1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #if V8_TARGET_ARCH_ARM64
9 #include "src/bootstrapper.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/isolate.h"
16 #include "src/jsregexp.h"
17 #include "src/regexp-macro-assembler.h"
18 #include "src/runtime/runtime.h"
24 static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
29 // x2: allocation site with elements kind
30 // x0: number of arguments to the constructor function
31 Address deopt_handler = Runtime::FunctionForId(
32 Runtime::kArrayConstructor)->entry;
34 if (constant_stack_parameter_count == 0) {
35 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
36 JS_FUNCTION_STUB_MODE);
38 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
39 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
44 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
45 CodeStubDescriptor* descriptor) {
46 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
50 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
51 CodeStubDescriptor* descriptor) {
52 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
56 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
57 CodeStubDescriptor* descriptor) {
58 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
62 static void InitializeInternalArrayConstructorDescriptor(
63 Isolate* isolate, CodeStubDescriptor* descriptor,
64 int constant_stack_parameter_count) {
65 Address deopt_handler = Runtime::FunctionForId(
66 Runtime::kInternalArrayConstructor)->entry;
68 if (constant_stack_parameter_count == 0) {
69 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
70 JS_FUNCTION_STUB_MODE);
72 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
73 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
78 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
79 CodeStubDescriptor* descriptor) {
80 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
84 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
85 CodeStubDescriptor* descriptor) {
86 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
90 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
91 CodeStubDescriptor* descriptor) {
92 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
96 #define __ ACCESS_MASM(masm)
99 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
100 ExternalReference miss) {
101 // Update the static counter each time a new code stub is generated.
102 isolate()->counters()->code_stubs()->Increment();
104 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
105 int param_count = descriptor.GetEnvironmentParameterCount();
107 // Call the runtime system in a fresh internal frame.
108 FrameScope scope(masm, StackFrame::INTERNAL);
109 DCHECK((param_count == 0) ||
110 x0.Is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
113 MacroAssembler::PushPopQueue queue(masm);
114 for (int i = 0; i < param_count; ++i) {
115 queue.Queue(descriptor.GetEnvironmentParameterRegister(i));
119 __ CallExternalReference(miss, param_count);
126 void DoubleToIStub::Generate(MacroAssembler* masm) {
128 Register input = source();
129 Register result = destination();
130 DCHECK(is_truncating());
132 DCHECK(result.Is64Bits());
133 DCHECK(jssp.Is(masm->StackPointer()));
135 int double_offset = offset();
137 DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
138 Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
140 GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
142 __ Push(scratch1, scratch2);
143 // Account for saved regs if input is jssp.
144 if (input.is(jssp)) double_offset += 2 * kPointerSize;
146 if (!skip_fastpath()) {
147 __ Push(double_scratch);
148 if (input.is(jssp)) double_offset += 1 * kDoubleSize;
149 __ Ldr(double_scratch, MemOperand(input, double_offset));
150 // Try to convert with a FPU convert instruction. This handles all
151 // non-saturating cases.
152 __ TryConvertDoubleToInt64(result, double_scratch, &done);
153 __ Fmov(result, double_scratch);
155 __ Ldr(result, MemOperand(input, double_offset));
158 // If we reach here we need to manually convert the input to an int32.
160 // Extract the exponent.
161 Register exponent = scratch1;
162 __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
163 HeapNumber::kExponentBits);
165 // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
166 // the mantissa gets shifted completely out of the int32_t result.
167 __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
168 __ CzeroX(result, ge);
171 // The Fcvtzs sequence handles all cases except where the conversion causes
172 // signed overflow in the int64_t target. Since we've already handled
173 // exponents >= 84, we can guarantee that 63 <= exponent < 84.
175 if (masm->emit_debug_code()) {
176 __ Cmp(exponent, HeapNumber::kExponentBias + 63);
177 // Exponents less than this should have been handled by the Fcvt case.
178 __ Check(ge, kUnexpectedValue);
181 // Isolate the mantissa bits, and set the implicit '1'.
182 Register mantissa = scratch2;
183 __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
184 __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
186 // Negate the mantissa if necessary.
187 __ Tst(result, kXSignMask);
188 __ Cneg(mantissa, mantissa, ne);
190 // Shift the mantissa bits in the correct place. We know that we have to shift
191 // it left here, because exponent >= 63 >= kMantissaBits.
192 __ Sub(exponent, exponent,
193 HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
194 __ Lsl(result, mantissa, exponent);
197 if (!skip_fastpath()) {
198 __ Pop(double_scratch);
200 __ Pop(scratch2, scratch1);
205 // See call site for description.
206 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Register left,
207 Register right, Register scratch,
208 FPRegister double_scratch,
209 Label* slow, Condition cond,
211 DCHECK(!AreAliased(left, right, scratch));
212 Label not_identical, return_equal, heap_number;
213 Register result = x0;
216 __ B(ne, ¬_identical);
218 // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
219 // so we do the second best thing - test it ourselves.
220 // They are both equal and they are not both Smis so both of them are not
221 // Smis. If it's not a heap number, then return equal.
222 Register right_type = scratch;
223 if ((cond == lt) || (cond == gt)) {
224 // Call runtime on identical JSObjects. Otherwise return equal.
225 __ JumpIfObjectType(right, right_type, right_type, FIRST_SPEC_OBJECT_TYPE,
227 // Call runtime on identical symbols since we need to throw a TypeError.
228 __ Cmp(right_type, SYMBOL_TYPE);
231 // Call the runtime on anything that is converted in the semantics, since
232 // we need to throw a TypeError. Smis have already been ruled out.
233 __ Cmp(right_type, Operand(HEAP_NUMBER_TYPE));
234 __ B(eq, &return_equal);
235 __ Tst(right_type, Operand(kIsNotStringMask));
238 } else if (cond == eq) {
239 __ JumpIfHeapNumber(right, &heap_number);
241 __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
243 // Comparing JS objects with <=, >= is complicated.
244 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
246 // Call runtime on identical symbols since we need to throw a TypeError.
247 __ Cmp(right_type, SYMBOL_TYPE);
250 // Call the runtime on anything that is converted in the semantics,
251 // since we need to throw a TypeError. Smis and heap numbers have
252 // already been ruled out.
253 __ Tst(right_type, Operand(kIsNotStringMask));
256 // Normally here we fall through to return_equal, but undefined is
257 // special: (undefined == undefined) == true, but
258 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
259 if ((cond == le) || (cond == ge)) {
260 __ Cmp(right_type, ODDBALL_TYPE);
261 __ B(ne, &return_equal);
262 __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
264 // undefined <= undefined should fail.
265 __ Mov(result, GREATER);
267 // undefined >= undefined should fail.
268 __ Mov(result, LESS);
274 __ Bind(&return_equal);
276 __ Mov(result, GREATER); // Things aren't less than themselves.
277 } else if (cond == gt) {
278 __ Mov(result, LESS); // Things aren't greater than themselves.
280 __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
284 // Cases lt and gt have been handled earlier, and case ne is never seen, as
285 // it is handled in the parser (see Parser::ParseBinaryExpression). We are
286 // only concerned with cases ge, le and eq here.
287 if ((cond != lt) && (cond != gt)) {
288 DCHECK((cond == ge) || (cond == le) || (cond == eq));
289 __ Bind(&heap_number);
290 // Left and right are identical pointers to a heap number object. Return
291 // non-equal if the heap number is a NaN, and equal otherwise. Comparing
292 // the number to itself will set the overflow flag iff the number is NaN.
293 __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
294 __ Fcmp(double_scratch, double_scratch);
295 __ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
298 __ Mov(result, GREATER);
300 __ Mov(result, LESS);
305 // No fall through here.
306 if (FLAG_debug_code) {
310 __ Bind(¬_identical);
314 // See call site for description.
315 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
321 DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
323 if (masm->emit_debug_code()) {
324 // We assume that the arguments are not identical.
326 __ Assert(ne, kExpectedNonIdenticalObjects);
329 // If either operand is a JS object or an oddball value, then they are not
330 // equal since their pointers are different.
331 // There is no test for undetectability in strict equality.
332 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
333 Label right_non_object;
335 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
336 __ B(lt, &right_non_object);
338 // Return non-zero - x0 already contains a non-zero pointer.
339 DCHECK(left.is(x0) || right.is(x0));
340 Label return_not_equal;
341 __ Bind(&return_not_equal);
344 __ Bind(&right_non_object);
346 // Check for oddballs: true, false, null, undefined.
347 __ Cmp(right_type, ODDBALL_TYPE);
349 // If right is not ODDBALL, test left. Otherwise, set eq condition.
350 __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
352 // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
353 // Otherwise, right or left is ODDBALL, so set a ge condition.
354 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
356 __ B(ge, &return_not_equal);
358 // Internalized strings are unique, so they can only be equal if they are the
359 // same object. We have already tested that case, so if left and right are
360 // both internalized strings, they cannot be equal.
361 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
362 __ Orr(scratch, left_type, right_type);
363 __ TestAndBranchIfAllClear(
364 scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
368 // See call site for description.
369 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
376 DCHECK(!AreAliased(left_d, right_d));
377 DCHECK((left.is(x0) && right.is(x1)) ||
378 (right.is(x0) && left.is(x1)));
379 Register result = x0;
381 Label right_is_smi, done;
382 __ JumpIfSmi(right, &right_is_smi);
384 // Left is the smi. Check whether right is a heap number.
386 // If right is not a number and left is a smi, then strict equality cannot
387 // succeed. Return non-equal.
388 Label is_heap_number;
389 __ JumpIfHeapNumber(right, &is_heap_number);
390 // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
391 if (!right.is(result)) {
392 __ Mov(result, NOT_EQUAL);
395 __ Bind(&is_heap_number);
397 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
399 __ JumpIfNotHeapNumber(right, slow);
402 // Left is the smi. Right is a heap number. Load right value into right_d, and
403 // convert left smi into double in left_d.
404 __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
405 __ SmiUntagToDouble(left_d, left);
408 __ Bind(&right_is_smi);
409 // Right is a smi. Check whether the non-smi left is a heap number.
411 // If left is not a number and right is a smi then strict equality cannot
412 // succeed. Return non-equal.
413 Label is_heap_number;
414 __ JumpIfHeapNumber(left, &is_heap_number);
415 // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
416 if (!left.is(result)) {
417 __ Mov(result, NOT_EQUAL);
420 __ Bind(&is_heap_number);
422 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
424 __ JumpIfNotHeapNumber(left, slow);
427 // Right is the smi. Left is a heap number. Load left value into left_d, and
428 // convert right smi into double in right_d.
429 __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
430 __ SmiUntagToDouble(right_d, right);
432 // Fall through to both_loaded_as_doubles.
437 // Fast negative check for internalized-to-internalized equality.
438 // See call site for description.
439 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
446 Label* possible_strings,
447 Label* not_both_strings) {
448 DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
449 Register result = x0;
452 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
453 // TODO(all): reexamine this branch sequence for optimisation wrt branch
455 __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
456 __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
457 __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
458 __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
460 // Both are internalized. We already checked that they weren't the same
461 // pointer, so they are not equal.
462 __ Mov(result, NOT_EQUAL);
465 __ Bind(&object_test);
467 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
469 // If right >= FIRST_SPEC_OBJECT_TYPE, test left.
470 // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
471 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
473 __ B(lt, not_both_strings);
475 // If both objects are undetectable, they are equal. Otherwise, they are not
476 // equal, since they are different objects and an object is not equal to
479 // Returning here, so we can corrupt right_type and left_type.
480 Register right_bitfield = right_type;
481 Register left_bitfield = left_type;
482 __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
483 __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
484 __ And(result, right_bitfield, left_bitfield);
485 __ And(result, result, 1 << Map::kIsUndetectable);
486 __ Eor(result, result, 1 << Map::kIsUndetectable);
491 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
492 CompareICState::State expected,
495 if (expected == CompareICState::SMI) {
496 __ JumpIfNotSmi(input, fail);
497 } else if (expected == CompareICState::NUMBER) {
498 __ JumpIfSmi(input, &ok);
499 __ JumpIfNotHeapNumber(input, fail);
501 // We could be strict about internalized/non-internalized here, but as long as
502 // hydrogen doesn't care, the stub doesn't have to care either.
507 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
510 Register result = x0;
511 Condition cond = GetCondition();
514 CompareICStub_CheckInputType(masm, lhs, left(), &miss);
515 CompareICStub_CheckInputType(masm, rhs, right(), &miss);
517 Label slow; // Call builtin.
518 Label not_smis, both_loaded_as_doubles;
519 Label not_two_smis, smi_done;
520 __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis);
522 __ Sub(result, lhs, Operand::UntagSmi(rhs));
525 __ Bind(¬_two_smis);
527 // NOTICE! This code is only reached after a smi-fast-case check, so it is
528 // certain that at least one operand isn't a smi.
530 // Handle the case where the objects are identical. Either returns the answer
531 // or goes to slow. Only falls through if the objects were not identical.
532 EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond, strong());
534 // If either is a smi (we know that at least one is not a smi), then they can
535 // only be strictly equal if the other is a HeapNumber.
536 __ JumpIfBothNotSmi(lhs, rhs, ¬_smis);
538 // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
540 // 1) Return the answer.
541 // 2) Branch to the slow case.
542 // 3) Fall through to both_loaded_as_doubles.
543 // In case 3, we have found out that we were dealing with a number-number
544 // comparison. The double values of the numbers have been loaded, right into
545 // rhs_d, left into lhs_d.
546 FPRegister rhs_d = d0;
547 FPRegister lhs_d = d1;
548 EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
550 __ Bind(&both_loaded_as_doubles);
551 // The arguments have been converted to doubles and stored in rhs_d and
554 __ Fcmp(lhs_d, rhs_d);
555 __ B(vs, &nan); // Overflow flag set if either is NaN.
556 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
557 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
558 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
562 // Left and/or right is a NaN. Load the result register with whatever makes
563 // the comparison fail, since comparisons with NaN always fail (except ne,
564 // which is filtered out at a higher level.)
566 if ((cond == lt) || (cond == le)) {
567 __ Mov(result, GREATER);
569 __ Mov(result, LESS);
574 // At this point we know we are dealing with two different objects, and
575 // neither of them is a smi. The objects are in rhs_ and lhs_.
577 // Load the maps and types of the objects.
578 Register rhs_map = x10;
579 Register rhs_type = x11;
580 Register lhs_map = x12;
581 Register lhs_type = x13;
582 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
583 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
584 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
585 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
588 // This emits a non-equal return sequence for some object types, or falls
589 // through if it was not lucky.
590 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
593 Label check_for_internalized_strings;
594 Label flat_string_check;
595 // Check for heap number comparison. Branch to earlier double comparison code
596 // if they are heap numbers, otherwise, branch to internalized string check.
597 __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
598 __ B(ne, &check_for_internalized_strings);
599 __ Cmp(lhs_map, rhs_map);
601 // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
603 __ B(ne, &flat_string_check);
605 // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
607 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
608 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
609 __ B(&both_loaded_as_doubles);
611 __ Bind(&check_for_internalized_strings);
612 // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
613 // of internalized strings.
614 if ((cond == eq) && !strict()) {
615 // Returns an answer for two internalized strings or two detectable objects.
616 // Otherwise branches to the string case or not both strings case.
617 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
619 &flat_string_check, &slow);
622 // Check for both being sequential one-byte strings,
623 // and inline if that is the case.
624 __ Bind(&flat_string_check);
625 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
628 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
631 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
634 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
638 // Never fall through to here.
639 if (FLAG_debug_code) {
646 // Figure out which native to call and setup the arguments.
647 Builtins::JavaScript native;
649 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
651 native = strong() ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
652 int ncr; // NaN compare result
653 if ((cond == lt) || (cond == le)) {
656 DCHECK((cond == gt) || (cond == ge)); // remaining cases
659 __ Mov(x10, Smi::FromInt(ncr));
663 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
664 // tagged as a small integer.
665 __ InvokeBuiltin(native, JUMP_FUNCTION);
672 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
673 CPURegList saved_regs = kCallerSaved;
674 CPURegList saved_fp_regs = kCallerSavedFP;
676 // We don't allow a GC during a store buffer overflow so there is no need to
677 // store the registers in any particular way, but we do have to store and
680 // We don't care if MacroAssembler scratch registers are corrupted.
681 saved_regs.Remove(*(masm->TmpList()));
682 saved_fp_regs.Remove(*(masm->FPTmpList()));
684 __ PushCPURegList(saved_regs);
685 if (save_doubles()) {
686 __ PushCPURegList(saved_fp_regs);
689 AllowExternalCallThatCantCauseGC scope(masm);
690 __ Mov(x0, ExternalReference::isolate_address(isolate()));
692 ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
694 if (save_doubles()) {
695 __ PopCPURegList(saved_fp_regs);
697 __ PopCPURegList(saved_regs);
702 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
704 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
706 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
711 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
712 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
713 UseScratchRegisterScope temps(masm);
714 Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
715 Register return_address = temps.AcquireX();
716 __ Mov(return_address, lr);
717 // Restore lr with the value it had before the call to this stub (the value
718 // which must be pushed).
719 __ Mov(lr, saved_lr);
720 __ PushSafepointRegisters();
721 __ Ret(return_address);
725 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
726 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
727 UseScratchRegisterScope temps(masm);
728 Register return_address = temps.AcquireX();
729 // Preserve the return address (lr will be clobbered by the pop).
730 __ Mov(return_address, lr);
731 __ PopSafepointRegisters();
732 __ Ret(return_address);
736 void MathPowStub::Generate(MacroAssembler* masm) {
738 // jssp[0]: Exponent (as a tagged value).
