1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_ARM64_SIMULATOR_ARM64_H_
6 #define V8_ARM64_SIMULATOR_ARM64_H_
11 #include "src/allocation.h"
12 #include "src/arm64/assembler-arm64.h"
13 #include "src/arm64/decoder-arm64.h"
14 #include "src/arm64/disasm-arm64.h"
15 #include "src/arm64/instrument-arm64.h"
16 #include "src/assembler.h"
17 #include "src/globals.h"
18 #include "src/utils.h"
20 #define REGISTER_CODE_LIST(R) \
21 R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
22 R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
23 R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
24 R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
29 #if !defined(USE_SIMULATOR)
31 // Running without a simulator on a native ARM64 platform.
32 // When running without a simulator we call the entry directly.
33 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
34 (entry(p0, p1, p2, p3, p4))
36 typedef int (*arm64_regexp_matcher)(String* input,
38 const byte* input_start,
39 const byte* input_end,
47 // Call the generated regexp code directly. The code at the entry address
48 // should act as a function matching the type arm64_regexp_matcher.
49 // The ninth argument is a dummy that reserves the space used for
50 // the return address added by the ExitFrame in native calls.
51 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
52 (FUNCTION_CAST<arm64_regexp_matcher>(entry)( \
53 p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
55 // Running without a simulator there is nothing to do.
56 class SimulatorStack : public v8::internal::AllStatic {
58 static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
64 static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
65 return try_catch_address;
68 static void UnregisterCTryCatch() { }
71 #else // !defined(USE_SIMULATOR)
74 // The proper way to initialize a simulated system register (such as NZCV) is as
76 // SimSystemRegister nzcv = SimSystemRegister::DefaultValueFor(NZCV);
77 class SimSystemRegister {
79 // The default constructor represents a register which has no writable bits.
80 // It is not possible to set its value to anything other than 0.
81 SimSystemRegister() : value_(0), write_ignore_mask_(0xffffffff) { }
83 uint32_t RawValue() const {
87 void SetRawValue(uint32_t new_value) {
88 value_ = (value_ & write_ignore_mask_) | (new_value & ~write_ignore_mask_);
91 uint32_t Bits(int msb, int lsb) const {
92 return unsigned_bitextract_32(msb, lsb, value_);
95 int32_t SignedBits(int msb, int lsb) const {
96 return signed_bitextract_32(msb, lsb, value_);
99 void SetBits(int msb, int lsb, uint32_t bits);
101 // Default system register values.
102 static SimSystemRegister DefaultValueFor(SystemRegister id);
104 #define DEFINE_GETTER(Name, HighBit, LowBit, Func, Type) \
105 Type Name() const { return static_cast<Type>(Func(HighBit, LowBit)); } \
106 void Set##Name(Type bits) { \
107 SetBits(HighBit, LowBit, static_cast<Type>(bits)); \
109 #define DEFINE_WRITE_IGNORE_MASK(Name, Mask) \
110 static const uint32_t Name##WriteIgnoreMask = ~static_cast<uint32_t>(Mask);
111 SYSTEM_REGISTER_FIELDS_LIST(DEFINE_GETTER, DEFINE_WRITE_IGNORE_MASK)
112 #undef DEFINE_ZERO_BITS
116 // Most system registers only implement a few of the bits in the word. Other
117 // bits are "read-as-zero, write-ignored". The write_ignore_mask argument
118 // describes the bits which are not modifiable.
119 SimSystemRegister(uint32_t value, uint32_t write_ignore_mask)
120 : value_(value), write_ignore_mask_(write_ignore_mask) { }
123 uint32_t write_ignore_mask_;
127 // Represent a register (r0-r31, v0-v31).
128 class SimRegisterBase {
131 void Set(T new_value) {
133 memcpy(&value_, &new_value, sizeof(T));
139 memcpy(&result, &value_, sizeof(T));
148 typedef SimRegisterBase SimRegister; // r0-r31
149 typedef SimRegisterBase SimFPRegister; // v0-v31
152 class Simulator : public DecoderVisitor {
154 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
161 explicit Simulator(Decoder<DispatchingDecoderVisitor>* decoder,
162 Isolate* isolate = NULL,
163 FILE* stream = stderr);
169 static void Initialize(Isolate* isolate);
171 static void TearDown(HashMap* i_cache, Redirection* first);
173 static Simulator* current(v8::internal::Isolate* isolate);
177 // Call an arbitrary function taking an arbitrary number of arguments. The
178 // varargs list must be a set of arguments with type CallArgument, and
179 // terminated by CallArgument::End().
