9c33b4f2544acb74845b1dbf2e0a6113bdb07189
[platform/upstream/armnn.git] / src / armnnTfLiteParser / test / ParserFlatbuffersFixture.hpp
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5
6 #pragma once
7
8 #include <boost/filesystem.hpp>
9 #include <boost/assert.hpp>
10 #include <boost/format.hpp>
11 #include <experimental/filesystem>
12 #include <armnn/IRuntime.hpp>
13 #include <armnn/TypesUtils.hpp>
14 #include "test/TensorHelpers.hpp"
15
16 #include "armnnTfLiteParser/ITfLiteParser.hpp"
17
18 #include <backends/BackendRegistry.hpp>
19
20 #include "flatbuffers/idl.h"
21 #include "flatbuffers/util.h"
22
23 #include <schema_generated.h>
24 #include <iostream>
25
26 using armnnTfLiteParser::ITfLiteParser;
27 using TensorRawPtr = const tflite::TensorT *;
28
29 struct ParserFlatbuffersFixture
30 {
31     ParserFlatbuffersFixture()
32             : m_Parser(ITfLiteParser::Create()), m_NetworkIdentifier(-1)
33     {
34         armnn::IRuntime::CreationOptions options;
35
36         const armnn::BackendIdSet availableBackendIds = armnn::BackendRegistryInstance().GetBackendIds();
37         for (auto& backendId : availableBackendIds)
38         {
39             m_Runtimes.push_back(std::make_pair(armnn::IRuntime::Create(options), backendId));
40         }
41     }
42
43     std::vector<uint8_t> m_GraphBinary;
44     std::string m_JsonString;
45     std::unique_ptr<ITfLiteParser, void (*)(ITfLiteParser *parser)> m_Parser;
46     std::vector<std::pair<armnn::IRuntimePtr, armnn::BackendId>> m_Runtimes;
47     armnn::NetworkId m_NetworkIdentifier;
48
49     /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
50     /// so they don't need to be passed to the single-input-single-output overload of RunTest().
51     std::string m_SingleInputName;
52     std::string m_SingleOutputName;
53
54     void Setup()
55     {
56         bool ok = ReadStringToBinary();
57         if (!ok) {
58             throw armnn::Exception("LoadNetwork failed while reading binary input");
59         }
60
61         for (auto&& runtime : m_Runtimes)
62         {
63             armnn::INetworkPtr network =
64                     m_Parser->CreateNetworkFromBinary(m_GraphBinary);
65
66             if (!network) {
67                 throw armnn::Exception("The parser failed to create an ArmNN network");
68             }
69
70             auto optimized = Optimize(*network,
71                                       { runtime.second, armnn::Compute::CpuRef },
72                                       runtime.first->GetDeviceSpec());
73             std::string errorMessage;
74
75             armnn::Status ret = runtime.first->LoadNetwork(m_NetworkIdentifier,
76                                                      move(optimized),
77                                                      errorMessage);
78
79             if (ret != armnn::Status::Success)
80             {
81                 throw armnn::Exception(
82                     boost::str(
83                         boost::format("The runtime failed to load the network. "
84                                       "Error was: %1%. in %2% [%3%:%4%]") %
85                         errorMessage %
86                         __func__ %
87                         __FILE__ %
88                         __LINE__));
89             }
90         }
91     }
92
93     void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
94     {
95         // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
96         m_SingleInputName = inputName;
97         m_SingleOutputName = outputName;
98         Setup();
99     }
100
101     bool ReadStringToBinary()
102     {
103         const char* schemafileName = getenv("ARMNN_TF_LITE_SCHEMA_PATH");
104         if (schemafileName == nullptr)
105         {
106             schemafileName = ARMNN_TF_LITE_SCHEMA_PATH;
107         }
108         std::string schemafile;
109
110         bool ok = flatbuffers::LoadFile(schemafileName, false, &schemafile);
111         BOOST_ASSERT_MSG(ok, "Couldn't load schema file " ARMNN_TF_LITE_SCHEMA_PATH);
112         if (!ok)
113         {
114             return false;
115         }
116
117         // parse schema first, so we can use it to parse the data after
118         flatbuffers::Parser parser;
119
120         ok &= parser.Parse(schemafile.c_str());
121         BOOST_ASSERT_MSG(ok, "Failed to parse schema file");
122
123         ok &= parser.Parse(m_JsonString.c_str());
124         BOOST_ASSERT_MSG(ok, "Failed to parse json input");
125
126         if (!ok)
127         {
128             return false;
129         }
130
131         {
132             const uint8_t * bufferPtr = parser.builder_.GetBufferPointer();
133             size_t size = static_cast<size_t>(parser.builder_.GetSize());
134             m_GraphBinary.assign(bufferPtr, bufferPtr+size);
135         }
136         return ok;
137     }
138
139     /// Executes the network with the given input tensor and checks the result against the given output tensor.