739 // jssp[1]: Base (as a tagged value).
741 // The (tagged) result will be returned in x0, as a heap number.
743 Register result_tagged = x0;
744 Register base_tagged = x10;
745 Register exponent_tagged = MathPowTaggedDescriptor::exponent();
746 DCHECK(exponent_tagged.is(x11));
747 Register exponent_integer = MathPowIntegerDescriptor::exponent();
748 DCHECK(exponent_integer.is(x12));
749 Register scratch1 = x14;
750 Register scratch0 = x15;
751 Register saved_lr = x19;
752 FPRegister result_double = d0;
753 FPRegister base_double = d0;
754 FPRegister exponent_double = d1;
755 FPRegister base_double_copy = d2;
756 FPRegister scratch1_double = d6;
757 FPRegister scratch0_double = d7;
759 // A fast-path for integer exponents.
760 Label exponent_is_smi, exponent_is_integer;
761 // Bail out to runtime.
763 // Allocate a heap number for the result, and return it.
766 // Unpack the inputs.
767 if (exponent_type() == ON_STACK) {
769 Label unpack_exponent;
771 __ Pop(exponent_tagged, base_tagged);
773 __ JumpIfSmi(base_tagged, &base_is_smi);
774 __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
775 // base_tagged is a heap number, so load its double value.
776 __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
777 __ B(&unpack_exponent);
778 __ Bind(&base_is_smi);
779 // base_tagged is a SMI, so untag it and convert it to a double.
780 __ SmiUntagToDouble(base_double, base_tagged);
782 __ Bind(&unpack_exponent);
783 // x10 base_tagged The tagged base (input).
784 // x11 exponent_tagged The tagged exponent (input).
785 // d1 base_double The base as a double.
786 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
787 __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
788 // exponent_tagged is a heap number, so load its double value.
789 __ Ldr(exponent_double,
790 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
791 } else if (exponent_type() == TAGGED) {
792 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
793 __ Ldr(exponent_double,
794 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
797 // Handle double (heap number) exponents.
798 if (exponent_type() != INTEGER) {
799 // Detect integer exponents stored as doubles and handle those in the
800 // integer fast-path.
801 __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
802 scratch0_double, &exponent_is_integer);
804 if (exponent_type() == ON_STACK) {
805 FPRegister half_double = d3;
806 FPRegister minus_half_double = d4;
807 // Detect square root case. Crankshaft detects constant +/-0.5 at compile
808 // time and uses DoMathPowHalf instead. We then skip this check for
809 // non-constant cases of +/-0.5 as these hardly occur.
811 __ Fmov(minus_half_double, -0.5);
812 __ Fmov(half_double, 0.5);
813 __ Fcmp(minus_half_double, exponent_double);
814 __ Fccmp(half_double, exponent_double, NZFlag, ne);
815 // Condition flags at this point:
816 // 0.5; nZCv // Identified by eq && pl
817 // -0.5: NZcv // Identified by eq && mi
818 // other: ?z?? // Identified by ne
819 __ B(ne, &call_runtime);
821 // The exponent is 0.5 or -0.5.
823 // Given that exponent is known to be either 0.5 or -0.5, the following
824 // special cases could apply (according to ECMA-262 15.8.2.13):
826 // base.isNaN(): The result is NaN.
827 // (base == +INFINITY) || (base == -INFINITY)
828 // exponent == 0.5: The result is +INFINITY.
829 // exponent == -0.5: The result is +0.
830 // (base == +0) || (base == -0)
831 // exponent == 0.5: The result is +0.
832 // exponent == -0.5: The result is +INFINITY.
833 // (base < 0) && base.isFinite(): The result is NaN.
835 // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
836 // where base is -INFINITY or -0.
838 // Add +0 to base. This has no effect other than turning -0 into +0.
839 __ Fadd(base_double, base_double, fp_zero);
840 // The operation -0+0 results in +0 in all cases except where the
841 // FPCR rounding mode is 'round towards minus infinity' (RM). The
842 // ARM64 simulator does not currently simulate FPCR (where the rounding
843 // mode is set), so test the operation with some debug code.
844 if (masm->emit_debug_code()) {
845 UseScratchRegisterScope temps(masm);
846 Register temp = temps.AcquireX();
847 __ Fneg(scratch0_double, fp_zero);
848 // Verify that we correctly generated +0.0 and -0.0.
849 // bits(+0.0) = 0x0000000000000000
850 // bits(-0.0) = 0x8000000000000000
851 __ Fmov(temp, fp_zero);
852 __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
853 __ Fmov(temp, scratch0_double);
854 __ Eor(temp, temp, kDSignMask);
855 __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
856 // Check that -0.0 + 0.0 == +0.0.
857 __ Fadd(scratch0_double, scratch0_double, fp_zero);
858 __ Fmov(temp, scratch0_double);
859 __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
862 // If base is -INFINITY, make it +INFINITY.
863 // * Calculate base - base: All infinities will become NaNs since both
864 // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
865 // * If the result is NaN, calculate abs(base).
866 __ Fsub(scratch0_double, base_double, base_double);
867 __ Fcmp(scratch0_double, 0.0);
868 __ Fabs(scratch1_double, base_double);
869 __ Fcsel(base_double, scratch1_double, base_double, vs);
871 // Calculate the square root of base.
872 __ Fsqrt(result_double, base_double);
873 __ Fcmp(exponent_double, 0.0);
874 __ B(ge, &done); // Finish now for exponents of 0.5.
875 // Find the inverse for exponents of -0.5.
876 __ Fmov(scratch0_double, 1.0);
877 __ Fdiv(result_double, scratch0_double, result_double);
882 AllowExternalCallThatCantCauseGC scope(masm);
883 __ Mov(saved_lr, lr);
885 ExternalReference::power_double_double_function(isolate()),
887 __ Mov(lr, saved_lr);
891 // Handle SMI exponents.
892 __ Bind(&exponent_is_smi);
893 // x10 base_tagged The tagged base (input).
894 // x11 exponent_tagged The tagged exponent (input).
895 // d1 base_double The base as a double.
896 __ SmiUntag(exponent_integer, exponent_tagged);
899 __ Bind(&exponent_is_integer);
900 // x10 base_tagged The tagged base (input).
901 // x11 exponent_tagged The tagged exponent (input).
902 // x12 exponent_integer The exponent as an integer.
903 // d1 base_double The base as a double.
905 // Find abs(exponent). For negative exponents, we can find the inverse later.
906 Register exponent_abs = x13;
907 __ Cmp(exponent_integer, 0);
908 __ Cneg(exponent_abs, exponent_integer, mi);
909 // x13 exponent_abs The value of abs(exponent_integer).
911 // Repeatedly multiply to calculate the power.
913 // For each bit n (exponent_integer{n}) {
914 // if (exponent_integer{n}) {
918 // if (remaining bits in exponent_integer are all zero) {
922 Label power_loop, power_loop_entry, power_loop_exit;
923 __ Fmov(scratch1_double, base_double);
924 __ Fmov(base_double_copy, base_double);
925 __ Fmov(result_double, 1.0);
926 __ B(&power_loop_entry);
928 __ Bind(&power_loop);
929 __ Fmul(scratch1_double, scratch1_double, scratch1_double);
930 __ Lsr(exponent_abs, exponent_abs, 1);
931 __ Cbz(exponent_abs, &power_loop_exit);
933 __ Bind(&power_loop_entry);
934 __ Tbz(exponent_abs, 0, &power_loop);
935 __ Fmul(result_double, result_double, scratch1_double);
938 __ Bind(&power_loop_exit);
940 // If the exponent was positive, result_double holds the result.
941 __ Tbz(exponent_integer, kXSignBit, &done);
943 // The exponent was negative, so find the inverse.
944 __ Fmov(scratch0_double, 1.0);
945 __ Fdiv(result_double, scratch0_double, result_double);
946 // ECMA-262 only requires Math.pow to return an 'implementation-dependent
947 // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
948 // to calculate the subnormal value 2^-1074. This method of calculating
949 // negative powers doesn't work because 2^1074 overflows to infinity. To
950 // catch this corner-case, we bail out if the result was 0. (This can only
951 // occur if the divisor is infinity or the base is zero.)
952 __ Fcmp(result_double, 0.0);
955 if (exponent_type() == ON_STACK) {
956 // Bail out to runtime code.
957 __ Bind(&call_runtime);
958 // Put the arguments back on the stack.
959 __ Push(base_tagged, exponent_tagged);
960 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
964 __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
966 DCHECK(result_tagged.is(x0));
968 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
971 AllowExternalCallThatCantCauseGC scope(masm);
972 __ Mov(saved_lr, lr);
973 __ Fmov(base_double, base_double_copy);
974 __ Scvtf(exponent_double, exponent_integer);
976 ExternalReference::power_double_double_function(isolate()),
978 __ Mov(lr, saved_lr);
981 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
987 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
988 // It is important that the following stubs are generated in this order
989 // because pregenerated stubs can only call other pregenerated stubs.
990 // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
992 CEntryStub::GenerateAheadOfTime(isolate);
993 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
994 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
995 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
996 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
997 CreateWeakCellStub::GenerateAheadOfTime(isolate);
998 BinaryOpICStub::GenerateAheadOfTime(isolate);
999 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1000 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1001 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1002 StoreFastElementStub::GenerateAheadOfTime(isolate);
1003 TypeofStub::GenerateAheadOfTime(isolate);
1007 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1008 StoreRegistersStateStub stub(isolate);
1013 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1014 RestoreRegistersStateStub stub(isolate);
1019 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1020 // Floating-point code doesn't get special handling in ARM64, so there's
1021 // nothing to do here.
1026 bool CEntryStub::NeedsImmovableCode() {
1027 // CEntryStub stores the return address on the stack before calling into
1028 // C++ code. In some cases, the VM accesses this address, but it is not used
1029 // when the C++ code returns to the stub because LR holds the return address
1030 // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
1031 // returning to dead code.
1032 // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
1033 // find any comment to confirm this, and I don't hit any crashes whatever
1034 // this function returns. The anaylsis should be properly confirmed.
1039 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1040 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1042 CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
1047 void CEntryStub::Generate(MacroAssembler* masm) {
1048 // The Abort mechanism relies on CallRuntime, which in turn relies on
1049 // CEntryStub, so until this stub has been generated, we have to use a
1050 // fall-back Abort mechanism.
1052 // Note that this stub must be generated before any use of Abort.
1053 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
1055 ASM_LOCATION("CEntryStub::Generate entry");
1056 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1058 // Register parameters:
1059 // x0: argc (including receiver, untagged)
1062 // The stack on entry holds the arguments and the receiver, with the receiver
1063 // at the highest address:
1065 // jssp]argc-1]: receiver
1066 // jssp[argc-2]: arg[argc-2]
1071 // The arguments are in reverse order, so that arg[argc-2] is actually the
1072 // first argument to the target function and arg[0] is the last.
1073 DCHECK(jssp.Is(__ StackPointer()));
1074 const Register& argc_input = x0;
1075 const Register& target_input = x1;
1077 // Calculate argv, argc and the target address, and store them in
1078 // callee-saved registers so we can retry the call without having to reload
1080 // TODO(jbramley): If the first call attempt succeeds in the common case (as
1081 // it should), then we might be better off putting these parameters directly
1082 // into their argument registers, rather than using callee-saved registers and
1083 // preserving them on the stack.
1084 const Register& argv = x21;
1085 const Register& argc = x22;
1086 const Register& target = x23;
1088 // Derive argv from the stack pointer so that it points to the first argument
1089 // (arg[argc-2]), or just below the receiver in case there are no arguments.
1090 // - Adjust for the arg[] array.
1091 Register temp_argv = x11;
1092 __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
1093 // - Adjust for the receiver.
1094 __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
1096 // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
1098 FrameScope scope(masm, StackFrame::MANUAL);
1099 __ EnterExitFrame(save_doubles(), x10, 3);
1100 DCHECK(csp.Is(__ StackPointer()));
1102 // Poke callee-saved registers into reserved space.
1103 __ Poke(argv, 1 * kPointerSize);
1104 __ Poke(argc, 2 * kPointerSize);
1105 __ Poke(target, 3 * kPointerSize);
1107 // We normally only keep tagged values in callee-saved registers, as they
1108 // could be pushed onto the stack by called stubs and functions, and on the
1109 // stack they can confuse the GC. However, we're only calling C functions
1110 // which can push arbitrary data onto the stack anyway, and so the GC won't
1111 // examine that part of the stack.
1112 __ Mov(argc, argc_input);
1113 __ Mov(target, target_input);
1114 __ Mov(argv, temp_argv);
1118 // x23 : call target
1120 // The stack (on entry) holds the arguments and the receiver, with the
1121 // receiver at the highest address:
1123 // argv[8]: receiver
1124 // argv -> argv[0]: arg[argc-2]
1126 // argv[...]: arg[1]
1127 // argv[...]: arg[0]
1129 // Immediately below (after) this is the exit frame, as constructed by
1131 // fp[8]: CallerPC (lr)
1132 // fp -> fp[0]: CallerFP (old fp)
1133 // fp[-8]: Space reserved for SPOffset.
1134 // fp[-16]: CodeObject()
1135 // csp[...]: Saved doubles, if saved_doubles is true.
1136 // csp[32]: Alignment padding, if necessary.
1137 // csp[24]: Preserved x23 (used for target).
1138 // csp[16]: Preserved x22 (used for argc).
1139 // csp[8]: Preserved x21 (used for argv).
1140 // csp -> csp[0]: Space reserved for the return address.
1142 // After a successful call, the exit frame, preserved registers (x21-x23) and
1143 // the arguments (including the receiver) are dropped or popped as
1144 // appropriate. The stub then returns.
1146 // After an unsuccessful call, the exit frame and suchlike are left
1147 // untouched, and the stub either throws an exception by jumping to one of
1148 // the exception_returned label.
1150 DCHECK(csp.Is(__ StackPointer()));
1152 // Prepare AAPCS64 arguments to pass to the builtin.
1155 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1157 Label return_location;
1158 __ Adr(x12, &return_location);
1161 if (__ emit_debug_code()) {
1162 // Verify that the slot below fp[kSPOffset]-8 points to the return location
1163 // (currently in x12).
1164 UseScratchRegisterScope temps(masm);
1165 Register temp = temps.AcquireX();
1166 __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
1167 __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
1169 __ Check(eq, kReturnAddressNotFoundInFrame);
1172 // Call the builtin.
1174 __ Bind(&return_location);
1176 // x0 result The return code from the call.
1180 const Register& result = x0;
1182 // Check result for exception sentinel.
1183 Label exception_returned;
1184 __ CompareRoot(result, Heap::kExceptionRootIndex);
1185 __ B(eq, &exception_returned);
1187 // The call succeeded, so unwind the stack and return.
1189 // Restore callee-saved registers x21-x23.
1192 __ Peek(argv, 1 * kPointerSize);
1193 __ Peek(argc, 2 * kPointerSize);
1194 __ Peek(target, 3 * kPointerSize);
1196 __ LeaveExitFrame(save_doubles(), x10, true);
1197 DCHECK(jssp.Is(__ StackPointer()));
1198 // Pop or drop the remaining stack slots and return from the stub.
1199 // jssp[24]: Arguments array (of size argc), including receiver.
1200 // jssp[16]: Preserved x23 (used for target).
1201 // jssp[8]: Preserved x22 (used for argc).
1202 // jssp[0]: Preserved x21 (used for argv).
1204 __ AssertFPCRState();
1207 // The stack pointer is still csp if we aren't returning, and the frame
1208 // hasn't changed (except for the return address).
1209 __ SetStackPointer(csp);
1211 // Handling of exception.
1212 __ Bind(&exception_returned);
1214 ExternalReference pending_handler_context_address(
1215 Isolate::kPendingHandlerContextAddress, isolate());
1216 ExternalReference pending_handler_code_address(
1217 Isolate::kPendingHandlerCodeAddress, isolate());
1218 ExternalReference pending_handler_offset_address(
1219 Isolate::kPendingHandlerOffsetAddress, isolate());
1220 ExternalReference pending_handler_fp_address(
1221 Isolate::kPendingHandlerFPAddress, isolate());
1222 ExternalReference pending_handler_sp_address(
1223 Isolate::kPendingHandlerSPAddress, isolate());
1225 // Ask the runtime for help to determine the handler. This will set x0 to
1226 // contain the current pending exception, don't clobber it.
1227 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1229 DCHECK(csp.Is(masm->StackPointer()));
1231 FrameScope scope(masm, StackFrame::MANUAL);
1232 __ Mov(x0, 0); // argc.
1233 __ Mov(x1, 0); // argv.
1234 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1235 __ CallCFunction(find_handler, 3);
1238 // We didn't execute a return case, so the stack frame hasn't been updated
1239 // (except for the return address slot). However, we don't need to initialize
1240 // jssp because the throw method will immediately overwrite it when it
1241 // unwinds the stack.
1242 __ SetStackPointer(jssp);
1244 // Retrieve the handler context, SP and FP.
1245 __ Mov(cp, Operand(pending_handler_context_address));
1246 __ Ldr(cp, MemOperand(cp));
1247 __ Mov(jssp, Operand(pending_handler_sp_address));
1248 __ Ldr(jssp, MemOperand(jssp));
1249 __ Mov(fp, Operand(pending_handler_fp_address));
1250 __ Ldr(fp, MemOperand(fp));
1252 // If the handler is a JS frame, restore the context to the frame. Note that
1253 // the context will be set to (cp == 0) for non-JS frames.