180 void CallVoid(byte* entry, CallArgument* args);
182 // Like CallVoid, but expect a return value.
183 int64_t CallInt64(byte* entry, CallArgument* args);
184 double CallDouble(byte* entry, CallArgument* args);
186 // V8 calls into generated JS code with 5 parameters and into
187 // generated RegExp code with 10 parameters. These are convenience functions,
188 // which set up the simulator state and grab the result on return.
189 int64_t CallJS(byte* entry,
190 byte* function_entry,
195 int64_t CallRegExp(byte* entry,
197 int64_t start_offset,
198 const byte* input_start,
199 const byte* input_end,
204 void* return_address,
207 // A wrapper class that stores an argument for one of the above Call
210 // Only arguments up to 64 bits in size are supported.
214 explicit CallArgument(T argument) {
216 DCHECK(sizeof(argument) <= sizeof(bits_));
217 memcpy(&bits_, &argument, sizeof(argument));
221 explicit CallArgument(double argument) {
222 DCHECK(sizeof(argument) == sizeof(bits_));
223 memcpy(&bits_, &argument, sizeof(argument));
227 explicit CallArgument(float argument) {
228 // TODO(all): CallArgument(float) is untested, remove this check once
231 // Make the D register a NaN to try to trap errors if the callee expects a
232 // double. If it expects a float, the callee should ignore the top word.
233 DCHECK(sizeof(kFP64SignallingNaN) == sizeof(bits_));
234 memcpy(&bits_, &kFP64SignallingNaN, sizeof(kFP64SignallingNaN));
235 // Write the float payload to the S register.
236 DCHECK(sizeof(argument) <= sizeof(bits_));
237 memcpy(&bits_, &argument, sizeof(argument));
241 // This indicates the end of the arguments list, so that CallArgument
242 // objects can be passed into varargs functions.
243 static CallArgument End() { return CallArgument(); }
245 int64_t bits() const { return bits_; }
246 bool IsEnd() const { return type_ == NO_ARG; }
247 bool IsX() const { return type_ == X_ARG; }
248 bool IsD() const { return type_ == D_ARG; }
251 enum CallArgumentType { X_ARG, D_ARG, NO_ARG };
253 // All arguments are aligned to at least 64 bits and we don't support
254 // passing bigger arguments, so the payload size can be fixed at 64 bits.
256 CallArgumentType type_;
258 CallArgument() { type_ = NO_ARG; }
262 // Start the debugging command line.
265 bool GetValue(const char* desc, int64_t* value);
267 bool PrintValue(const char* desc);
269 // Push an address onto the JS stack.
270 uintptr_t PushAddress(uintptr_t address);
272 // Pop an address from the JS stack.
273 uintptr_t PopAddress();
275 // Accessor to the internal simulator stack area.
276 uintptr_t StackLimit(uintptr_t c_limit) const;
280 // Runtime call support.
281 static void* RedirectExternalReference(void* external_function,
282 ExternalReference::Type type);
283 void DoRuntimeCall(Instruction* instr);
285 // Run the simulator.
286 static const Instruction* kEndOfSimAddress;
287 void DecodeInstruction();
289 void RunFrom(Instruction* start);
291 // Simulation helpers.
292 template <typename T>
293 void set_pc(T new_pc) {
294 DCHECK(sizeof(T) == sizeof(pc_));
295 memcpy(&pc_, &new_pc, sizeof(T));
298 Instruction* pc() { return pc_; }
300 void increment_pc() {
302 pc_ = pc_->following();
305 pc_modified_ = false;
308 virtual void Decode(Instruction* instr) {
309 decoder_->Decode(instr);
312 void ExecuteInstruction() {
313 DCHECK(IsAligned(reinterpret_cast<uintptr_t>(pc_), kInstructionSize));
320 // Declare all Visitor functions.
321 #define DECLARE(A) void Visit##A(Instruction* instr);
322 VISITOR_LIST(DECLARE)
325 bool IsZeroRegister(unsigned code, Reg31Mode r31mode) const {
326 return ((code == 31) && (r31mode == Reg31IsZeroRegister));
329 // Register accessors.
330 // Return 'size' bits of the value of an integer register, as the specified
331 // type. The value is zero-extended to fill the result.
