555 AstValueFactory* ast_value_factory_;
3559 } } // namespace v8::internal