1255 __ Cbz(cp, ¬_js_frame);
1256 __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1257 __ Bind(¬_js_frame);
1259 // Compute the handler entry address and jump to it.
1260 __ Mov(x10, Operand(pending_handler_code_address));
1261 __ Ldr(x10, MemOperand(x10));
1262 __ Mov(x11, Operand(pending_handler_offset_address));
1263 __ Ldr(x11, MemOperand(x11));
1264 __ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag);
1265 __ Add(x10, x10, x11);
1270 // This is the entry point from C++. 5 arguments are provided in x0-x4.
1271 // See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
1280 void JSEntryStub::Generate(MacroAssembler* masm) {
1281 DCHECK(jssp.Is(__ StackPointer()));
1282 Register code_entry = x0;
1284 // Enable instruction instrumentation. This only works on the simulator, and
1285 // will have no effect on the model or real hardware.
1286 __ EnableInstrumentation();
1288 Label invoke, handler_entry, exit;
1290 // Push callee-saved registers and synchronize the system stack pointer (csp)
1291 // and the JavaScript stack pointer (jssp).
1293 // We must not write to jssp until after the PushCalleeSavedRegisters()
1294 // call, since jssp is itself a callee-saved register.
1295 __ SetStackPointer(csp);
1296 __ PushCalleeSavedRegisters();
1298 __ SetStackPointer(jssp);
1300 // Configure the FPCR. We don't restore it, so this is technically not allowed
1301 // according to AAPCS64. However, we only set default-NaN mode and this will
1302 // be harmless for most C code. Also, it works for ARM.
1305 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1307 // Set up the reserved register for 0.0.
1308 __ Fmov(fp_zero, 0.0);
1310 // Build an entry frame (see layout below).
1311 int marker = type();
1312 int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
1313 __ Mov(x13, bad_frame_pointer);
1314 __ Mov(x12, Smi::FromInt(marker));
1315 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1316 __ Ldr(x10, MemOperand(x11));
1318 __ Push(x13, xzr, x12, x10);
1320 __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
1322 // Push the JS entry frame marker. Also set js_entry_sp if this is the
1323 // outermost JS call.
1324 Label non_outermost_js, done;
1325 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1326 __ Mov(x10, ExternalReference(js_entry_sp));
1327 __ Ldr(x11, MemOperand(x10));
1328 __ Cbnz(x11, &non_outermost_js);
1329 __ Str(fp, MemOperand(x10));
1330 __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1333 __ Bind(&non_outermost_js);
1334 // We spare one instruction by pushing xzr since the marker is 0.
1335 DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
1339 // The frame set up looks like this:
1340 // jssp[0] : JS entry frame marker.
1341 // jssp[1] : C entry FP.
1342 // jssp[2] : stack frame marker.
1343 // jssp[3] : stack frmae marker.
1344 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1347 // Jump to a faked try block that does the invoke, with a faked catch
1348 // block that sets the pending exception.
1351 // Prevent the constant pool from being emitted between the record of the
1352 // handler_entry position and the first instruction of the sequence here.
1353 // There is no risk because Assembler::Emit() emits the instruction before
1354 // checking for constant pool emission, but we do not want to depend on
1357 Assembler::BlockPoolsScope block_pools(masm);
1358 __ bind(&handler_entry);
1359 handler_offset_ = handler_entry.pos();
1360 // Caught exception: Store result (exception) in the pending exception
1361 // field in the JSEnv and return a failure sentinel. Coming in here the
1362 // fp will be invalid because the PushTryHandler below sets it to 0 to
1363 // signal the existence of the JSEntry frame.
1364 __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1367 __ Str(code_entry, MemOperand(x10));
1368 __ LoadRoot(x0, Heap::kExceptionRootIndex);
1371 // Invoke: Link this frame into the handler chain.
1373 __ PushStackHandler();
1374 // If an exception not caught by another handler occurs, this handler
1375 // returns control to the code after the B(&invoke) above, which
1376 // restores all callee-saved registers (including cp and fp) to their
1377 // saved values before returning a failure to C.
1379 // Clear any pending exceptions.
1380 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1381 __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1383 __ Str(x10, MemOperand(x11));
1385 // Invoke the function by calling through the JS entry trampoline builtin.
1386 // Notice that we cannot store a reference to the trampoline code directly in
1387 // this stub, because runtime stubs are not traversed when doing GC.
1389 // Expected registers by Builtins::JSEntryTrampoline
1395 ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
1396 ? Builtins::kJSConstructEntryTrampoline
1397 : Builtins::kJSEntryTrampoline,
1401 // Call the JSEntryTrampoline.
1402 __ Ldr(x11, MemOperand(x10)); // Dereference the address.
1403 __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
1406 // Unlink this frame from the handler chain.
1407 __ PopStackHandler();
1411 // x0 holds the result.
1412 // The stack pointer points to the top of the entry frame pushed on entry from
1413 // C++ (at the beginning of this stub):
1414 // jssp[0] : JS entry frame marker.
1415 // jssp[1] : C entry FP.
1416 // jssp[2] : stack frame marker.
1417 // jssp[3] : stack frmae marker.
1418 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1420 // Check if the current stack frame is marked as the outermost JS frame.
1421 Label non_outermost_js_2;
1423 __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1424 __ B(ne, &non_outermost_js_2);
1425 __ Mov(x11, ExternalReference(js_entry_sp));
1426 __ Str(xzr, MemOperand(x11));
1427 __ Bind(&non_outermost_js_2);
1429 // Restore the top frame descriptors from the stack.
1431 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1432 __ Str(x10, MemOperand(x11));
1434 // Reset the stack to the callee saved registers.
1435 __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
1436 // Restore the callee-saved registers and return.
1437 DCHECK(jssp.Is(__ StackPointer()));
1439 __ SetStackPointer(csp);
1440 __ PopCalleeSavedRegisters();
1441 // After this point, we must not modify jssp because it is a callee-saved
1442 // register which we have just restored.
1447 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1449 Register receiver = LoadDescriptor::ReceiverRegister();
1450 // Ensure that the vector and slot registers won't be clobbered before
1451 // calling the miss handler.
1452 DCHECK(!AreAliased(x10, x11, LoadWithVectorDescriptor::VectorRegister(),
1453 LoadWithVectorDescriptor::SlotRegister()));
1455 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
1459 PropertyAccessCompiler::TailCallBuiltin(
1460 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1464 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1465 // Return address is in lr.
1468 Register receiver = LoadDescriptor::ReceiverRegister();
1469 Register index = LoadDescriptor::NameRegister();
1470 Register result = x0;
1471 Register scratch = x10;
1472 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1473 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1474 result.is(LoadWithVectorDescriptor::SlotRegister()));
1476 // StringCharAtGenerator doesn't use the result register until it's passed
1477 // the different miss possibilities. If it did, we would have a conflict
1478 // when FLAG_vector_ics is true.
1479 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1480 &miss, // When not a string.
1481 &miss, // When not a number.
1482 &miss, // When index out of range.
1483 STRING_INDEX_IS_ARRAY_INDEX,
1484 RECEIVER_IS_STRING);
1485 char_at_generator.GenerateFast(masm);
1488 StubRuntimeCallHelper call_helper;
1489 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1492 PropertyAccessCompiler::TailCallBuiltin(
1493 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1497 void InstanceofStub::Generate(MacroAssembler* masm) {
1499 // jssp[0]: function.
1502 // Returns result in x0. Zero indicates instanceof, smi 1 indicates not
1505 Register result = x0;
1506 Register function = right();
1507 Register object = left();
1508 Register scratch1 = x6;
1509 Register scratch2 = x7;
1510 Register res_true = x8;
1511 Register res_false = x9;
1512 // Only used if there was an inline map check site. (See
1513 // LCodeGen::DoInstanceOfKnownGlobal().)
1514 Register map_check_site = x4;
1515 // Delta for the instructions generated between the inline map check and the
1516 // instruction setting the result.
1517 const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
1519 Label not_js_object, slow;
1521 if (!HasArgsInRegisters()) {
1522 __ Pop(function, object);
1525 if (ReturnTrueFalseObject()) {
1526 __ LoadTrueFalseRoots(res_true, res_false);
1528 // This is counter-intuitive, but correct.
1529 __ Mov(res_true, Smi::FromInt(0));
1530 __ Mov(res_false, Smi::FromInt(1));
1533 // Check that the left hand side is a JS object and load its map as a side
1536 __ JumpIfSmi(object, ¬_js_object);
1537 __ IsObjectJSObjectType(object, map, scratch2, ¬_js_object);
1539 // If there is a call site cache, don't look in the global cache, but do the
1540 // real lookup and update the call site cache.
1541 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1543 __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
1544 __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
1545 __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
1550 // Get the prototype of the function.
1551 Register prototype = x13;
1552 __ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
1553 MacroAssembler::kMissOnBoundFunction);
1555 // Check that the function prototype is a JS object.
1556 __ JumpIfSmi(prototype, &slow);
1557 __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
1559 // Update the global instanceof or call site inlined cache with the current
1560 // map and function. The cached answer will be set when it is known below.
1561 if (HasCallSiteInlineCheck()) {
1562 // Patch the (relocated) inlined map check.
1563 __ GetRelocatedValueLocation(map_check_site, scratch1);
1564 // We have a cell, so need another level of dereferencing.
1565 __ Ldr(scratch1, MemOperand(scratch1));
1566 __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
1569 // |scratch1| points at the beginning of the cell. Calculate the
1570 // field containing the map.
1571 __ Add(function, scratch1, Operand(Cell::kValueOffset - 1));
1572 __ RecordWriteField(scratch1, Cell::kValueOffset, x14, function,
1573 kLRHasNotBeenSaved, kDontSaveFPRegs,
1574 OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1576 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1577 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1580 Label return_true, return_result;
1581 Register smi_value = scratch1;
1583 // Loop through the prototype chain looking for the function prototype.
1584 Register chain_map = x1;
1585 Register chain_prototype = x14;
1586 Register null_value = x15;
1588 __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
1589 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1590 // Speculatively set a result.
1591 __ Mov(result, res_false);
1592 if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1593 // Value to store in the cache cannot be an object.
1594 __ Mov(smi_value, Smi::FromInt(1));
1599 // If the chain prototype is the object prototype, return true.
1600 __ Cmp(chain_prototype, prototype);
1601 __ B(eq, &return_true);
1603 // If the chain prototype is null, we've reached the end of the chain, so
1605 __ Cmp(chain_prototype, null_value);
1606 __ B(eq, &return_result);
1608 // Otherwise, load the next prototype in the chain, and loop.
1609 __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
1610 __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
1614 // Return sequence when no arguments are on the stack.
1615 // We cannot fall through to here.
1616 __ Bind(&return_true);
1617 __ Mov(result, res_true);
1618 if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1619 // Value to store in the cache cannot be an object.
1620 __ Mov(smi_value, Smi::FromInt(0));
1622 __ Bind(&return_result);
1623 if (HasCallSiteInlineCheck()) {
1624 DCHECK(ReturnTrueFalseObject());
1625 __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
1626 __ GetRelocatedValueLocation(map_check_site, scratch2);
1627 __ Str(result, MemOperand(scratch2));
1629 Register cached_value = ReturnTrueFalseObject() ? smi_value : result;
1630 __ StoreRoot(cached_value, Heap::kInstanceofCacheAnswerRootIndex);
1634 Label object_not_null, object_not_null_or_smi;
1636 __ Bind(¬_js_object);
1637 Register object_type = x14;
1638 // x0 result result return register (uninit)
1639 // x10 function pointer to function
1640 // x11 object pointer to object
1641 // x14 object_type type of object (uninit)
1643 // Before null, smi and string checks, check that the rhs is a function.
1644 // For a non-function rhs, an exception must be thrown.
1645 __ JumpIfSmi(function, &slow);
1646 __ JumpIfNotObjectType(
1647 function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
1649 __ Mov(result, res_false);
1651 // Null is not instance of anything.
1652 __ Cmp(object, Operand(isolate()->factory()->null_value()));
1653 __ B(ne, &object_not_null);
1656 __ Bind(&object_not_null);
1657 // Smi values are not instances of anything.
1658 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1661 __ Bind(&object_not_null_or_smi);
1662 // String values are not instances of anything.
1663 __ IsObjectJSStringType(object, scratch2, &slow);
1666 // Slow-case. Tail call builtin.
1669 FrameScope scope(masm, StackFrame::INTERNAL);
1670 // Arguments have either been passed into registers or have been previously
1671 // popped. We need to push them before calling builtin.
1672 __ Push(object, function);
1673 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1675 if (ReturnTrueFalseObject()) {
1676 // Reload true/false because they were clobbered in the builtin call.
1677 __ LoadTrueFalseRoots(res_true, res_false);
1679 __ Csel(result, res_true, res_false, eq);
1685 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1686 CHECK(!has_new_target());
1687 Register arg_count = ArgumentsAccessReadDescriptor::parameter_count();
1688 Register key = ArgumentsAccessReadDescriptor::index();
1689 DCHECK(arg_count.is(x0));
1692 // The displacement is the offset of the last parameter (if any) relative
1693 // to the frame pointer.
1694 static const int kDisplacement =
1695 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1697 // Check that the key is a smi.
1699 __ JumpIfNotSmi(key, &slow);
1701 // Check if the calling frame is an arguments adaptor frame.
1702 Register local_fp = x11;
1703 Register caller_fp = x11;
1704 Register caller_ctx = x12;
1706 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1707 __ Ldr(caller_ctx, MemOperand(caller_fp,
1708 StandardFrameConstants::kContextOffset));
1709 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1710 __ Csel(local_fp, fp, caller_fp, ne);
1711 __ B(ne, &skip_adaptor);
1713 // Load the actual arguments limit found in the arguments adaptor frame.
1714 __ Ldr(arg_count, MemOperand(caller_fp,
1715 ArgumentsAdaptorFrameConstants::kLengthOffset));
1716 __ Bind(&skip_adaptor);
1718 // Check index against formal parameters count limit. Use unsigned comparison
1719 // to get negative check for free: branch if key < 0 or key >= arg_count.
1720 __ Cmp(key, arg_count);
1723 // Read the argument from the stack and return it.
1724 __ Sub(x10, arg_count, key);
1725 __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
1726 __ Ldr(x0, MemOperand(x10, kDisplacement));
1729 // Slow case: handle non-smi or out-of-bounds access to arguments by calling
1730 // the runtime system.
1733 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1737 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1738 // Stack layout on entry.
1739 // jssp[0]: number of parameters (tagged)
1740 // jssp[8]: address of receiver argument
1741 // jssp[16]: function
1743 CHECK(!has_new_target());
1745 // Check if the calling frame is an arguments adaptor frame.
1747 Register caller_fp = x10;
1748 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1749 // Load and untag the context.
1750 __ Ldr(w11, UntagSmiMemOperand(caller_fp,
1751 StandardFrameConstants::kContextOffset));
1752 __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
1755 // Patch the arguments.length and parameters pointer in the current frame.
1756 __ Ldr(x11, MemOperand(caller_fp,
1757 ArgumentsAdaptorFrameConstants::kLengthOffset));
1758 __ Poke(x11, 0 * kXRegSize);
1759 __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
1760 __ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
1761 __ Poke(x10, 1 * kXRegSize);
1764 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1768 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1769 // Stack layout on entry.
1770 // jssp[0]: number of parameters (tagged)
1771 // jssp[8]: address of receiver argument
1772 // jssp[16]: function
1774 // Returns pointer to result object in x0.
1776 CHECK(!has_new_target());
1778 // Note: arg_count_smi is an alias of param_count_smi.
1779 Register arg_count_smi = x3;
1780 Register param_count_smi = x3;
1781 Register param_count = x7;
1782 Register recv_arg = x14;
1783 Register function = x4;
1784 __ Pop(param_count_smi, recv_arg, function);
1785 __ SmiUntag(param_count, param_count_smi);
1787 // Check if the calling frame is an arguments adaptor frame.
1788 Register caller_fp = x11;
1789 Register caller_ctx = x12;
1791 Label adaptor_frame, try_allocate;
1792 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1793 __ Ldr(caller_ctx, MemOperand(caller_fp,
1794 StandardFrameConstants::kContextOffset));
1795 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1796 __ B(eq, &adaptor_frame);
1798 // No adaptor, parameter count = argument count.
1800 // x1 mapped_params number of mapped params, min(params, args) (uninit)
1801 // x2 arg_count number of function arguments (uninit)
1802 // x3 arg_count_smi number of function arguments (smi)
1803 // x4 function function pointer
1804 // x7 param_count number of function parameters
1805 // x11 caller_fp caller's frame pointer
1806 // x14 recv_arg pointer to receiver arguments
1808 Register arg_count = x2;
1809 __ Mov(arg_count, param_count);
1810 __ B(&try_allocate);
1812 // We have an adaptor frame. Patch the parameters pointer.
1813 __ Bind(&adaptor_frame);
1814 __ Ldr(arg_count_smi,
1815 MemOperand(caller_fp,
1816 ArgumentsAdaptorFrameConstants::kLengthOffset));
1817 __ SmiUntag(arg_count, arg_count_smi);
1818 __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
1819 __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
1821 // Compute the mapped parameter count = min(param_count, arg_count)
1822 Register mapped_params = x1;
1823 __ Cmp(param_count, arg_count);
1824 __ Csel(mapped_params, param_count, arg_count, lt);
1826 __ Bind(&try_allocate);
1828 // x0 alloc_obj pointer to allocated objects: param map, backing
1829 // store, arguments (uninit)
1830 // x1 mapped_params number of mapped parameters, min(params, args)
1831 // x2 arg_count number of function arguments
1832 // x3 arg_count_smi number of function arguments (smi)
1833 // x4 function function pointer
1834 // x7 param_count number of function parameters
1835 // x10 size size of objects to allocate (uninit)
1836 // x14 recv_arg pointer to receiver arguments
1838 // Compute the size of backing store, parameter map, and arguments object.