334 T reg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
335 DCHECK(code < kNumberOfRegisters);
336 if (IsZeroRegister(code, r31mode)) {
339 return registers_[code].Get<T>();
342 // Common specialized accessors for the reg() template.
343 int32_t wreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
344 return reg<int32_t>(code, r31mode);
347 int64_t xreg(unsigned code, Reg31Mode r31mode = Reg31IsZeroRegister) const {
348 return reg<int64_t>(code, r31mode);
351 // Write 'value' into an integer register. The value is zero-extended. This
352 // behaviour matches AArch64 register writes.
354 void set_reg(unsigned code, T value,
355 Reg31Mode r31mode = Reg31IsZeroRegister) {
356 set_reg_no_log(code, value, r31mode);
357 LogRegister(code, r31mode);
360 // Common specialized accessors for the set_reg() template.
361 void set_wreg(unsigned code, int32_t value,
362 Reg31Mode r31mode = Reg31IsZeroRegister) {
363 set_reg(code, value, r31mode);
366 void set_xreg(unsigned code, int64_t value,
367 Reg31Mode r31mode = Reg31IsZeroRegister) {
368 set_reg(code, value, r31mode);
371 // As above, but don't automatically log the register update.
372 template <typename T>
373 void set_reg_no_log(unsigned code, T value,
374 Reg31Mode r31mode = Reg31IsZeroRegister) {
375 DCHECK(code < kNumberOfRegisters);
376 if (!IsZeroRegister(code, r31mode)) {
377 registers_[code].Set(value);
381 void set_wreg_no_log(unsigned code, int32_t value,
382 Reg31Mode r31mode = Reg31IsZeroRegister) {
383 set_reg_no_log(code, value, r31mode);
386 void set_xreg_no_log(unsigned code, int64_t value,
387 Reg31Mode r31mode = Reg31IsZeroRegister) {
388 set_reg_no_log(code, value, r31mode);
391 // Commonly-used special cases.
393 void set_lr(T value) {
394 DCHECK(sizeof(T) == kPointerSize);
395 set_reg(kLinkRegCode, value);
399 void set_sp(T value) {
400 DCHECK(sizeof(T) == kPointerSize);
401 set_reg(31, value, Reg31IsStackPointer);
404 int64_t sp() { return xreg(31, Reg31IsStackPointer); }
405 int64_t jssp() { return xreg(kJSSPCode, Reg31IsStackPointer); }
407 return xreg(kFramePointerRegCode, Reg31IsStackPointer);
409 Instruction* lr() { return reg<Instruction*>(kLinkRegCode); }
411 Address get_sp() const { return reg<Address>(31, Reg31IsStackPointer); }
414 T fpreg(unsigned code) const {
415 DCHECK(code < kNumberOfRegisters);
416 return fpregisters_[code].Get<T>();
419 // Common specialized accessors for the fpreg() template.
420 float sreg(unsigned code) const {
421 return fpreg<float>(code);
424 uint32_t sreg_bits(unsigned code) const {
425 return fpreg<uint32_t>(code);
428 double dreg(unsigned code) const {
429 return fpreg<double>(code);
432 uint64_t dreg_bits(unsigned code) const {
433 return fpreg<uint64_t>(code);
436 double fpreg(unsigned size, unsigned code) const {
438 case kSRegSizeInBits: return sreg(code);
439 case kDRegSizeInBits: return dreg(code);
446 // Write 'value' into a floating-point register. The value is zero-extended.
447 // This behaviour matches AArch64 register writes.
449 void set_fpreg(unsigned code, T value) {
450 set_fpreg_no_log(code, value);
452 if (sizeof(value) <= kSRegSize) {
453 LogFPRegister(code, kPrintSRegValue);
455 LogFPRegister(code, kPrintDRegValue);
459 // Common specialized accessors for the set_fpreg() template.
460 void set_sreg(unsigned code, float value) {
461 set_fpreg(code, value);
464 void set_sreg_bits(unsigned code, uint32_t value) {
465 set_fpreg(code, value);
468 void set_dreg(unsigned code, double value) {
469 set_fpreg(code, value);
472 void set_dreg_bits(unsigned code, uint64_t value) {
473 set_fpreg(code, value);
476 // As above, but don't automatically log the register update.
