2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
8 #include <boost/filesystem.hpp>
9 #include <boost/assert.hpp>
10 #include <boost/format.hpp>
11 #include <experimental/filesystem>
12 #include <armnn/IRuntime.hpp>
13 #include <armnn/TypesUtils.hpp>
14 #include "test/TensorHelpers.hpp"
16 #include "armnnTfLiteParser/ITfLiteParser.hpp"
18 #include <backends/BackendRegistry.hpp>
20 #include "flatbuffers/idl.h"
21 #include "flatbuffers/util.h"
23 #include <schema_generated.h>
26 using armnnTfLiteParser::ITfLiteParser;
27 using TensorRawPtr = const tflite::TensorT *;
29 struct ParserFlatbuffersFixture
31 ParserFlatbuffersFixture()
32 : m_Parser(ITfLiteParser::Create()), m_NetworkIdentifier(-1)
34 armnn::IRuntime::CreationOptions options;
36 const armnn::BackendIdSet availableBackendIds = armnn::BackendRegistryInstance().GetBackendIds();
37 for (auto& backendId : availableBackendIds)
39 m_Runtimes.push_back(std::make_pair(armnn::IRuntime::Create(options), backendId));
43 std::vector<uint8_t> m_GraphBinary;
44 std::string m_JsonString;
45 std::unique_ptr<ITfLiteParser, void (*)(ITfLiteParser *parser)> m_Parser;
46 std::vector<std::pair<armnn::IRuntimePtr, armnn::BackendId>> m_Runtimes;
47 armnn::NetworkId m_NetworkIdentifier;
49 /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
50 /// so they don't need to be passed to the single-input-single-output overload of RunTest().
51 std::string m_SingleInputName;
52 std::string m_SingleOutputName;
56 bool ok = ReadStringToBinary();
58 throw armnn::Exception("LoadNetwork failed while reading binary input");
61 for (auto&& runtime : m_Runtimes)
63 armnn::INetworkPtr network =
64 m_Parser->CreateNetworkFromBinary(m_GraphBinary);
67 throw armnn::Exception("The parser failed to create an ArmNN network");
70 auto optimized = Optimize(*network,
71 { runtime.second, armnn::Compute::CpuRef },
72 runtime.first->GetDeviceSpec());
73 std::string errorMessage;
75 armnn::Status ret = runtime.first->LoadNetwork(m_NetworkIdentifier,
79 if (ret != armnn::Status::Success)
81 throw armnn::Exception(
83 boost::format("The runtime failed to load the network. "
84 "Error was: %1%. in %2% [%3%:%4%]") %
93 void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
95 // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
96 m_SingleInputName = inputName;
97 m_SingleOutputName = outputName;
101 bool ReadStringToBinary()
103 const char* schemafileName = getenv("ARMNN_TF_LITE_SCHEMA_PATH");
104 if (schemafileName == nullptr)
106 schemafileName = ARMNN_TF_LITE_SCHEMA_PATH;
108 std::string schemafile;
110 bool ok = flatbuffers::LoadFile(schemafileName, false, &schemafile);
111 BOOST_ASSERT_MSG(ok, "Couldn't load schema file " ARMNN_TF_LITE_SCHEMA_PATH);
117 // parse schema first, so we can use it to parse the data after
118 flatbuffers::Parser parser;
120 ok &= parser.Parse(schemafile.c_str());
121 BOOST_ASSERT_MSG(ok, "Failed to parse schema file");
123 ok &= parser.Parse(m_JsonString.c_str());
124 BOOST_ASSERT_MSG(ok, "Failed to parse json input");
132 const uint8_t * bufferPtr = parser.builder_.GetBufferPointer();
133 size_t size = static_cast<size_t>(parser.builder_.GetSize());
134 m_GraphBinary.assign(bufferPtr, bufferPtr+size);
139 /// Executes the network with the given input tensor and checks the result against the given output tensor.
140 /// This overload assumes the network has a single input and a single output.