1839 // 1. Parameter map, has two extra words containing context and backing
1841 const int kParameterMapHeaderSize =
1842 FixedArray::kHeaderSize + 2 * kPointerSize;
1844 // Calculate the parameter map size, assuming it exists.
1845 Register size = x10;
1846 __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
1847 __ Add(size, size, kParameterMapHeaderSize);
1849 // If there are no mapped parameters, set the running size total to zero.
1850 // Otherwise, use the parameter map size calculated earlier.
1851 __ Cmp(mapped_params, 0);
1852 __ CzeroX(size, eq);
1854 // 2. Add the size of the backing store and arguments object.
1855 __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
1857 FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
1859 // Do the allocation of all three objects in one go. Assign this to x0, as it
1860 // will be returned to the caller.
1861 Register alloc_obj = x0;
1862 __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
1864 // Get the arguments boilerplate from the current (global) context.
1866 // x0 alloc_obj pointer to allocated objects (param map, backing
1867 // store, arguments)
1868 // x1 mapped_params number of mapped parameters, min(params, args)
1869 // x2 arg_count number of function arguments
1870 // x3 arg_count_smi number of function arguments (smi)
1871 // x4 function function pointer
1872 // x7 param_count number of function parameters
1873 // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
1874 // x14 recv_arg pointer to receiver arguments
1876 Register global_object = x10;
1877 Register global_ctx = x10;
1878 Register sloppy_args_map = x11;
1879 Register aliased_args_map = x10;
1880 __ Ldr(global_object, GlobalObjectMemOperand());
1881 __ Ldr(global_ctx, FieldMemOperand(global_object,
1882 GlobalObject::kNativeContextOffset));
1884 __ Ldr(sloppy_args_map,
1885 ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
1886 __ Ldr(aliased_args_map,
1887 ContextMemOperand(global_ctx, Context::ALIASED_ARGUMENTS_MAP_INDEX));
1888 __ Cmp(mapped_params, 0);
1889 __ CmovX(sloppy_args_map, aliased_args_map, ne);
1891 // Copy the JS object part.
1892 __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
1893 __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
1894 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
1895 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1897 // Set up the callee in-object property.
1898 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1899 const int kCalleeOffset = JSObject::kHeaderSize +
1900 Heap::kArgumentsCalleeIndex * kPointerSize;
1901 __ AssertNotSmi(function);
1902 __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
1904 // Use the length and set that as an in-object property.
1905 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1906 const int kLengthOffset = JSObject::kHeaderSize +
1907 Heap::kArgumentsLengthIndex * kPointerSize;
1908 __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
1910 // Set up the elements pointer in the allocated arguments object.
1911 // If we allocated a parameter map, "elements" will point there, otherwise
1912 // it will point to the backing store.
1914 // x0 alloc_obj pointer to allocated objects (param map, backing
1915 // store, arguments)
1916 // x1 mapped_params number of mapped parameters, min(params, args)
1917 // x2 arg_count number of function arguments
1918 // x3 arg_count_smi number of function arguments (smi)
1919 // x4 function function pointer
1920 // x5 elements pointer to parameter map or backing store (uninit)
1921 // x6 backing_store pointer to backing store (uninit)
1922 // x7 param_count number of function parameters
1923 // x14 recv_arg pointer to receiver arguments
1925 Register elements = x5;
1926 __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
1927 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1929 // Initialize parameter map. If there are no mapped arguments, we're done.
1930 Label skip_parameter_map;
1931 __ Cmp(mapped_params, 0);
1932 // Set up backing store address, because it is needed later for filling in
1933 // the unmapped arguments.
1934 Register backing_store = x6;
1935 __ CmovX(backing_store, elements, eq);
1936 __ B(eq, &skip_parameter_map);
1938 __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
1939 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
1940 __ Add(x10, mapped_params, 2);
1942 __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
1943 __ Str(cp, FieldMemOperand(elements,
1944 FixedArray::kHeaderSize + 0 * kPointerSize));
1945 __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
1946 __ Add(x10, x10, kParameterMapHeaderSize);
1947 __ Str(x10, FieldMemOperand(elements,
1948 FixedArray::kHeaderSize + 1 * kPointerSize));
1950 // Copy the parameter slots and the holes in the arguments.
1951 // We need to fill in mapped_parameter_count slots. Then index the context,
1952 // where parameters are stored in reverse order, at:
1954 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
1956 // The mapped parameter thus needs to get indices:
1958 // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
1959 // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
1961 // We loop from right to left.
1963 // x0 alloc_obj pointer to allocated objects (param map, backing
1964 // store, arguments)
1965 // x1 mapped_params number of mapped parameters, min(params, args)
1966 // x2 arg_count number of function arguments
1967 // x3 arg_count_smi number of function arguments (smi)
1968 // x4 function function pointer
1969 // x5 elements pointer to parameter map or backing store (uninit)
1970 // x6 backing_store pointer to backing store (uninit)
1971 // x7 param_count number of function parameters
1972 // x11 loop_count parameter loop counter (uninit)
1973 // x12 index parameter index (smi, uninit)
1974 // x13 the_hole hole value (uninit)
1975 // x14 recv_arg pointer to receiver arguments
1977 Register loop_count = x11;
1978 Register index = x12;
1979 Register the_hole = x13;
1980 Label parameters_loop, parameters_test;
1981 __ Mov(loop_count, mapped_params);
1982 __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
1983 __ Sub(index, index, mapped_params);
1985 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
1986 __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
1987 __ Add(backing_store, backing_store, kParameterMapHeaderSize);
1989 __ B(¶meters_test);
1991 __ Bind(¶meters_loop);
1992 __ Sub(loop_count, loop_count, 1);
1993 __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
1994 __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
1995 __ Str(index, MemOperand(elements, x10));
1996 __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
1997 __ Str(the_hole, MemOperand(backing_store, x10));
1998 __ Add(index, index, Smi::FromInt(1));
1999 __ Bind(¶meters_test);
2000 __ Cbnz(loop_count, ¶meters_loop);
2002 __ Bind(&skip_parameter_map);
2003 // Copy arguments header and remaining slots (if there are any.)
2004 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
2005 __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
2006 __ Str(arg_count_smi, FieldMemOperand(backing_store,
2007 FixedArray::kLengthOffset));
2009 // x0 alloc_obj pointer to allocated objects (param map, backing
2010 // store, arguments)
2011 // x1 mapped_params number of mapped parameters, min(params, args)
2012 // x2 arg_count number of function arguments
2013 // x4 function function pointer
2014 // x3 arg_count_smi number of function arguments (smi)
2015 // x6 backing_store pointer to backing store (uninit)
2016 // x14 recv_arg pointer to receiver arguments
2018 Label arguments_loop, arguments_test;
2019 __ Mov(x10, mapped_params);
2020 __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
2021 __ B(&arguments_test);
2023 __ Bind(&arguments_loop);
2024 __ Sub(recv_arg, recv_arg, kPointerSize);
2025 __ Ldr(x11, MemOperand(recv_arg));
2026 __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
2027 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
2028 __ Add(x10, x10, 1);
2030 __ Bind(&arguments_test);
2031 __ Cmp(x10, arg_count);
2032 __ B(lt, &arguments_loop);
2036 // Do the runtime call to allocate the arguments object.
2038 __ Push(function, recv_arg, arg_count_smi);
2039 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
2043 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
2044 // Return address is in lr.
2047 Register receiver = LoadDescriptor::ReceiverRegister();
2048 Register key = LoadDescriptor::NameRegister();
2050 // Check that the key is an array index, that is Uint32.
2051 __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
2053 // Everything is fine, call runtime.
2054 __ Push(receiver, key);
2055 __ TailCallExternalReference(
2056 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
2061 PropertyAccessCompiler::TailCallBuiltin(
2062 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
2066 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
2067 // Stack layout on entry.
2068 // jssp[0]: number of parameters (tagged)
2069 // jssp[8]: address of receiver argument
2070 // jssp[16]: function
2072 // Returns pointer to result object in x0.
2074 // Get the stub arguments from the frame, and make an untagged copy of the
2076 Register param_count_smi = x1;
2077 Register params = x2;
2078 Register function = x3;
2079 Register param_count = x13;
2080 __ Pop(param_count_smi, params, function);
2081 __ SmiUntag(param_count, param_count_smi);
2083 // Test if arguments adaptor needed.
2084 Register caller_fp = x11;
2085 Register caller_ctx = x12;
2086 Label try_allocate, runtime;
2087 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2088 __ Ldr(caller_ctx, MemOperand(caller_fp,
2089 StandardFrameConstants::kContextOffset));
2090 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2091 __ B(ne, &try_allocate);
2093 // x1 param_count_smi number of parameters passed to function (smi)
2094 // x2 params pointer to parameters
2095 // x3 function function pointer
2096 // x11 caller_fp caller's frame pointer
2097 // x13 param_count number of parameters passed to function
2099 // Patch the argument length and parameters pointer.
2100 __ Ldr(param_count_smi,
2101 MemOperand(caller_fp,
2102 ArgumentsAdaptorFrameConstants::kLengthOffset));
2103 __ SmiUntag(param_count, param_count_smi);
2104 if (has_new_target()) {
2105 __ Cmp(param_count, Operand(0));
2106 Label skip_decrement;
2107 __ B(eq, &skip_decrement);
2108 // Skip new.target: it is not a part of arguments.
2109 __ Sub(param_count, param_count, Operand(1));
2110 __ SmiTag(param_count_smi, param_count);
2111 __ Bind(&skip_decrement);
2113 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2114 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2116 // Try the new space allocation. Start out with computing the size of the
2117 // arguments object and the elements array in words.
2118 Register size = x10;
2119 __ Bind(&try_allocate);
2120 __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
2121 __ Cmp(param_count, 0);
2122 __ CzeroX(size, eq);
2123 __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
2125 // Do the allocation of both objects in one go. Assign this to x0, as it will
2126 // be returned to the caller.
2127 Register alloc_obj = x0;
2128 __ Allocate(size, alloc_obj, x11, x12, &runtime,
2129 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2131 // Get the arguments boilerplate from the current (native) context.
2132 Register global_object = x10;
2133 Register global_ctx = x10;
2134 Register strict_args_map = x4;
2135 __ Ldr(global_object, GlobalObjectMemOperand());
2136 __ Ldr(global_ctx, FieldMemOperand(global_object,
2137 GlobalObject::kNativeContextOffset));
2138 __ Ldr(strict_args_map,
2139 ContextMemOperand(global_ctx, Context::STRICT_ARGUMENTS_MAP_INDEX));
2141 // x0 alloc_obj pointer to allocated objects: parameter array and
2143 // x1 param_count_smi number of parameters passed to function (smi)
2144 // x2 params pointer to parameters
2145 // x3 function function pointer
2146 // x4 strict_args_map offset to arguments map
2147 // x13 param_count number of parameters passed to function
2148 __ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
2149 __ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
2150 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
2151 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2153 // Set the smi-tagged length as an in-object property.
2154 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2155 const int kLengthOffset = JSObject::kHeaderSize +
2156 Heap::kArgumentsLengthIndex * kPointerSize;
2157 __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
2159 // If there are no actual arguments, we're done.
2161 __ Cbz(param_count, &done);
2163 // Set up the elements pointer in the allocated arguments object and
2164 // initialize the header in the elements fixed array.
2165 Register elements = x5;
2166 __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
2167 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2168 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
2169 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
2170 __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
2172 // x0 alloc_obj pointer to allocated objects: parameter array and
2174 // x1 param_count_smi number of parameters passed to function (smi)
2175 // x2 params pointer to parameters
2176 // x3 function function pointer
2177 // x4 array pointer to array slot (uninit)
2178 // x5 elements pointer to elements array of alloc_obj
2179 // x13 param_count number of parameters passed to function
2181 // Copy the fixed array slots.
2183 Register array = x4;
2184 // Set up pointer to first array slot.
2185 __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
2188 // Pre-decrement the parameters pointer by kPointerSize on each iteration.
2189 // Pre-decrement in order to skip receiver.
2190 __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
2191 // Post-increment elements by kPointerSize on each iteration.
2192 __ Str(x10, MemOperand(array, kPointerSize, PostIndex));
2193 __ Sub(param_count, param_count, 1);
2194 __ Cbnz(param_count, &loop);
2196 // Return from stub.
2200 // Do the runtime call to allocate the arguments object.
2202 __ Push(function, params, param_count_smi);
2203 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2207 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
2208 // Stack layout on entry.
2209 // jssp[0]: language mode (tagged)
2210 // jssp[8]: index of rest parameter (tagged)
2211 // jssp[16]: number of parameters (tagged)
2212 // jssp[24]: address of receiver argument
2214 // Returns pointer to result object in x0.
2216 // Get the stub arguments from the frame, and make an untagged copy of the
2218 Register language_mode_smi = x1;
2219 Register rest_index_smi = x2;
2220 Register param_count_smi = x3;
2221 Register params = x4;
2222 Register param_count = x13;
2223 __ Pop(language_mode_smi, rest_index_smi, param_count_smi, params);
2224 __ SmiUntag(param_count, param_count_smi);
2226 // Test if arguments adaptor needed.
2227 Register caller_fp = x11;
2228 Register caller_ctx = x12;
2230 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2231 __ Ldr(caller_ctx, MemOperand(caller_fp,
2232 StandardFrameConstants::kContextOffset));
2233 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2236 // x1 language_mode_smi language mode
2237 // x2 rest_index_smi index of rest parameter
2238 // x3 param_count_smi number of parameters passed to function (smi)
2239 // x4 params pointer to parameters
2240 // x11 caller_fp caller's frame pointer
2241 // x13 param_count number of parameters passed to function
2243 // Patch the argument length and parameters pointer.
2244 __ Ldr(param_count_smi,
2245 MemOperand(caller_fp,
2246 ArgumentsAdaptorFrameConstants::kLengthOffset));
2247 __ SmiUntag(param_count, param_count_smi);
2248 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2249 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2252 __ Push(params, param_count_smi, rest_index_smi, language_mode_smi);
2253 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
2257 void RegExpExecStub::Generate(MacroAssembler* masm) {
2258 #ifdef V8_INTERPRETED_REGEXP
2259 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2260 #else // V8_INTERPRETED_REGEXP
2262 // Stack frame on entry.
2263 // jssp[0]: last_match_info (expected JSArray)
2264 // jssp[8]: previous index
2265 // jssp[16]: subject string
2266 // jssp[24]: JSRegExp object
2269 // Use of registers for this function.
2271 // Variable registers:
2272 // x10-x13 used as scratch registers
2273 // w0 string_type type of subject string
2274 // x2 jsstring_length subject string length
2275 // x3 jsregexp_object JSRegExp object
2276 // w4 string_encoding Latin1 or UC16
2277 // w5 sliced_string_offset if the string is a SlicedString
2278 // offset to the underlying string
2279 // w6 string_representation groups attributes of the string:
2281 // - type of the string
2282 // - is a short external string
2283 Register string_type = w0;
2284 Register jsstring_length = x2;
2285 Register jsregexp_object = x3;
2286 Register string_encoding = w4;
2287 Register sliced_string_offset = w5;
2288 Register string_representation = w6;
2290 // These are in callee save registers and will be preserved by the call
2291 // to the native RegExp code, as this code is called using the normal
2292 // C calling convention. When calling directly from generated code the
2293 // native RegExp code will not do a GC and therefore the content of
2294 // these registers are safe to use after the call.
2296 // x19 subject subject string
2297 // x20 regexp_data RegExp data (FixedArray)
2298 // x21 last_match_info_elements info relative to the last match
2300 // x22 code_object generated regexp code
2301 Register subject = x19;
2302 Register regexp_data = x20;
2303 Register last_match_info_elements = x21;
2304 Register code_object = x22;
2306 // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
2307 CPURegList used_callee_saved_registers(subject,
2309 last_match_info_elements,
2311 __ PushCPURegList(used_callee_saved_registers);
2318 // jssp[32]: last_match_info (JSArray)
2319 // jssp[40]: previous index
2320 // jssp[48]: subject string
2321 // jssp[56]: JSRegExp object
2323 const int kLastMatchInfoOffset = 4 * kPointerSize;
2324 const int kPreviousIndexOffset = 5 * kPointerSize;
2325 const int kSubjectOffset = 6 * kPointerSize;
2326 const int kJSRegExpOffset = 7 * kPointerSize;
2328 // Ensure that a RegExp stack is allocated.
2329 ExternalReference address_of_regexp_stack_memory_address =
2330 ExternalReference::address_of_regexp_stack_memory_address(isolate());
2331 ExternalReference address_of_regexp_stack_memory_size =
2332 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2333 __ Mov(x10, address_of_regexp_stack_memory_size);
2334 __ Ldr(x10, MemOperand(x10));
2335 __ Cbz(x10, &runtime);
2337 // Check that the first argument is a JSRegExp object.
2338 DCHECK(jssp.Is(__ StackPointer()));
2339 __ Peek(jsregexp_object, kJSRegExpOffset);
2340 __ JumpIfSmi(jsregexp_object, &runtime);
2341 __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
2343 // Check that the RegExp has been compiled (data contains a fixed array).
2344 __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
2345 if (FLAG_debug_code) {
2346 STATIC_ASSERT(kSmiTag == 0);
2347 __ Tst(regexp_data, kSmiTagMask);
2348 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2349 __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
2350 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2353 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2354 __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2355 __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
2358 // Check that the number of captures fit in the static offsets vector buffer.