477 template <typename T>
478 void set_fpreg_no_log(unsigned code, T value) {
479 DCHECK((sizeof(value) == kDRegSize) || (sizeof(value) == kSRegSize));
480 DCHECK(code < kNumberOfFPRegisters);
481 fpregisters_[code].Set(value);
484 void set_sreg_no_log(unsigned code, float value) {
485 set_fpreg_no_log(code, value);
488 void set_dreg_no_log(unsigned code, double value) {
489 set_fpreg_no_log(code, value);
492 SimSystemRegister& nzcv() { return nzcv_; }
493 SimSystemRegister& fpcr() { return fpcr_; }
497 // Simulator breakpoints.
499 Instruction* location;
502 std::vector<Breakpoint> breakpoints_;
503 void SetBreakpoint(Instruction* breakpoint);
504 void ListBreakpoints();
505 void CheckBreakpoints();
507 // Helpers for the 'next' command.
508 // When this is set, the Simulator will insert a breakpoint after the next BL
509 // instruction it meets.
511 // Check if the Simulator should insert a break after the current instruction
512 // for the 'next' command.
513 void CheckBreakNext();
515 // Disassemble instruction at the given address.
516 void PrintInstructionsAt(Instruction* pc, uint64_t count);
518 // Print all registers of the specified types.
519 void PrintRegisters();
520 void PrintFPRegisters();
521 void PrintSystemRegisters();
523 // Like Print* (above), but respect log_parameters().
524 void LogSystemRegisters() {
525 if (log_parameters() & LOG_SYS_REGS) PrintSystemRegisters();
527 void LogRegisters() {
528 if (log_parameters() & LOG_REGS) PrintRegisters();
530 void LogFPRegisters() {
531 if (log_parameters() & LOG_FP_REGS) PrintFPRegisters();
534 // Specify relevant register sizes, for PrintFPRegister.
536 // These values are bit masks; they can be combined in case multiple views of
537 // a machine register are interesting.
538 enum PrintFPRegisterSizes {
539 kPrintDRegValue = 1 << kDRegSize,
540 kPrintSRegValue = 1 << kSRegSize,
541 kPrintAllFPRegValues = kPrintDRegValue | kPrintSRegValue
544 // Print individual register values (after update).
545 void PrintRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer);
546 void PrintFPRegister(unsigned code,
547 PrintFPRegisterSizes sizes = kPrintAllFPRegValues);
548 void PrintSystemRegister(SystemRegister id);
550 // Like Print* (above), but respect log_parameters().
551 void LogRegister(unsigned code, Reg31Mode r31mode = Reg31IsStackPointer) {
552 if (log_parameters() & LOG_REGS) PrintRegister(code, r31mode);
554 void LogFPRegister(unsigned code,
555 PrintFPRegisterSizes sizes = kPrintAllFPRegValues) {
556 if (log_parameters() & LOG_FP_REGS) PrintFPRegister(code, sizes);
558 void LogSystemRegister(SystemRegister id) {
559 if (log_parameters() & LOG_SYS_REGS) PrintSystemRegister(id);
562 // Print memory accesses.
563 void PrintRead(uintptr_t address, size_t size, unsigned reg_code);
564 void PrintReadFP(uintptr_t address, size_t size, unsigned reg_code);
565 void PrintWrite(uintptr_t address, size_t size, unsigned reg_code);
566 void PrintWriteFP(uintptr_t address, size_t size, unsigned reg_code);
568 // Like Print* (above), but respect log_parameters().