141 template <std::size_t NumOutputDimensions, typename DataType>
142 void RunTest(size_t subgraphId,
143 const std::vector<DataType>& inputData,
144 const std::vector<DataType>& expectedOutputData);
146 /// Executes the network with the given input tensors and checks the results against the given output tensors.
147 /// This overload supports multiple inputs and multiple outputs, identified by name.
148 template <std::size_t NumOutputDimensions, typename DataType>
149 void RunTest(size_t subgraphId,
150 const std::map<std::string, std::vector<DataType>>& inputData,
151 const std::map<std::string, std::vector<DataType>>& expectedOutputData);
153 void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
154 tflite::TensorType tensorType, uint32_t buffer, const std::string& name,
155 const std::vector<float>& min, const std::vector<float>& max,
156 const std::vector<float>& scale, const std::vector<int64_t>& zeroPoint)
158 BOOST_CHECK(tensors);
159 BOOST_CHECK_EQUAL(shapeSize, tensors->shape.size());
160 BOOST_CHECK_EQUAL_COLLECTIONS(shape.begin(), shape.end(), tensors->shape.begin(), tensors->shape.end());
161 BOOST_CHECK_EQUAL(tensorType, tensors->type);
162 BOOST_CHECK_EQUAL(buffer, tensors->buffer);
163 BOOST_CHECK_EQUAL(name, tensors->name);
164 BOOST_CHECK(tensors->quantization);
165 BOOST_CHECK_EQUAL_COLLECTIONS(min.begin(), min.end(), tensors->quantization.get()->min.begin(),
166 tensors->quantization.get()->min.end());
167 BOOST_CHECK_EQUAL_COLLECTIONS(max.begin(), max.end(), tensors->quantization.get()->max.begin(),
168 tensors->quantization.get()->max.end());
169 BOOST_CHECK_EQUAL_COLLECTIONS(scale.begin(), scale.end(), tensors->quantization.get()->scale.begin(),
170 tensors->quantization.get()->scale.end());
171 BOOST_CHECK_EQUAL_COLLECTIONS(zeroPoint.begin(), zeroPoint.end(),
172 tensors->quantization.get()->zero_point.begin(),
173 tensors->quantization.get()->zero_point.end());
177 template <std::size_t NumOutputDimensions, typename DataType>
178 void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
179 const std::vector<DataType>& inputData,
180 const std::vector<DataType>& expectedOutputData)
182 RunTest<NumOutputDimensions, DataType>(subgraphId,
183 { { m_SingleInputName, inputData } },
184 { { m_SingleOutputName, expectedOutputData } });
187 template <std::size_t NumOutputDimensions, typename DataType>
189 ParserFlatbuffersFixture::RunTest(size_t subgraphId,
190 const std::map<std::string, std::vector<DataType>>& inputData,
191 const std::map<std::string, std::vector<DataType>>& expectedOutputData)
193 for (auto&& runtime : m_Runtimes)
195 using BindingPointInfo = std::pair<armnn::LayerBindingId, armnn::TensorInfo>;
197 // Setup the armnn input tensors from the given vectors.
198 armnn::InputTensors inputTensors;
199 for (auto&& it : inputData)
201 BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
202 armnn::VerifyTensorInfoDataType<DataType>(bindingInfo.second);
203 inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
206 // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
207 std::map<std::string, boost::multi_array<DataType, NumOutputDimensions>> outputStorage;
208 armnn::OutputTensors outputTensors;
209 for (auto&& it : expectedOutputData)
211 BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
212 armnn::VerifyTensorInfoDataType<DataType>(bindingInfo.second);
213 outputStorage.emplace(it.first, MakeTensor<DataType, NumOutputDimensions>(bindingInfo.second));
214 outputTensors.push_back(
215 { bindingInfo.first, armnn::Tensor(bindingInfo.second, outputStorage.at(it.first).data()) });
218 runtime.first->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
220 // Compare each output tensor to the expected values
221 for (auto&& it : expectedOutputData)
223 BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
224 auto outputExpected = MakeTensor<DataType, NumOutputDimensions>(bindingInfo.second, it.second);
225 BOOST_TEST(CompareTensors(outputExpected, outputStorage[it.first]));