2359 // We have always at least one capture for the whole match, plus additional
2360 // ones due to capturing parentheses. A capture takes 2 registers.
2361 // The number of capture registers then is (number_of_captures + 1) * 2.
2363 UntagSmiFieldMemOperand(regexp_data,
2364 JSRegExp::kIrregexpCaptureCountOffset));
2365 // Check (number_of_captures + 1) * 2 <= offsets vector size
2366 // number_of_captures * 2 <= offsets vector size - 2
2367 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2368 __ Add(x10, x10, x10);
2369 __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
2372 // Initialize offset for possibly sliced string.
2373 __ Mov(sliced_string_offset, 0);
2375 DCHECK(jssp.Is(__ StackPointer()));
2376 __ Peek(subject, kSubjectOffset);
2377 __ JumpIfSmi(subject, &runtime);
2379 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2380 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2382 __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
2384 // Handle subject string according to its encoding and representation:
2385 // (1) Sequential string? If yes, go to (5).
2386 // (2) Anything but sequential or cons? If yes, go to (6).
2387 // (3) Cons string. If the string is flat, replace subject with first string.
2388 // Otherwise bailout.
2389 // (4) Is subject external? If yes, go to (7).
2390 // (5) Sequential string. Load regexp code according to encoding.
2394 // Deferred code at the end of the stub:
2395 // (6) Not a long external string? If yes, go to (8).
2396 // (7) External string. Make it, offset-wise, look like a sequential string.
2398 // (8) Short external string or not a string? If yes, bail out to runtime.
2399 // (9) Sliced string. Replace subject with parent. Go to (4).
2401 Label check_underlying; // (4)
2402 Label seq_string; // (5)
2403 Label not_seq_nor_cons; // (6)
2404 Label external_string; // (7)
2405 Label not_long_external; // (8)
2407 // (1) Sequential string? If yes, go to (5).
2408 __ And(string_representation,
2411 kStringRepresentationMask |
2412 kShortExternalStringMask);
2413 // We depend on the fact that Strings of type
2414 // SeqString and not ShortExternalString are defined
2415 // by the following pattern:
2416 // string_type: 0XX0 XX00
2419 // | | is a SeqString
2420 // | is not a short external String
2422 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2423 STATIC_ASSERT(kShortExternalStringTag != 0);
2424 __ Cbz(string_representation, &seq_string); // Go to (5).
2426 // (2) Anything but sequential or cons? If yes, go to (6).
2427 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2428 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2429 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2430 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2431 __ Cmp(string_representation, kExternalStringTag);
2432 __ B(ge, ¬_seq_nor_cons); // Go to (6).
2434 // (3) Cons string. Check that it's flat.
2435 __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
2436 __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
2437 // Replace subject with first string.
2438 __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2440 // (4) Is subject external? If yes, go to (7).
2441 __ Bind(&check_underlying);
2442 // Reload the string type.
2443 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2444 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2445 STATIC_ASSERT(kSeqStringTag == 0);
2446 // The underlying external string is never a short external string.
2447 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2448 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2449 __ TestAndBranchIfAnySet(string_type.X(),
2450 kStringRepresentationMask,
2451 &external_string); // Go to (7).
2453 // (5) Sequential string. Load regexp code according to encoding.
2454 __ Bind(&seq_string);
2456 // Check that the third argument is a positive smi less than the subject
2457 // string length. A negative value will be greater (unsigned comparison).
2458 DCHECK(jssp.Is(__ StackPointer()));
2459 __ Peek(x10, kPreviousIndexOffset);
2460 __ JumpIfNotSmi(x10, &runtime);
2461 __ Cmp(jsstring_length, x10);
2464 // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
2465 // before entering the exit frame.
2466 __ SmiUntag(x1, x10);
2468 // The third bit determines the string encoding in string_type.
2469 STATIC_ASSERT(kOneByteStringTag == 0x04);
2470 STATIC_ASSERT(kTwoByteStringTag == 0x00);
2471 STATIC_ASSERT(kStringEncodingMask == 0x04);
2473 // Find the code object based on the assumptions above.
2474 // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
2475 // of kPointerSize to reach the latter.
2476 DCHECK_EQ(JSRegExp::kDataOneByteCodeOffset + kPointerSize,
2477 JSRegExp::kDataUC16CodeOffset);
2478 __ Mov(x10, kPointerSize);
2479 // We will need the encoding later: Latin1 = 0x04
2481 __ Ands(string_encoding, string_type, kStringEncodingMask);
2483 __ Add(x10, regexp_data, x10);
2484 __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
2486 // (E) Carry on. String handling is done.
2488 // Check that the irregexp code has been generated for the actual string
2489 // encoding. If it has, the field contains a code object otherwise it contains
2490 // a smi (code flushing support).
2491 __ JumpIfSmi(code_object, &runtime);
2493 // All checks done. Now push arguments for native regexp code.
2494 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
2498 // Isolates: note we add an additional parameter here (isolate pointer).
2499 __ EnterExitFrame(false, x10, 1);
2500 DCHECK(csp.Is(__ StackPointer()));
2502 // We have 9 arguments to pass to the regexp code, therefore we have to pass
2503 // one on the stack and the rest as registers.
2505 // Note that the placement of the argument on the stack isn't standard
2507 // csp[0]: Space for the return address placed by DirectCEntryStub.
2508 // csp[8]: Argument 9, the current isolate address.
2510 __ Mov(x10, ExternalReference::isolate_address(isolate()));
2511 __ Poke(x10, kPointerSize);
2513 Register length = w11;
2514 Register previous_index_in_bytes = w12;
2515 Register start = x13;
2517 // Load start of the subject string.
2518 __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
2519 // Load the length from the original subject string from the previous stack
2520 // frame. Therefore we have to use fp, which points exactly to two pointer
2521 // sizes below the previous sp. (Because creating a new stack frame pushes
2522 // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
2523 __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2524 __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
2526 // Handle UC16 encoding, two bytes make one character.
2527 // string_encoding: if Latin1: 0x04
2529 STATIC_ASSERT(kStringEncodingMask == 0x04);
2530 __ Ubfx(string_encoding, string_encoding, 2, 1);
2531 __ Eor(string_encoding, string_encoding, 1);
2532 // string_encoding: if Latin1: 0
2535 // Convert string positions from characters to bytes.
2536 // Previous index is in x1.
2537 __ Lsl(previous_index_in_bytes, w1, string_encoding);
2538 __ Lsl(length, length, string_encoding);
2539 __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
2541 // Argument 1 (x0): Subject string.
2542 __ Mov(x0, subject);
2544 // Argument 2 (x1): Previous index, already there.
2546 // Argument 3 (x2): Get the start of input.
2547 // Start of input = start of string + previous index + substring offset
2550 __ Add(w10, previous_index_in_bytes, sliced_string_offset);
2551 __ Add(x2, start, Operand(w10, UXTW));
2554 // End of input = start of input + (length of input - previous index)
2555 __ Sub(w10, length, previous_index_in_bytes);
2556 __ Add(x3, x2, Operand(w10, UXTW));
2558 // Argument 5 (x4): static offsets vector buffer.
2559 __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
2561 // Argument 6 (x5): Set the number of capture registers to zero to force
2562 // global regexps to behave as non-global. This stub is not used for global
2566 // Argument 7 (x6): Start (high end) of backtracking stack memory area.
2567 __ Mov(x10, address_of_regexp_stack_memory_address);
2568 __ Ldr(x10, MemOperand(x10));
2569 __ Mov(x11, address_of_regexp_stack_memory_size);
2570 __ Ldr(x11, MemOperand(x11));
2571 __ Add(x6, x10, x11);
2573 // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
2576 // Locate the code entry and call it.
2577 __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
2578 DirectCEntryStub stub(isolate());
2579 stub.GenerateCall(masm, code_object);
2581 __ LeaveExitFrame(false, x10, true);
2583 // The generated regexp code returns an int32 in w0.
2584 Label failure, exception;
2585 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
2586 __ CompareAndBranch(w0,
2587 NativeRegExpMacroAssembler::EXCEPTION,
2590 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
2592 // Success: process the result from the native regexp code.
2593 Register number_of_capture_registers = x12;
2595 // Calculate number of capture registers (number_of_captures + 1) * 2
2596 // and store it in the last match info.
2598 UntagSmiFieldMemOperand(regexp_data,
2599 JSRegExp::kIrregexpCaptureCountOffset));
2600 __ Add(x10, x10, x10);
2601 __ Add(number_of_capture_registers, x10, 2);
2603 // Check that the fourth object is a JSArray object.
2604 DCHECK(jssp.Is(__ StackPointer()));
2605 __ Peek(x10, kLastMatchInfoOffset);
2606 __ JumpIfSmi(x10, &runtime);
2607 __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
2609 // Check that the JSArray is the fast case.
2610 __ Ldr(last_match_info_elements,
2611 FieldMemOperand(x10, JSArray::kElementsOffset));
2613 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2614 __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
2616 // Check that the last match info has space for the capture registers and the
2617 // additional information (overhead).
2618 // (number_of_captures + 1) * 2 + overhead <= last match info size
2619 // (number_of_captures * 2) + 2 + overhead <= last match info size
2620 // number_of_capture_registers + overhead <= last match info size
2622 UntagSmiFieldMemOperand(last_match_info_elements,
2623 FixedArray::kLengthOffset));
2624 __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
2628 // Store the capture count.
2629 __ SmiTag(x10, number_of_capture_registers);
2631 FieldMemOperand(last_match_info_elements,
2632 RegExpImpl::kLastCaptureCountOffset));
2633 // Store last subject and last input.
2635 FieldMemOperand(last_match_info_elements,
2636 RegExpImpl::kLastSubjectOffset));
2637 // Use x10 as the subject string in order to only need
2638 // one RecordWriteStub.
2639 __ Mov(x10, subject);
2640 __ RecordWriteField(last_match_info_elements,
2641 RegExpImpl::kLastSubjectOffset,
2647 FieldMemOperand(last_match_info_elements,
2648 RegExpImpl::kLastInputOffset));
2649 __ Mov(x10, subject);
2650 __ RecordWriteField(last_match_info_elements,
2651 RegExpImpl::kLastInputOffset,
2657 Register last_match_offsets = x13;
2658 Register offsets_vector_index = x14;
2659 Register current_offset = x15;
2661 // Get the static offsets vector filled by the native regexp code
2662 // and fill the last match info.
2663 ExternalReference address_of_static_offsets_vector =
2664 ExternalReference::address_of_static_offsets_vector(isolate());
2665 __ Mov(offsets_vector_index, address_of_static_offsets_vector);
2667 Label next_capture, done;
2668 // Capture register counter starts from number of capture registers and
2669 // iterates down to zero (inclusive).
2670 __ Add(last_match_offsets,
2671 last_match_info_elements,
2672 RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
2673 __ Bind(&next_capture);
2674 __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
2676 // Read two 32 bit values from the static offsets vector buffer into
2678 __ Ldr(current_offset,
2679 MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
2680 // Store the smi values in the last match info.
2681 __ SmiTag(x10, current_offset);
2682 // Clearing the 32 bottom bits gives us a Smi.
2683 STATIC_ASSERT(kSmiTag == 0);
2684 __ Bic(x11, current_offset, kSmiShiftMask);
2687 MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
2688 __ B(&next_capture);
2691 // Return last match info.
2692 __ Peek(x0, kLastMatchInfoOffset);
2693 __ PopCPURegList(used_callee_saved_registers);
2694 // Drop the 4 arguments of the stub from the stack.
2698 __ Bind(&exception);
2699 Register exception_value = x0;
2700 // A stack overflow (on the backtrack stack) may have occured
2701 // in the RegExp code but no exception has been created yet.
2702 // If there is no pending exception, handle that in the runtime system.
2703 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
2705 Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2707 __ Ldr(exception_value, MemOperand(x11));
2708 __ Cmp(x10, exception_value);
2711 // For exception, throw the exception again.
2712 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
2715 __ Mov(x0, Operand(isolate()->factory()->null_value()));
2716 __ PopCPURegList(used_callee_saved_registers);
2717 // Drop the 4 arguments of the stub from the stack.
2722 __ PopCPURegList(used_callee_saved_registers);
2723 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2725 // Deferred code for string handling.
2726 // (6) Not a long external string? If yes, go to (8).
2727 __ Bind(¬_seq_nor_cons);
2728 // Compare flags are still set.
2729 __ B(ne, ¬_long_external); // Go to (8).
2731 // (7) External string. Make it, offset-wise, look like a sequential string.
2732 __ Bind(&external_string);
2733 if (masm->emit_debug_code()) {
2734 // Assert that we do not have a cons or slice (indirect strings) here.
2735 // Sequential strings have already been ruled out.
2736 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2737 __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2738 __ Tst(x10, kIsIndirectStringMask);
2739 __ Check(eq, kExternalStringExpectedButNotFound);
2740 __ And(x10, x10, kStringRepresentationMask);
2742 __ Check(ne, kExternalStringExpectedButNotFound);
2745 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2746 // Move the pointer so that offset-wise, it looks like a sequential string.
2747 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2748 __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2749 __ B(&seq_string); // Go to (5).
2751 // (8) If this is a short external string or not a string, bail out to
2753 __ Bind(¬_long_external);
2754 STATIC_ASSERT(kShortExternalStringTag != 0);
2755 __ TestAndBranchIfAnySet(string_representation,
2756 kShortExternalStringMask | kIsNotStringMask,
2759 // (9) Sliced string. Replace subject with parent.
2760 __ Ldr(sliced_string_offset,
2761 UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
2762 __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2763 __ B(&check_underlying); // Go to (4).
2768 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub,
2769 Register argc, Register function,
2770 Register feedback_vector,
2772 FrameScope scope(masm, StackFrame::INTERNAL);
2774 // Number-of-arguments register must be smi-tagged to call out.
2776 __ Push(argc, function, feedback_vector, index);
2778 DCHECK(feedback_vector.Is(x2) && index.Is(x3));
2781 __ Pop(index, feedback_vector, function, argc);
2786 static void GenerateRecordCallTarget(MacroAssembler* masm, Register argc,
2788 Register feedback_vector, Register index,
2789 Register scratch1, Register scratch2,
2790 Register scratch3) {
2791 ASM_LOCATION("GenerateRecordCallTarget");
2792 DCHECK(!AreAliased(scratch1, scratch2, scratch3, argc, function,
2793 feedback_vector, index));
2794 // Cache the called function in a feedback vector slot. Cache states are
2795 // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
2796 // argc : number of arguments to the construct function
2797 // function : the function to call
2798 // feedback_vector : the feedback vector
2799 // index : slot in feedback vector (smi)
2800 Label initialize, done, miss, megamorphic, not_array_function;
2802 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2803 masm->isolate()->heap()->megamorphic_symbol());
2804 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2805 masm->isolate()->heap()->uninitialized_symbol());
2807 // Load the cache state.
2808 Register feedback = scratch1;
2809 Register feedback_map = scratch2;
2810 Register feedback_value = scratch3;
2811 __ Add(feedback, feedback_vector,
2812 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2813 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
2815 // A monomorphic cache hit or an already megamorphic state: invoke the
2816 // function without changing the state.
2817 // We don't know if feedback value is a WeakCell or a Symbol, but it's
2818 // harmless to read at this position in a symbol (see static asserts in
2819 // type-feedback-vector.h).
2820 Label check_allocation_site;
2821 __ Ldr(feedback_value, FieldMemOperand(feedback, WeakCell::kValueOffset));
2822 __ Cmp(function, feedback_value);
2824 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
2826 __ Ldr(feedback_map, FieldMemOperand(feedback, HeapObject::kMapOffset));
2827 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
2828 __ B(ne, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
2830 // If the weak cell is cleared, we have a new chance to become monomorphic.
2831 __ JumpIfSmi(feedback_value, &initialize);
2834 if (!FLAG_pretenuring_call_new) {
2835 __ bind(&check_allocation_site);
2836 // If we came here, we need to see if we are the array function.
2837 // If we didn't have a matching function, and we didn't find the megamorph
2838 // sentinel, then we have in the slot either some other function or an
2840 __ JumpIfNotRoot(feedback_map, Heap::kAllocationSiteMapRootIndex, &miss);
2842 // Make sure the function is the Array() function
2843 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2844 __ Cmp(function, scratch1);
2845 __ B(ne, &megamorphic);
2851 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2853 __ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize);
2854 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2855 // write-barrier is needed.
2856 __ Bind(&megamorphic);
2857 __ Add(scratch1, feedback_vector,
2858 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2859 __ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex);
2860 __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2863 // An uninitialized cache is patched with the function or sentinel to
2864 // indicate the ElementsKind if function is the Array constructor.
2865 __ Bind(&initialize);
2867 if (!FLAG_pretenuring_call_new) {
2868 // Make sure the function is the Array() function
2869 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2870 __ Cmp(function, scratch1);
2871 __ B(ne, ¬_array_function);
2873 // The target function is the Array constructor,
2874 // Create an AllocationSite if we don't already have it, store it in the
2876 CreateAllocationSiteStub create_stub(masm->isolate());
2877 CallStubInRecordCallTarget(masm, &create_stub, argc, function,
2878 feedback_vector, index);
2881 __ Bind(¬_array_function);
2884 CreateWeakCellStub create_stub(masm->isolate());
2885 CallStubInRecordCallTarget(masm, &create_stub, argc, function,
2886 feedback_vector, index);
2891 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2892 // Do not transform the receiver for strict mode functions.