569 void LogRead(uintptr_t address, size_t size, unsigned reg_code) {
570 if (log_parameters() & LOG_REGS) PrintRead(address, size, reg_code);
572 void LogReadFP(uintptr_t address, size_t size, unsigned reg_code) {
573 if (log_parameters() & LOG_FP_REGS) PrintReadFP(address, size, reg_code);
575 void LogWrite(uintptr_t address, size_t size, unsigned reg_code) {
576 if (log_parameters() & LOG_WRITE) PrintWrite(address, size, reg_code);
578 void LogWriteFP(uintptr_t address, size_t size, unsigned reg_code) {
579 if (log_parameters() & LOG_WRITE) PrintWriteFP(address, size, reg_code);
582 int log_parameters() { return log_parameters_; }
583 void set_log_parameters(int new_parameters) {
584 log_parameters_ = new_parameters;
586 if (new_parameters & LOG_DISASM) {
587 PrintF("Run --debug-sim to dynamically turn on disassembler\n");
591 if (new_parameters & LOG_DISASM) {
592 decoder_->InsertVisitorBefore(print_disasm_, this);
594 decoder_->RemoveVisitor(print_disasm_);
598 static inline const char* WRegNameForCode(unsigned code,
599 Reg31Mode mode = Reg31IsZeroRegister);
600 static inline const char* XRegNameForCode(unsigned code,
601 Reg31Mode mode = Reg31IsZeroRegister);
602 static inline const char* SRegNameForCode(unsigned code);
603 static inline const char* DRegNameForCode(unsigned code);
604 static inline const char* VRegNameForCode(unsigned code);
605 static inline int CodeFromName(const char* name);
608 // Simulation helpers ------------------------------------
609 bool ConditionPassed(Condition cond) {
610 SimSystemRegister& flags = nzcv();
629 return flags.C() && !flags.Z();
631 return !(flags.C() && !flags.Z());
633 return flags.N() == flags.V();
635 return flags.N() != flags.V();
637 return !flags.Z() && (flags.N() == flags.V());
639 return !(!flags.Z() && (flags.N() == flags.V()));
640 case nv: // Fall through.
649 bool ConditionFailed(Condition cond) {
650 return !ConditionPassed(cond);
654 void AddSubHelper(Instruction* instr, T op2);
656 T AddWithCarry(bool set_flags,
661 void AddSubWithCarry(Instruction* instr);
663 void LogicalHelper(Instruction* instr, T op2);
665 void ConditionalCompareHelper(Instruction* instr, T op2);
666 void LoadStoreHelper(Instruction* instr,
669 void LoadStorePairHelper(Instruction* instr, AddrMode addrmode);
670 uintptr_t LoadStoreAddress(unsigned addr_reg, int64_t offset,
672 void LoadStoreWriteBack(unsigned addr_reg,
675 void CheckMemoryAccess(uintptr_t address, uintptr_t stack);
677 // Memory read helpers.
678 template <typename T, typename A>
679 T MemoryRead(A address) {
681 STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
682 (sizeof(value) == 4) || (sizeof(value) == 8));
683 memcpy(&value, reinterpret_cast<const void*>(address), sizeof(value));
687 // Memory write helpers.
688 template <typename T, typename A>
689 void MemoryWrite(A address, T value) {
690 STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
691 (sizeof(value) == 4) || (sizeof(value) == 8));
692 memcpy(reinterpret_cast<void*>(address), &value, sizeof(value));
695 template <typename T>
696 T ShiftOperand(T value,
699 template <typename T>
700 T ExtendValue(T value,
702 unsigned left_shift = 0);
703 template <typename T>
704 void Extract(Instruction* instr);
705 template <typename T>
706 void DataProcessing2Source(Instruction* instr);
707 template <typename T>
708 void BitfieldHelper(Instruction* instr);
710 template <typename T>
711 T FPDefaultNaN() const;
713 void FPCompare(double val0, double val1);
714 double FPRoundInt(double value, FPRounding round_mode);
715 double FPToDouble(float value);
716 float FPToFloat(double value, FPRounding round_mode);
717 double FixedToDouble(int64_t src, int fbits, FPRounding round_mode);
718 double UFixedToDouble(uint64_t src, int fbits, FPRounding round_mode);
719 float FixedToFloat(int64_t src, int fbits, FPRounding round_mode);
720 float UFixedToFloat(uint64_t src, int fbits, FPRounding round_mode);
721 int32_t FPToInt32(double value, FPRounding rmode);
722 int64_t FPToInt64(double value, FPRounding rmode);
723 uint32_t FPToUInt32(double value, FPRounding rmode);
724 uint64_t FPToUInt64(double value, FPRounding rmode);
726 template <typename T>
727 T FPAdd(T op1, T op2);
729 template <typename T>
730 T FPDiv(T op1, T op2);
732 template <typename T>
735 template <typename T>
738 template <typename T>
741 template <typename T>
744 template <typename T>
745 T FPMul(T op1, T op2);
747 template <typename T>
748 T FPMulAdd(T a, T op1, T op2);
750 template <typename T>
753 template <typename T>
754 T FPSub(T op1, T op2);
756 // Standard NaN processing.
757 template <typename T>
758 T FPProcessNaN(T op);
760 bool FPProcessNaNs(Instruction* instr);
762 template <typename T>
763 T FPProcessNaNs(T op1, T op2);
765 template <typename T>
766 T FPProcessNaNs3(T op1, T op2, T op3);
768 void CheckStackAlignment();
770 inline void CheckPCSComplianceAndRun();
773 // Corruption values should have their least significant byte cleared to
774 // allow the code of the register being corrupted to be inserted.