140     /// This overload assumes the network has a single input and a single output.
141     template <std::size_t NumOutputDimensions, typename DataType>
142     void RunTest(size_t subgraphId,
143          const std::vector<DataType>& inputData,
144          const std::vector<DataType>& expectedOutputData);
145
146     /// Executes the network with the given input tensors and checks the results against the given output tensors.
147     /// This overload supports multiple inputs and multiple outputs, identified by name.
148     template <std::size_t NumOutputDimensions, typename DataType>
149     void RunTest(size_t subgraphId,
150                  const std::map<std::string, std::vector<DataType>>& inputData,
151                  const std::map<std::string, std::vector<DataType>>& expectedOutputData);
152
153     void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
154                       tflite::TensorType tensorType, uint32_t buffer, const std::string& name,
155                       const std::vector<float>& min, const std::vector<float>& max,
156                       const std::vector<float>& scale, const std::vector<int64_t>& zeroPoint)
157     {
158         BOOST_CHECK(tensors);
159         BOOST_CHECK_EQUAL(shapeSize, tensors->shape.size());
160         BOOST_CHECK_EQUAL_COLLECTIONS(shape.begin(), shape.end(), tensors->shape.begin(), tensors->shape.end());
161         BOOST_CHECK_EQUAL(tensorType, tensors->type);
162         BOOST_CHECK_EQUAL(buffer, tensors->buffer);
163         BOOST_CHECK_EQUAL(name, tensors->name);
164         BOOST_CHECK(tensors->quantization);
165         BOOST_CHECK_EQUAL_COLLECTIONS(min.begin(), min.end(), tensors->quantization.get()->min.begin(),
166                                       tensors->quantization.get()->min.end());
167         BOOST_CHECK_EQUAL_COLLECTIONS(max.begin(), max.end(), tensors->quantization.get()->max.begin(),
168                                       tensors->quantization.get()->max.end());
169         BOOST_CHECK_EQUAL_COLLECTIONS(scale.begin(), scale.end(), tensors->quantization.get()->scale.begin(),
170                                       tensors->quantization.get()->scale.end());
171         BOOST_CHECK_EQUAL_COLLECTIONS(zeroPoint.begin(), zeroPoint.end(),
172                                       tensors->quantization.get()->zero_point.begin(),
173                                       tensors->quantization.get()->zero_point.end());
174     }
175 };
176
177 template <std::size_t NumOutputDimensions, typename DataType>
178 void ParserFlatbuffersFixture::RunTest(size_t subgraphId,
179                                        const std::vector<DataType>& inputData,
180                                        const std::vector<DataType>& expectedOutputData)
181 {
182     RunTest<NumOutputDimensions, DataType>(subgraphId,
183                                            { { m_SingleInputName, inputData } },
184                                            { { m_SingleOutputName, expectedOutputData } });
185 }
186
187 template <std::size_t NumOutputDimensions, typename DataType>
188 void
189 ParserFlatbuffersFixture::RunTest(size_t subgraphId,
190                                   const std::map<std::string, std::vector<DataType>>& inputData,
191                                   const std::map<std::string, std::vector<DataType>>& expectedOutputData)
192 {
193     for (auto&& runtime : m_Runtimes)
194     {
195         using BindingPointInfo = std::pair<armnn::LayerBindingId, armnn::TensorInfo>;
196
197         // Setup the armnn input tensors from the given vectors.
198         armnn::InputTensors inputTensors;
199         for (auto&& it : inputData)
200         {
201             BindingPointInfo bindingInfo = m_Parser->GetNetworkInputBindingInfo(subgraphId, it.first);
202             armnn::VerifyTensorInfoDataType<DataType>(bindingInfo.second);
203             inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
204         }
205
206         // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
207         std::map<std::string, boost::multi_array<DataType, NumOutputDimensions>> outputStorage;
208         armnn::OutputTensors outputTensors;
209         for (auto&& it : expectedOutputData)
210         {
211             BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
212             armnn::VerifyTensorInfoDataType<DataType>(bindingInfo.second);
213             outputStorage.emplace(it.first, MakeTensor<DataType, NumOutputDimensions>(bindingInfo.second));
214             outputTensors.push_back(
215                     { bindingInfo.first, armnn::Tensor(bindingInfo.second, outputStorage.at(it.first).data()) });
216         }
217
218         runtime.first->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
219
220         // Compare each output tensor to the expected values
221         for (auto&& it : expectedOutputData)
222         {
223             BindingPointInfo bindingInfo = m_Parser->GetNetworkOutputBindingInfo(subgraphId, it.first);
224             auto outputExpected = MakeTensor<DataType, NumOutputDimensions>(bindingInfo.second, it.second);
225             BOOST_TEST(CompareTensors(outputExpected, outputStorage[it.first]));
226         }
227     }
228 }