2893 __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
2894 __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
2895 __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
2897 // Do not transform the receiver for native (Compilerhints already in x3).
2898 __ Tbnz(w4, SharedFunctionInfo::kNative, cont);
2902 static void EmitSlowCase(MacroAssembler* masm,
2906 Label* non_function) {
2907 // Check for function proxy.
2908 // x10 : function type.
2909 __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
2910 __ Push(function); // put proxy as additional argument
2911 __ Mov(x0, argc + 1);
2913 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
2915 Handle<Code> adaptor =
2916 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2917 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2920 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2921 // of the original receiver from the call site).
2922 __ Bind(non_function);
2923 __ Poke(function, argc * kXRegSize);
2924 __ Mov(x0, argc); // Set up the number of arguments.
2926 __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
2927 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2928 RelocInfo::CODE_TARGET);
2932 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2933 // Wrap the receiver and patch it back onto the stack.
2934 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2936 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2939 __ Poke(x0, argc * kPointerSize);
2944 static void CallFunctionNoFeedback(MacroAssembler* masm,
2945 int argc, bool needs_checks,
2946 bool call_as_method) {
2947 // x1 function the function to call
2948 Register function = x1;
2950 Label slow, non_function, wrap, cont;
2952 // TODO(jbramley): This function has a lot of unnamed registers. Name them,
2953 // and tidy things up a bit.
2956 // Check that the function is really a JavaScript function.
2957 __ JumpIfSmi(function, &non_function);
2959 // Goto slow case if we do not have a function.
2960 __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
2963 // Fast-case: Invoke the function now.
2964 // x1 function pushed function
2965 ParameterCount actual(argc);
2967 if (call_as_method) {
2969 EmitContinueIfStrictOrNative(masm, &cont);
2972 // Compute the receiver in sloppy mode.
2973 __ Peek(x3, argc * kPointerSize);
2976 __ JumpIfSmi(x3, &wrap);
2977 __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
2985 __ InvokeFunction(function,
2990 // Slow-case: Non-function called.
2992 EmitSlowCase(masm, argc, function, type, &non_function);
2995 if (call_as_method) {
2997 EmitWrapCase(masm, argc, &cont);
3002 void CallFunctionStub::Generate(MacroAssembler* masm) {
3003 ASM_LOCATION("CallFunctionStub::Generate");
3004 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
3008 void CallConstructStub::Generate(MacroAssembler* masm) {
3009 ASM_LOCATION("CallConstructStub::Generate");
3010 // x0 : number of arguments
3011 // x1 : the function to call
3012 // x2 : feedback vector
3013 // x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
3014 Register function = x1;
3015 Label slow, non_function_call;
3017 // Check that the function is not a smi.
3018 __ JumpIfSmi(function, &non_function_call);
3019 // Check that the function is a JSFunction.
3020 Register object_type = x10;
3021 __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
3024 if (RecordCallTarget()) {
3025 GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5, x11);
3027 __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
3028 if (FLAG_pretenuring_call_new) {
3029 // Put the AllocationSite from the feedback vector into x2.
3030 // By adding kPointerSize we encode that we know the AllocationSite
3031 // entry is at the feedback vector slot given by x3 + 1.
3032 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
3034 Label feedback_register_initialized;
3035 // Put the AllocationSite from the feedback vector into x2, or undefined.
3036 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
3037 __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
3038 __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
3039 &feedback_register_initialized);
3040 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
3041 __ bind(&feedback_register_initialized);
3044 __ AssertUndefinedOrAllocationSite(x2, x5);
3047 if (IsSuperConstructorCall()) {
3048 __ Mov(x4, Operand(1 * kPointerSize));
3049 __ Add(x4, x4, Operand(x0, LSL, kPointerSizeLog2));
3052 __ Mov(x3, function);
3055 // Jump to the function-specific construct stub.
3056 Register jump_reg = x4;
3057 Register shared_func_info = jump_reg;
3058 Register cons_stub = jump_reg;
3059 Register cons_stub_code = jump_reg;
3060 __ Ldr(shared_func_info,
3061 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3063 FieldMemOperand(shared_func_info,
3064 SharedFunctionInfo::kConstructStubOffset));
3065 __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
3066 __ Br(cons_stub_code);
3070 __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
3071 __ B(ne, &non_function_call);
3072 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
3075 __ Bind(&non_function_call);
3076 __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
3079 // Set expected number of arguments to zero (not changing x0).
3081 __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
3082 RelocInfo::CODE_TARGET);
3086 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
3087 __ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3088 __ Ldr(vector, FieldMemOperand(vector,
3089 JSFunction::kSharedFunctionInfoOffset));
3090 __ Ldr(vector, FieldMemOperand(vector,
3091 SharedFunctionInfo::kFeedbackVectorOffset));
3095 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
3100 Register function = x1;
3101 Register feedback_vector = x2;
3102 Register index = x3;
3103 Register scratch = x4;
3105 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch);
3106 __ Cmp(function, scratch);
3109 __ Mov(x0, Operand(arg_count()));
3111 __ Add(scratch, feedback_vector,
3112 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3113 __ Ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
3115 // Verify that scratch contains an AllocationSite
3117 __ Ldr(map, FieldMemOperand(scratch, HeapObject::kMapOffset));
3118 __ JumpIfNotRoot(map, Heap::kAllocationSiteMapRootIndex, &miss);
3120 Register allocation_site = feedback_vector;
3121 __ Mov(allocation_site, scratch);
3123 Register original_constructor = x3;
3124 __ Mov(original_constructor, function);
3125 ArrayConstructorStub stub(masm->isolate(), arg_count());
3126 __ TailCallStub(&stub);
3131 // The slow case, we need this no matter what to complete a call after a miss.
3132 CallFunctionNoFeedback(masm,
3141 void CallICStub::Generate(MacroAssembler* masm) {
3142 ASM_LOCATION("CallICStub");
3145 // x3 - slot id (Smi)
3147 const int with_types_offset =
3148 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
3149 const int generic_offset =
3150 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
3151 Label extra_checks_or_miss, slow_start;
3152 Label slow, non_function, wrap, cont;
3153 Label have_js_function;
3154 int argc = arg_count();
3155 ParameterCount actual(argc);
3157 Register function = x1;
3158 Register feedback_vector = x2;
3159 Register index = x3;
3162 // The checks. First, does x1 match the recorded monomorphic target?
3163 __ Add(x4, feedback_vector,
3164 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3165 __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
3167 // We don't know that we have a weak cell. We might have a private symbol
3168 // or an AllocationSite, but the memory is safe to examine.
3169 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
3171 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
3172 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
3173 // computed, meaning that it can't appear to be a pointer. If the low bit is
3174 // 0, then hash is computed, but the 0 bit prevents the field from appearing
3176 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
3177 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
3178 WeakCell::kValueOffset &&
3179 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
3181 __ Ldr(x5, FieldMemOperand(x4, WeakCell::kValueOffset));
3182 __ Cmp(x5, function);
3183 __ B(ne, &extra_checks_or_miss);
3185 // The compare above could have been a SMI/SMI comparison. Guard against this
3186 // convincing us that we have a monomorphic JSFunction.
3187 __ JumpIfSmi(function, &extra_checks_or_miss);
3189 __ bind(&have_js_function);
3190 if (CallAsMethod()) {
3191 EmitContinueIfStrictOrNative(masm, &cont);
3193 // Compute the receiver in sloppy mode.
3194 __ Peek(x3, argc * kPointerSize);
3196 __ JumpIfSmi(x3, &wrap);
3197 __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
3202 __ InvokeFunction(function,
3208 EmitSlowCase(masm, argc, function, type, &non_function);
3210 if (CallAsMethod()) {
3212 EmitWrapCase(masm, argc, &cont);
3215 __ bind(&extra_checks_or_miss);
3216 Label uninitialized, miss;
3218 __ JumpIfRoot(x4, Heap::kmegamorphic_symbolRootIndex, &slow_start);
3220 // The following cases attempt to handle MISS cases without going to the
3222 if (FLAG_trace_ic) {
3226 __ JumpIfRoot(x4, Heap::kuninitialized_symbolRootIndex, &miss);
3228 // We are going megamorphic. If the feedback is a JSFunction, it is fine
3229 // to handle it here. More complex cases are dealt with in the runtime.
3230 __ AssertNotSmi(x4);
3231 __ JumpIfNotObjectType(x4, x5, x5, JS_FUNCTION_TYPE, &miss);
3232 __ Add(x4, feedback_vector,
3233 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3234 __ LoadRoot(x5, Heap::kmegamorphic_symbolRootIndex);
3235 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
3236 // We have to update statistics for runtime profiling.
3237 __ Ldr(x4, FieldMemOperand(feedback_vector, with_types_offset));
3238 __ Subs(x4, x4, Operand(Smi::FromInt(1)));
3239 __ Str(x4, FieldMemOperand(feedback_vector, with_types_offset));
3240 __ Ldr(x4, FieldMemOperand(feedback_vector, generic_offset));
3241 __ Adds(x4, x4, Operand(Smi::FromInt(1)));
3242 __ Str(x4, FieldMemOperand(feedback_vector, generic_offset));
3245 __ bind(&uninitialized);
3247 // We are going monomorphic, provided we actually have a JSFunction.
3248 __ JumpIfSmi(function, &miss);
3250 // Goto miss case if we do not have a function.
3251 __ JumpIfNotObjectType(function, x5, x5, JS_FUNCTION_TYPE, &miss);
3253 // Make sure the function is not the Array() function, which requires special
3254 // behavior on MISS.
3255 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, x5);
3256 __ Cmp(function, x5);
3260 __ Ldr(x4, FieldMemOperand(feedback_vector, with_types_offset));
3261 __ Adds(x4, x4, Operand(Smi::FromInt(1)));
3262 __ Str(x4, FieldMemOperand(feedback_vector, with_types_offset));
3264 // Store the function. Use a stub since we need a frame for allocation.
3269 FrameScope scope(masm, StackFrame::INTERNAL);
3270 CreateWeakCellStub create_stub(masm->isolate());
3272 __ CallStub(&create_stub);
3276 __ B(&have_js_function);
3278 // We are here because tracing is on or we encountered a MISS case we can't
3284 __ bind(&slow_start);
3286 // Check that the function is really a JavaScript function.
3287 __ JumpIfSmi(function, &non_function);
3289 // Goto slow case if we do not have a function.
3290 __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
3291 __ B(&have_js_function);
3295 void CallICStub::GenerateMiss(MacroAssembler* masm) {
3296 ASM_LOCATION("CallICStub[Miss]");
3298 FrameScope scope(masm, StackFrame::INTERNAL);
3300 // Push the receiver and the function and feedback info.
3301 __ Push(x1, x2, x3);
3304 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
3305 : IC::kCallIC_Customization_Miss;
3307 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
3308 __ CallExternalReference(miss, 3);
3310 // Move result to edi and exit the internal frame.
3315 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3316 // If the receiver is a smi trigger the non-string case.
3317 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
3318 __ JumpIfSmi(object_, receiver_not_string_);
3320 // Fetch the instance type of the receiver into result register.
3321 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3322 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3324 // If the receiver is not a string trigger the non-string case.
3325 __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
3328 // If the index is non-smi trigger the non-smi case.
3329 __ JumpIfNotSmi(index_, &index_not_smi_);
3331 __ Bind(&got_smi_index_);
3332 // Check for index out of range.
3333 __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
3334 __ Cmp(result_, Operand::UntagSmi(index_));
3335 __ B(ls, index_out_of_range_);
3337 __ SmiUntag(index_);
3339 StringCharLoadGenerator::Generate(masm,
3349 void StringCharCodeAtGenerator::GenerateSlow(
3350 MacroAssembler* masm, EmbedMode embed_mode,
3351 const RuntimeCallHelper& call_helper) {
3352 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3354 __ Bind(&index_not_smi_);
3355 // If index is a heap number, try converting it to an integer.
3356 __ JumpIfNotHeapNumber(index_, index_not_number_);
3357 call_helper.BeforeCall(masm);
3358 if (embed_mode == PART_OF_IC_HANDLER) {
3359 __ Push(LoadWithVectorDescriptor::VectorRegister(),
3360 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
3362 // Save object_ on the stack and pass index_ as argument for runtime call.
3363 __ Push(object_, index_);
3365 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3366 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3368 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3369 // NumberToSmi discards numbers that are not exact integers.
3370 __ CallRuntime(Runtime::kNumberToSmi, 1);
3372 // Save the conversion result before the pop instructions below
3373 // have a chance to overwrite it.
3375 if (embed_mode == PART_OF_IC_HANDLER) {
3376 __ Pop(object_, LoadWithVectorDescriptor::SlotRegister(),
3377 LoadWithVectorDescriptor::VectorRegister());
3381 // Reload the instance type.
3382 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3383 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3384 call_helper.AfterCall(masm);
3386 // If index is still not a smi, it must be out of range.
3387 __ JumpIfNotSmi(index_, index_out_of_range_);
3388 // Otherwise, return to the fast path.
3389 __ B(&got_smi_index_);
3391 // Call runtime. We get here when the receiver is a string and the
3392 // index is a number, but the code of getting the actual character
3393 // is too complex (e.g., when the string needs to be flattened).
3394 __ Bind(&call_runtime_);
3395 call_helper.BeforeCall(masm);
3397 __ Push(object_, index_);
3398 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3399 __ Mov(result_, x0);
3400 call_helper.AfterCall(masm);
3403 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3407 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3408 __ JumpIfNotSmi(code_, &slow_case_);
3409 __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3410 __ B(hi, &slow_case_);
3412 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3413 // At this point code register contains smi tagged one-byte char code.
3414 __ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
3415 __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3416 __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
3421 void StringCharFromCodeGenerator::GenerateSlow(
3422 MacroAssembler* masm,
3423 const RuntimeCallHelper& call_helper) {
3424 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3426 __ Bind(&slow_case_);
3427 call_helper.BeforeCall(masm);
3429 __ CallRuntime(Runtime::kCharFromCode, 1);
3430 __ Mov(result_, x0);
3431 call_helper.AfterCall(masm);
3434 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3438 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3439 // Inputs are in x0 (lhs) and x1 (rhs).
3440 DCHECK(state() == CompareICState::SMI);
3441 ASM_LOCATION("CompareICStub[Smis]");
3443 // Bail out (to 'miss') unless both x0 and x1 are smis.
3444 __ JumpIfEitherNotSmi(x0, x1, &miss);
3446 if (GetCondition() == eq) {
3447 // For equality we do not care about the sign of the result.
3450 // Untag before subtracting to avoid handling overflow.
3452 __ Sub(x0, x1, Operand::UntagSmi(x0));
3461 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3462 DCHECK(state() == CompareICState::NUMBER);
3463 ASM_LOCATION("CompareICStub[HeapNumbers]");
3465 Label unordered, maybe_undefined1, maybe_undefined2;
3466 Label miss, handle_lhs, values_in_d_regs;
3467 Label untag_rhs, untag_lhs;
3469 Register result = x0;
3472 FPRegister rhs_d = d0;
3473 FPRegister lhs_d = d1;
3475 if (left() == CompareICState::SMI) {
3476 __ JumpIfNotSmi(lhs, &miss);
3478 if (right() == CompareICState::SMI) {
3479 __ JumpIfNotSmi(rhs, &miss);
3482 __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
3483 __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
3485 // Load rhs if it's a heap number.
3486 __ JumpIfSmi(rhs, &handle_lhs);
3487 __ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
3488 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
3490 // Load lhs if it's a heap number.
3491 __ Bind(&handle_lhs);
3492 __ JumpIfSmi(lhs, &values_in_d_regs);
3493 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3494 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
3496 __ Bind(&values_in_d_regs);
3497 __ Fcmp(lhs_d, rhs_d);
3498 __ B(vs, &unordered); // Overflow flag set if either is NaN.
3499 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
3500 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
3501 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
3504 __ Bind(&unordered);
3505 CompareICStub stub(isolate(), op(), strong(), CompareICState::GENERIC,
3506 CompareICState::GENERIC, CompareICState::GENERIC);
3507 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3509 __ Bind(&maybe_undefined1);
3510 if (Token::IsOrderedRelationalCompareOp(op())) {
3511 __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
3512 __ JumpIfSmi(lhs, &unordered);
3513 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3517 __ Bind(&maybe_undefined2);
3518 if (Token::IsOrderedRelationalCompareOp(op())) {
3519 __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
3527 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3528 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3529 ASM_LOCATION("CompareICStub[InternalizedStrings]");
3532 Register result = x0;
3536 // Check that both operands are heap objects.
3537 __ JumpIfEitherSmi(lhs, rhs, &miss);
3539 // Check that both operands are internalized strings.
3540 Register rhs_map = x10;
3541 Register lhs_map = x11;
3542 Register rhs_type = x10;
3543 Register lhs_type = x11;
3544 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3545 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3546 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3547 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3549 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
3550 __ Orr(x12, lhs_type, rhs_type);
3551 __ TestAndBranchIfAnySet(
3552 x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
3554 // Internalized strings are compared by identity.
3555 STATIC_ASSERT(EQUAL == 0);
3557 __ Cset(result, ne);
3565 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3566 DCHECK(state() == CompareICState::UNIQUE_NAME);
3567 ASM_LOCATION("CompareICStub[UniqueNames]");
3568 DCHECK(GetCondition() == eq);
3571 Register result = x0;
3575 Register lhs_instance_type = w2;
3576 Register rhs_instance_type = w3;
3578 // Check that both operands are heap objects.
3579 __ JumpIfEitherSmi(lhs, rhs, &miss);
3581 // Check that both operands are unique names. This leaves the instance
3582 // types loaded in tmp1 and tmp2.