775 static const uint64_t kCallerSavedRegisterCorruptionValue =
776 0xca11edc0de000000UL;
777 // This value is a NaN in both 32-bit and 64-bit FP.
778 static const uint64_t kCallerSavedFPRegisterCorruptionValue =
779 0x7ff000007f801000UL;
780 // This value is a mix of 32/64-bits NaN and "verbose" immediate.
781 static const uint64_t kDefaultCPURegisterCorruptionValue =
782 0x7ffbad007f8bad00UL;
784 void CorruptRegisters(CPURegList* list,
785 uint64_t value = kDefaultCPURegisterCorruptionValue);
786 void CorruptAllCallerSavedCPURegisters();
789 // Pseudo Printf instruction
790 void DoPrintf(Instruction* instr);
792 // Processor state ---------------------------------------
796 PrintDisassembler* print_disasm_;
797 void PRINTF_METHOD_CHECKING TraceSim(const char* format, ...);
800 Instrument* instrument_;
802 // General purpose registers. Register 31 is the stack pointer.
803 SimRegister registers_[kNumberOfRegisters];
805 // Floating point registers
806 SimFPRegister fpregisters_[kNumberOfFPRegisters];
809 // bits[31, 27]: Condition flags N, Z, C, and V.
810 // (Negative, Zero, Carry, Overflow)
811 SimSystemRegister nzcv_;
813 // Floating-Point Control Register
814 SimSystemRegister fpcr_;
816 // Only a subset of FPCR features are supported by the simulator. This helper
817 // checks that the FPCR settings are supported.
819 // This is checked when floating-point instructions are executed, not when
820 // FPCR is set. This allows generated code to modify FPCR for external
821 // functions, or to save and restore it when entering and leaving generated
823 void AssertSupportedFPCR() {
824 DCHECK(fpcr().FZ() == 0); // No flush-to-zero support.
825 DCHECK(fpcr().RMode() == FPTieEven); // Ties-to-even rounding only.
827 // The simulator does not support half-precision operations so fpcr().AHP()
828 // is irrelevant, and is not checked here.
831 template <typename T>
832 static int CalcNFlag(T result) {
833 return (result >> (sizeof(T) * 8 - 1)) & 1;
836 static int CalcZFlag(uint64_t result) {
840 static const uint32_t kConditionFlagsMask = 0xf0000000;
844 static const size_t stack_protection_size_ = KB;
846 uintptr_t stack_limit_;
848 Decoder<DispatchingDecoderVisitor>* decoder_;
849 Decoder<DispatchingDecoderVisitor>* disassembler_decoder_;
851 // Indicates if the pc has been modified by the instruction and should not be
852 // automatically incremented.
856 static const char* xreg_names[];
857 static const char* wreg_names[];
858 static const char* sreg_names[];
859 static const char* dreg_names[];
860 static const char* vreg_names[];
863 void set_last_debugger_input(char* input) {
864 DeleteArray(last_debugger_input_);
865 last_debugger_input_ = input;
867 char* last_debugger_input() { return last_debugger_input_; }
868 char* last_debugger_input_;
871 void Init(FILE* stream);
878 // When running with the simulator transition into simulated execution at this
880 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
881 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->CallJS( \
882 FUNCTION_ADDR(entry), \
885 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
887 Simulator::current(Isolate::Current()) \
888 ->CallRegExp(entry, p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
891 // The simulator has its own stack. Thus it has a different stack limit from
892 // the C-based native code. The JS-based limit normally points near the end of
893 // the simulator stack. When the C-based limit is exhausted we reflect that by
894 // lowering the JS-based limit as well, to make stack checks trigger.
895 class SimulatorStack : public v8::internal::AllStatic {
897 static uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
899 return Simulator::current(isolate)->StackLimit(c_limit);
902 static uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
903 Simulator* sim = Simulator::current(Isolate::Current());
904 return sim->PushAddress(try_catch_address);
907 static void UnregisterCTryCatch() {
908 Simulator::current(Isolate::Current())->PopAddress();
912 #endif // !defined(USE_SIMULATOR)
914 } } // namespace v8::internal
916 #endif // V8_ARM64_SIMULATOR_ARM64_H_