3583 __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
3584 __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
3585 __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
3586 __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
3588 // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
3589 // should have kInternalizedTag set.
3590 __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
3591 __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
3593 // Unique names are compared by identity.
3594 STATIC_ASSERT(EQUAL == 0);
3596 __ Cset(result, ne);
3604 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3605 DCHECK(state() == CompareICState::STRING);
3606 ASM_LOCATION("CompareICStub[Strings]");
3610 bool equality = Token::IsEqualityOp(op());
3612 Register result = x0;
3616 // Check that both operands are heap objects.
3617 __ JumpIfEitherSmi(rhs, lhs, &miss);
3619 // Check that both operands are strings.
3620 Register rhs_map = x10;
3621 Register lhs_map = x11;
3622 Register rhs_type = x10;
3623 Register lhs_type = x11;
3624 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3625 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3626 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3627 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3628 STATIC_ASSERT(kNotStringTag != 0);
3629 __ Orr(x12, lhs_type, rhs_type);
3630 __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
3632 // Fast check for identical strings.
3635 __ B(ne, ¬_equal);
3636 __ Mov(result, EQUAL);
3639 __ Bind(¬_equal);
3640 // Handle not identical strings
3642 // Check that both strings are internalized strings. If they are, we're done
3643 // because we already know they are not identical. We know they are both
3646 DCHECK(GetCondition() == eq);
3647 STATIC_ASSERT(kInternalizedTag == 0);
3648 Label not_internalized_strings;
3649 __ Orr(x12, lhs_type, rhs_type);
3650 __ TestAndBranchIfAnySet(
3651 x12, kIsNotInternalizedMask, ¬_internalized_strings);
3652 // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
3654 __ Bind(¬_internalized_strings);
3657 // Check that both strings are sequential one-byte.
3659 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
3662 // Compare flat one-byte strings. Returns when done.
3664 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
3667 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
3671 // Handle more complex cases in runtime.
3675 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3677 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3685 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3686 DCHECK(state() == CompareICState::OBJECT);
3687 ASM_LOCATION("CompareICStub[Objects]");
3691 Register result = x0;
3695 __ JumpIfEitherSmi(rhs, lhs, &miss);
3697 __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
3698 __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
3700 DCHECK(GetCondition() == eq);
3701 __ Sub(result, rhs, lhs);
3709 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3710 ASM_LOCATION("CompareICStub[KnownObjects]");
3713 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3715 Register result = x0;
3719 __ JumpIfEitherSmi(rhs, lhs, &miss);
3721 Register rhs_map = x10;
3722 Register lhs_map = x11;
3724 __ GetWeakValue(map, cell);
3725 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3726 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3727 __ Cmp(rhs_map, map);
3729 __ Cmp(lhs_map, map);
3732 __ Sub(result, rhs, lhs);
3740 // This method handles the case where a compare stub had the wrong
3741 // implementation. It calls a miss handler, which re-writes the stub. All other
3742 // CompareICStub::Generate* methods should fall back into this one if their
3743 // operands were not the expected types.
3744 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3745 ASM_LOCATION("CompareICStub[Miss]");
3747 Register stub_entry = x11;
3749 ExternalReference miss =
3750 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3752 FrameScope scope(masm, StackFrame::INTERNAL);
3755 Register right = x0;
3756 // Preserve some caller-saved registers.
3757 __ Push(x1, x0, lr);
3758 // Push the arguments.
3759 __ Mov(op, Smi::FromInt(this->op()));
3760 __ Push(left, right, op);
3762 // Call the miss handler. This also pops the arguments.
3763 __ CallExternalReference(miss, 3);
3765 // Compute the entry point of the rewritten stub.
3766 __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
3767 // Restore caller-saved registers.
3771 // Tail-call to the new stub.
3772 __ Jump(stub_entry);
3776 void SubStringStub::Generate(MacroAssembler* masm) {
3777 ASM_LOCATION("SubStringStub::Generate");
3780 // Stack frame on entry.
3781 // lr: return address
3782 // jssp[0]: substring "to" offset
3783 // jssp[8]: substring "from" offset
3784 // jssp[16]: pointer to string object
3786 // This stub is called from the native-call %_SubString(...), so
3787 // nothing can be assumed about the arguments. It is tested that:
3788 // "string" is a sequential string,
3789 // both "from" and "to" are smis, and
3790 // 0 <= from <= to <= string.length (in debug mode.)
3791 // If any of these assumptions fail, we call the runtime system.
3793 static const int kToOffset = 0 * kPointerSize;
3794 static const int kFromOffset = 1 * kPointerSize;
3795 static const int kStringOffset = 2 * kPointerSize;
3798 Register from = x15;
3799 Register input_string = x10;
3800 Register input_length = x11;
3801 Register input_type = x12;
3802 Register result_string = x0;
3803 Register result_length = x1;
3806 __ Peek(to, kToOffset);
3807 __ Peek(from, kFromOffset);
3809 // Check that both from and to are smis. If not, jump to runtime.
3810 __ JumpIfEitherNotSmi(from, to, &runtime);
3814 // Calculate difference between from and to. If to < from, branch to runtime.
3815 __ Subs(result_length, to, from);
3818 // Check from is positive.
3819 __ Tbnz(from, kWSignBit, &runtime);
3821 // Make sure first argument is a string.
3822 __ Peek(input_string, kStringOffset);
3823 __ JumpIfSmi(input_string, &runtime);
3824 __ IsObjectJSStringType(input_string, input_type, &runtime);
3827 __ Cmp(result_length, 1);
3828 __ B(eq, &single_char);
3830 // Short-cut for the case of trivial substring.
3832 __ Ldrsw(input_length,
3833 UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
3835 __ Cmp(result_length, input_length);
3836 __ CmovX(x0, input_string, eq);
3837 // Return original string.
3838 __ B(eq, &return_x0);
3840 // Longer than original string's length or negative: unsafe arguments.
3843 // Shorter than original string's length: an actual substring.
3845 // x0 to substring end character offset
3846 // x1 result_length length of substring result
3847 // x10 input_string pointer to input string object
3848 // x10 unpacked_string pointer to unpacked string object
3849 // x11 input_length length of input string
3850 // x12 input_type instance type of input string
3851 // x15 from substring start character offset
3853 // Deal with different string types: update the index if necessary and put
3854 // the underlying string into register unpacked_string.
3855 Label underlying_unpacked, sliced_string, seq_or_external_string;
3856 Label update_instance_type;
3857 // If the string is not indirect, it can only be sequential or external.
3858 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3859 STATIC_ASSERT(kIsIndirectStringMask != 0);
3861 // Test for string types, and branch/fall through to appropriate unpacking
3863 __ Tst(input_type, kIsIndirectStringMask);
3864 __ B(eq, &seq_or_external_string);
3865 __ Tst(input_type, kSlicedNotConsMask);
3866 __ B(ne, &sliced_string);
3868 Register unpacked_string = input_string;
3870 // Cons string. Check whether it is flat, then fetch first part.
3871 __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
3872 __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
3873 __ Ldr(unpacked_string,
3874 FieldMemOperand(input_string, ConsString::kFirstOffset));
3875 __ B(&update_instance_type);
3877 __ Bind(&sliced_string);
3878 // Sliced string. Fetch parent and correct start index by offset.
3880 UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
3881 __ Add(from, from, temp);
3882 __ Ldr(unpacked_string,
3883 FieldMemOperand(input_string, SlicedString::kParentOffset));
3885 __ Bind(&update_instance_type);
3886 __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
3887 __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
3888 // Now control must go to &underlying_unpacked. Since the no code is generated
3889 // before then we fall through instead of generating a useless branch.
3891 __ Bind(&seq_or_external_string);
3892 // Sequential or external string. Registers unpacked_string and input_string
3893 // alias, so there's nothing to do here.
3894 // Note that if code is added here, the above code must be updated.
3896 // x0 result_string pointer to result string object (uninit)
3897 // x1 result_length length of substring result
3898 // x10 unpacked_string pointer to unpacked string object
3899 // x11 input_length length of input string
3900 // x12 input_type instance type of input string
3901 // x15 from substring start character offset
3902 __ Bind(&underlying_unpacked);
3904 if (FLAG_string_slices) {
3906 __ Cmp(result_length, SlicedString::kMinLength);
3907 // Short slice. Copy instead of slicing.
3908 __ B(lt, ©_routine);
3909 // Allocate new sliced string. At this point we do not reload the instance
3910 // type including the string encoding because we simply rely on the info
3911 // provided by the original string. It does not matter if the original
3912 // string's encoding is wrong because we always have to recheck encoding of
3913 // the newly created string's parent anyway due to externalized strings.
3914 Label two_byte_slice, set_slice_header;
3915 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3916 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3917 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
3918 __ AllocateOneByteSlicedString(result_string, result_length, x3, x4,
3920 __ B(&set_slice_header);
3922 __ Bind(&two_byte_slice);
3923 __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
3926 __ Bind(&set_slice_header);
3928 __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
3929 __ Str(unpacked_string,
3930 FieldMemOperand(result_string, SlicedString::kParentOffset));
3933 __ Bind(©_routine);
3936 // x0 result_string pointer to result string object (uninit)
3937 // x1 result_length length of substring result
3938 // x10 unpacked_string pointer to unpacked string object
3939 // x11 input_length length of input string
3940 // x12 input_type instance type of input string
3941 // x13 unpacked_char0 pointer to first char of unpacked string (uninit)
3942 // x13 substring_char0 pointer to first char of substring (uninit)
3943 // x14 result_char0 pointer to first char of result (uninit)
3944 // x15 from substring start character offset
3945 Register unpacked_char0 = x13;
3946 Register substring_char0 = x13;
3947 Register result_char0 = x14;
3948 Label two_byte_sequential, sequential_string, allocate_result;
3949 STATIC_ASSERT(kExternalStringTag != 0);
3950 STATIC_ASSERT(kSeqStringTag == 0);
3952 __ Tst(input_type, kExternalStringTag);
3953 __ B(eq, &sequential_string);
3955 __ Tst(input_type, kShortExternalStringTag);
3957 __ Ldr(unpacked_char0,
3958 FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
3959 // unpacked_char0 points to the first character of the underlying string.
3960 __ B(&allocate_result);
3962 __ Bind(&sequential_string);
3963 // Locate first character of underlying subject string.
3964 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3965 __ Add(unpacked_char0, unpacked_string,
3966 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3968 __ Bind(&allocate_result);
3969 // Sequential one-byte string. Allocate the result.
3970 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3971 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
3973 // Allocate and copy the resulting one-byte string.
3974 __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime);
3976 // Locate first character of substring to copy.
3977 __ Add(substring_char0, unpacked_char0, from);
3979 // Locate first character of result.
3980 __ Add(result_char0, result_string,
3981 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3983 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3984 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3987 // Allocate and copy the resulting two-byte string.
3988 __ Bind(&two_byte_sequential);
3989 __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
3991 // Locate first character of substring to copy.
3992 __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
3994 // Locate first character of result.
3995 __ Add(result_char0, result_string,
3996 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3998 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3999 __ Add(result_length, result_length, result_length);
4000 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
4002 __ Bind(&return_x0);
4003 Counters* counters = isolate()->counters();
4004 __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
4009 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
4011 __ bind(&single_char);
4012 // x1: result_length
4013 // x10: input_string
4015 // x15: from (untagged)
4017 StringCharAtGenerator generator(input_string, from, result_length, x0,
4018 &runtime, &runtime, &runtime,
4019 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
4020 generator.GenerateFast(masm);
4023 generator.SkipSlow(masm, &runtime);
4027 void ToNumberStub::Generate(MacroAssembler* masm) {
4028 // The ToNumber stub takes one argument in x0.
4030 __ JumpIfNotSmi(x0, ¬_smi);
4034 Label not_heap_number;
4035 __ Ldr(x1, FieldMemOperand(x0, HeapObject::kMapOffset));
4036 __ Ldrb(x1, FieldMemOperand(x1, Map::kInstanceTypeOffset));
4038 // x1: instance type
4039 __ Cmp(x1, HEAP_NUMBER_TYPE);
4040 __ B(ne, ¬_heap_number);
4042 __ Bind(¬_heap_number);
4044 Label not_string, slow_string;
4045 __ Cmp(x1, FIRST_NONSTRING_TYPE);
4046 __ B(hs, ¬_string);
4047 // Check if string has a cached array index.
4048 __ Ldr(x2, FieldMemOperand(x0, String::kHashFieldOffset));
4049 __ Tst(x2, Operand(String::kContainsCachedArrayIndexMask));
4050 __ B(ne, &slow_string);
4051 __ IndexFromHash(x2, x0);
4053 __ Bind(&slow_string);
4054 __ Push(x0); // Push argument.
4055 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
4056 __ Bind(¬_string);
4059 __ Cmp(x1, ODDBALL_TYPE);
4060 __ B(ne, ¬_oddball);
4061 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
4063 __ Bind(¬_oddball);
4065 __ Push(x0); // Push argument.
4066 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
4070 void StringHelper::GenerateFlatOneByteStringEquals(
4071 MacroAssembler* masm, Register left, Register right, Register scratch1,
4072 Register scratch2, Register scratch3) {
4073 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
4074 Register result = x0;
4075 Register left_length = scratch1;
4076 Register right_length = scratch2;
4078 // Compare lengths. If lengths differ, strings can't be equal. Lengths are
4079 // smis, and don't need to be untagged.
4080 Label strings_not_equal, check_zero_length;
4081 __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
4082 __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
4083 __ Cmp(left_length, right_length);
4084 __ B(eq, &check_zero_length);
4086 __ Bind(&strings_not_equal);
4087 __ Mov(result, Smi::FromInt(NOT_EQUAL));
4090 // Check if the length is zero. If so, the strings must be equal (and empty.)
4091 Label compare_chars;
4092 __ Bind(&check_zero_length);
4093 STATIC_ASSERT(kSmiTag == 0);
4094 __ Cbnz(left_length, &compare_chars);
4095 __ Mov(result, Smi::FromInt(EQUAL));
4098 // Compare characters. Falls through if all characters are equal.
4099 __ Bind(&compare_chars);
4100 GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
4101 scratch3, &strings_not_equal);
4103 // Characters in strings are equal.
4104 __ Mov(result, Smi::FromInt(EQUAL));
4109 void StringHelper::GenerateCompareFlatOneByteStrings(
4110 MacroAssembler* masm, Register left, Register right, Register scratch1,
4111 Register scratch2, Register scratch3, Register scratch4) {
4112 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
4113 Label result_not_equal, compare_lengths;
4115 // Find minimum length and length difference.
4116 Register length_delta = scratch3;
4117 __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
4118 __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
4119 __ Subs(length_delta, scratch1, scratch2);
4121 Register min_length = scratch1;
4122 __ Csel(min_length, scratch2, scratch1, gt);
4123 __ Cbz(min_length, &compare_lengths);
4126 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
4127 scratch4, &result_not_equal);
4129 // Compare lengths - strings up to min-length are equal.
4130 __ Bind(&compare_lengths);
4132 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
4134 // Use length_delta as result if it's zero.
4135 Register result = x0;
4136 __ Subs(result, length_delta, 0);
4138 __ Bind(&result_not_equal);
4139 Register greater = x10;
4140 Register less = x11;
4141 __ Mov(greater, Smi::FromInt(GREATER));
4142 __ Mov(less, Smi::FromInt(LESS));
4143 __ CmovX(result, greater, gt);
4144 __ CmovX(result, less, lt);
4149 void StringHelper::GenerateOneByteCharsCompareLoop(
4150 MacroAssembler* masm, Register left, Register right, Register length,
4151 Register scratch1, Register scratch2, Label* chars_not_equal) {
4152 DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
4154 // Change index to run from -length to -1 by adding length to string
4155 // start. This means that loop ends when index reaches zero, which
4156 // doesn't need an additional compare.
4157 __ SmiUntag(length);
4158 __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
4159 __ Add(left, left, scratch1);
4160 __ Add(right, right, scratch1);
4162 Register index = length;
4163 __ Neg(index, length); // index = -length;
4168 __ Ldrb(scratch1, MemOperand(left, index));
4169 __ Ldrb(scratch2, MemOperand(right, index));
4170 __ Cmp(scratch1, scratch2);
4171 __ B(ne, chars_not_equal);
4172 __ Add(index, index, 1);
4173 __ Cbnz(index, &loop);
4177 void StringCompareStub::Generate(MacroAssembler* masm) {
4180 Counters* counters = isolate()->counters();
4182 // Stack frame on entry.
4183 // sp[0]: right string
4184 // sp[8]: left string
4185 Register right = x10;
4186 Register left = x11;
4187 Register result = x0;
4188 __ Pop(right, left);
4191 __ Subs(result, right, left);
4192 __ B(ne, ¬_same);
4193 STATIC_ASSERT(EQUAL == 0);
4194 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
4199 // Check that both objects are sequential one-byte strings.
4200 __ JumpIfEitherIsNotSequentialOneByteStrings(left, right, x12, x13, &runtime);
4202 // Compare flat one-byte strings natively. Remove arguments from stack first,
4203 // as this function will generate a return.
4204 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
4205 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, x12, x13,
4210 // Push arguments back on to the stack.
4211 // sp[0] = right string
4212 // sp[8] = left string.
4213 __ Push(left, right);
4215 // Call the runtime.
4216 // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
4217 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
4221 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
4222 // ----------- S t a t e -------------
4225 // -- lr : return address
4226 // -----------------------------------
4228 // Load x2 with the allocation site. We stick an undefined dummy value here
4229 // and replace it with the real allocation site later when we instantiate this
4230 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
4231 __ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
4233 // Make sure that we actually patched the allocation site.
4234 if (FLAG_debug_code) {
4235 __ AssertNotSmi(x2, kExpectedAllocationSite);
4236 __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
4237 __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
4238 kExpectedAllocationSite);
4241 // Tail call into the stub that handles binary operations with allocation
4243 BinaryOpWithAllocationSiteStub stub(isolate(), state());
4244 __ TailCallStub(&stub);
4248 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4249 // We need some extra registers for this stub, they have been allocated
4250 // but we need to save them before using them.
4253 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4254 Label dont_need_remembered_set;
4256 Register val = regs_.scratch0();
4257 __ Ldr(val, MemOperand(regs_.address()));
4258 __ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
4260 __ CheckPageFlagSet(regs_.object(), val, 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4261 &dont_need_remembered_set);
4263 // First notify the incremental marker if necessary, then update the
4265 CheckNeedsToInformIncrementalMarker(
4266 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4267 InformIncrementalMarker(masm);
4268 regs_.Restore(masm); // Restore the extra scratch registers we used.
4270 __ RememberedSetHelper(object(), address(),
4271 value(), // scratch1
4272 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4274 __ Bind(&dont_need_remembered_set);
4277 CheckNeedsToInformIncrementalMarker(
4278 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4279 InformIncrementalMarker(masm);
4280 regs_.Restore(masm); // Restore the extra scratch registers we used.
4285 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4286 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4288 x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
4289 DCHECK(!address.Is(regs_.object()));
4290 DCHECK(!address.Is(x0));
4291 __ Mov(address, regs_.address());
4292 __ Mov(x0, regs_.object());
4293 __ Mov(x1, address);
4294 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4296 AllowExternalCallThatCantCauseGC scope(masm);
4297 ExternalReference function =
4298 ExternalReference::incremental_marking_record_write_function(
4300 __ CallCFunction(function, 3, 0);
4302 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4306 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4307 MacroAssembler* masm,
4308 OnNoNeedToInformIncrementalMarker on_no_need,
4311 Label need_incremental;
4312 Label need_incremental_pop_scratch;
4314 Register mem_chunk = regs_.scratch0();
4315 Register counter = regs_.scratch1();
4316 __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
4318 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4319 __ Subs(counter, counter, 1);
4321 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4322 __ B(mi, &need_incremental);
4324 // If the object is not black we don't have to inform the incremental marker.
4325 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4327 regs_.Restore(masm); // Restore the extra scratch registers we used.
4328 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4329 __ RememberedSetHelper(object(), address(),
4330 value(), // scratch1
4331 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4337 // Get the value from the slot.
4338 Register val = regs_.scratch0();
4339 __ Ldr(val, MemOperand(regs_.address()));
4341 if (mode == INCREMENTAL_COMPACTION) {
4342 Label ensure_not_white;
4344 __ CheckPageFlagClear(val, regs_.scratch1(),
4345 MemoryChunk::kEvacuationCandidateMask,
4348 __ CheckPageFlagClear(regs_.object(),
4350 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4353 __ Bind(&ensure_not_white);
4356 // We need extra registers for this, so we push the object and the address
4357 // register temporarily.
4358 __ Push(regs_.address(), regs_.object());
4359 __ EnsureNotWhite(val,
4360 regs_.scratch1(), // Scratch.
4361 regs_.object(), // Scratch.
4362 regs_.address(), // Scratch.
4363 regs_.scratch2(), // Scratch.
4364 &need_incremental_pop_scratch);
4365 __ Pop(regs_.object(), regs_.address());
4367 regs_.Restore(masm); // Restore the extra scratch registers we used.
4368 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4369 __ RememberedSetHelper(object(), address(),
4370 value(), // scratch1
4371 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4376 __ Bind(&need_incremental_pop_scratch);
4377 __ Pop(regs_.object(), regs_.address());
4379 __ Bind(&need_incremental);
4380 // Fall through when we need to inform the incremental marker.
4384 void RecordWriteStub::Generate(MacroAssembler* masm) {
4385 Label skip_to_incremental_noncompacting;
4386 Label skip_to_incremental_compacting;
4388 // We patch these two first instructions back and forth between a nop and
4389 // real branch when we start and stop incremental heap marking.
4390 // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
4392 // See RecordWriteStub::Patch for details.
4394 InstructionAccurateScope scope(masm, 2);
4395 __ adr(xzr, &skip_to_incremental_noncompacting);
4396 __ adr(xzr, &skip_to_incremental_compacting);
4399 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4400 __ RememberedSetHelper(object(), address(),
4401 value(), // scratch1
4402 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4406 __ Bind(&skip_to_incremental_noncompacting);
4407 GenerateIncremental(masm, INCREMENTAL);
4409 __ Bind(&skip_to_incremental_compacting);
4410 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4414 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4415 // x0 value element value to store
4416 // x3 index_smi element index as smi
4417 // sp[0] array_index_smi array literal index in function as smi
4418 // sp[1] array array literal
4420 Register value = x0;
4421 Register index_smi = x3;
4423 Register array = x1;
4424 Register array_map = x2;
4425 Register array_index_smi = x4;
4426 __ PeekPair(array_index_smi, array, 0);
4427 __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
4429 Label double_elements, smi_element, fast_elements, slow_elements;
4430 Register bitfield2 = x10;
4431 __ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset));
4433 // Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or
4434 // FAST_HOLEY_ELEMENTS.
4435 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4436 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4437 STATIC_ASSERT(FAST_ELEMENTS == 2);
4438 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4439 __ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue);
4440 __ B(hi, &double_elements);
4442 __ JumpIfSmi(value, &smi_element);
4444 // Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS.
4445 __ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::ElementsKindBits::kShift),
4448 // Store into the array literal requires an elements transition. Call into
4450 __ Bind(&slow_elements);
4451 __ Push(array, index_smi, value);
4452 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4453 __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
4454 __ Push(x11, array_index_smi);
4455 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4457 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4458 __ Bind(&fast_elements);
4459 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4460 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4461 __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
4462 __ Str(value, MemOperand(x11));
4463 // Update the write barrier for the array store.
4464 __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
4465 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4468 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4469 // and value is Smi.
4470 __ Bind(&smi_element);
4471 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4472 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4473 __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
4476 __ Bind(&double_elements);
4477 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4478 __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0,
4484 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4485 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4486 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4487 int parameter_count_offset =
4488 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4489 __ Ldr(x1, MemOperand(fp, parameter_count_offset));
4490 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4493 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4495 // Return to IC Miss stub, continuation still on stack.
4500 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4501 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4502 LoadICStub stub(isolate(), state());
4503 stub.GenerateForTrampoline(masm);
4507 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4508 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4509 KeyedLoadICStub stub(isolate());
4510 stub.GenerateForTrampoline(masm);
4514 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4515 EmitLoadTypeFeedbackVector(masm, x2);
4516 CallICStub stub(isolate(), state());
4517 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4521 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4522 EmitLoadTypeFeedbackVector(masm, x2);
4523 CallIC_ArrayStub stub(isolate(), state());
4524 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4528 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4531 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4532 GenerateImpl(masm, true);
4536 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4537 Register key, Register vector, Register slot,
4538 Register feedback, Register receiver_map,
4539 Register scratch1, Register scratch2,
4540 bool is_polymorphic, Label* miss) {
4541 // feedback initially contains the feedback array
4542 Label next_loop, prepare_next;
4543 Label load_smi_map, compare_map;
4544 Label start_polymorphic;
4546 Register cached_map = scratch1;
4549 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4550 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4551 __ Cmp(receiver_map, cached_map);
4552 __ B(ne, &start_polymorphic);
4553 // found, now call handler.
4554 Register handler = feedback;
4555 __ Ldr(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4556 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4559 Register length = scratch2;
4560 __ Bind(&start_polymorphic);
4561 __ Ldr(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4562 if (!is_polymorphic) {
4563 __ Cmp(length, Operand(Smi::FromInt(2)));
4567 Register too_far = length;
4568 Register pointer_reg = feedback;
4570 // +-----+------+------+-----+-----+ ... ----+
4571 // | map | len | wm0 | h0 | wm1 | hN |
4572 // +-----+------+------+-----+-----+ ... ----+
4576 // pointer_reg too_far
4577 // aka feedback scratch2
4578 // also need receiver_map
4579 // use cached_map (scratch1) to look in the weak map values.
4580 __ Add(too_far, feedback,
4581 Operand::UntagSmiAndScale(length, kPointerSizeLog2));
4582 __ Add(too_far, too_far, FixedArray::kHeaderSize - kHeapObjectTag);
4583 __ Add(pointer_reg, feedback,
4584 FixedArray::OffsetOfElementAt(2) - kHeapObjectTag);
4586 __ Bind(&next_loop);
4587 __ Ldr(cached_map, MemOperand(pointer_reg));
4588 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4589 __ Cmp(receiver_map, cached_map);
4590 __ B(ne, &prepare_next);
4591 __ Ldr(handler, MemOperand(pointer_reg, kPointerSize));
4592 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4595 __ Bind(&prepare_next);
4596 __ Add(pointer_reg, pointer_reg, kPointerSize * 2);
4597 __ Cmp(pointer_reg, too_far);
4598 __ B(lt, &next_loop);
4600 // We exhausted our array of map handler pairs.
4605 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4606 Register receiver_map, Register feedback,
4607 Register vector, Register slot,
4608 Register scratch, Label* compare_map,
4609 Label* load_smi_map, Label* try_array) {
4610 __ JumpIfSmi(receiver, load_smi_map);
4611 __ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4612 __ bind(compare_map);
4613 Register cached_map = scratch;
4614 // Move the weak map into the weak_cell register.
4615 __ Ldr(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4616 __ Cmp(cached_map, receiver_map);
4617 __ B(ne, try_array);
4619 Register handler = feedback;
4620 __ Add(handler, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4622 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4623 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4628 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4629 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
4630 Register name = LoadWithVectorDescriptor::NameRegister(); // x2
4631 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
4632 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
4633 Register feedback = x4;
4634 Register receiver_map = x5;
4635 Register scratch1 = x6;
4637 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4638 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4640 // Try to quickly handle the monomorphic case without knowing for sure
4641 // if we have a weak cell in feedback. We do know it's safe to look
4642 // at WeakCell::kValueOffset.
4643 Label try_array, load_smi_map, compare_map;
4644 Label not_array, miss;
4645 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4646 scratch1, &compare_map, &load_smi_map, &try_array);
4648 // Is it a fixed array?
4649 __ Bind(&try_array);
4650 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4651 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4652 HandleArrayCases(masm, receiver, name, vector, slot, feedback, receiver_map,
4653 scratch1, x7, true, &miss);
4655 __ Bind(¬_array);
4656 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex, &miss);
4657 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4658 Code::ComputeHandlerFlags(Code::LOAD_IC));
4659 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4660 false, receiver, name, feedback,
4661 receiver_map, scratch1, x7);
4664 LoadIC::GenerateMiss(masm);
4666 __ Bind(&load_smi_map);
4667 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4668 __ jmp(&compare_map);
4672 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4673 GenerateImpl(masm, false);
4677 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4678 GenerateImpl(masm, true);
4682 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4683 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
4684 Register key = LoadWithVectorDescriptor::NameRegister(); // x2
4685 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
4686 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
4687 Register feedback = x4;
4688 Register receiver_map = x5;
4689 Register scratch1 = x6;
4691 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4692 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4694 // Try to quickly handle the monomorphic case without knowing for sure
4695 // if we have a weak cell in feedback. We do know it's safe to look
4696 // at WeakCell::kValueOffset.
4697 Label try_array, load_smi_map, compare_map;
4698 Label not_array, miss;
4699 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4700 scratch1, &compare_map, &load_smi_map, &try_array);
4702 __ Bind(&try_array);
4703 // Is it a fixed array?
4704 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4705 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4707 // We have a polymorphic element handler.
4708 Label polymorphic, try_poly_name;
4709 __ Bind(&polymorphic);
4710 HandleArrayCases(masm, receiver, key, vector, slot, feedback, receiver_map,
4711 scratch1, x7, true, &miss);
4713 __ Bind(¬_array);
4715 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex,
4717 Handle<Code> megamorphic_stub =
4718 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate());
4719 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4721 __ Bind(&try_poly_name);
4722 // We might have a name in feedback, and a fixed array in the next slot.
4723 __ Cmp(key, feedback);
4725 // If the name comparison succeeded, we know we have a fixed array with
4726 // at least one map/handler pair.
4727 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4729 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4730 HandleArrayCases(masm, receiver, key, vector, slot, feedback, receiver_map,
4731 scratch1, x7, false, &miss);
4734 KeyedLoadIC::GenerateMiss(masm);
4736 __ Bind(&load_smi_map);
4737 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4738 __ jmp(&compare_map);
4742 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4743 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4744 VectorStoreICStub stub(isolate(), state());
4745 stub.GenerateForTrampoline(masm);
4749 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4750 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4751 VectorKeyedStoreICStub stub(isolate(), state());
4752 stub.GenerateForTrampoline(masm);
4756 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4757 GenerateImpl(masm, false);
4761 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4762 GenerateImpl(masm, true);
4766 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4769 // TODO(mvstanton): Implement.
4771 StoreIC::GenerateMiss(masm);
4775 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4776 GenerateImpl(masm, false);
4780 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4781 GenerateImpl(masm, true);
4785 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4788 // TODO(mvstanton): Implement.
4790 KeyedStoreIC::GenerateMiss(masm);
4794 // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by
4795 // a "Push lr" instruction, followed by a call.
4796 static const unsigned int kProfileEntryHookCallSize =
4797 Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
4800 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4801 if (masm->isolate()->function_entry_hook() != NULL) {
4802 ProfileEntryHookStub stub(masm->isolate());
4803 Assembler::BlockConstPoolScope no_const_pools(masm);
4804 DontEmitDebugCodeScope no_debug_code(masm);
4805 Label entry_hook_call_start;
4806 __ Bind(&entry_hook_call_start);
4809 DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
4810 kProfileEntryHookCallSize);
4817 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4818 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
4820 // Save all kCallerSaved registers (including lr), since this can be called
4822 // TODO(jbramley): What about FP registers?
4823 __ PushCPURegList(kCallerSaved);
4824 DCHECK(kCallerSaved.IncludesAliasOf(lr));
4825 const int kNumSavedRegs = kCallerSaved.Count();
4827 // Compute the function's address as the first argument.
4828 __ Sub(x0, lr, kProfileEntryHookCallSize);
4830 #if V8_HOST_ARCH_ARM64
4831 uintptr_t entry_hook =
4832 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4833 __ Mov(x10, entry_hook);
4835 // Under the simulator we need to indirect the entry hook through a trampoline
4836 // function at a known address.
4837 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4838 __ Mov(x10, Operand(ExternalReference(&dispatcher,
4839 ExternalReference::BUILTIN_CALL,
4841 // It additionally takes an isolate as a third parameter
4842 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4845 // The caller's return address is above the saved temporaries.
4846 // Grab its location for the second argument to the hook.
4847 __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
4850 // Create a dummy frame, as CallCFunction requires this.
4851 FrameScope frame(masm, StackFrame::MANUAL);
4852 __ CallCFunction(x10, 2, 0);
4855 __ PopCPURegList(kCallerSaved);
4860 void DirectCEntryStub::Generate(MacroAssembler* masm) {
4861 // When calling into C++ code the stack pointer must be csp.
4862 // Therefore this code must use csp for peek/poke operations when the
4863 // stub is generated. When the stub is called
4864 // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
4865 // and configure the stack pointer *before* doing the call.
4866 const Register old_stack_pointer = __ StackPointer();
4867 __ SetStackPointer(csp);
4869 // Put return address on the stack (accessible to GC through exit frame pc).
4871 // Call the C++ function.
4873 // Return to calling code.
4875 __ AssertFPCRState();
4878 __ SetStackPointer(old_stack_pointer);
4881 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
4883 // Make sure the caller configured the stack pointer (see comment in
4884 // DirectCEntryStub::Generate).
4885 DCHECK(csp.Is(__ StackPointer()));
4888 reinterpret_cast<intptr_t>(GetCode().location());
4889 __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
4890 __ Mov(x10, target);
4891 // Branch to the stub.
4896 // Probe the name dictionary in the 'elements' register.
4897 // Jump to the 'done' label if a property with the given name is found.
4898 // Jump to the 'miss' label otherwise.
4900 // If lookup was successful 'scratch2' will be equal to elements + 4 * index.
4901 // 'elements' and 'name' registers are preserved on miss.
4902 void NameDictionaryLookupStub::GeneratePositiveLookup(
4903 MacroAssembler* masm,
4909 Register scratch2) {
4910 DCHECK(!AreAliased(elements, name, scratch1, scratch2));
4912 // Assert that name contains a string.
4913 __ AssertName(name);
4915 // Compute the capacity mask.
4916 __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
4917 __ Sub(scratch1, scratch1, 1);
4919 // Generate an unrolled loop that performs a few probes before giving up.
4920 for (int i = 0; i < kInlinedProbes; i++) {
4921 // Compute the masked index: (hash + i + i * i) & mask.
4922 __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
4924 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4925 // the hash in a separate instruction. The value hash + i + i * i is right
4926 // shifted in the following and instruction.
4927 DCHECK(NameDictionary::GetProbeOffset(i) <
4928 1 << (32 - Name::kHashFieldOffset));
4929 __ Add(scratch2, scratch2, Operand(
4930 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4932 __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
4934 // Scale the index by multiplying by the element size.
4935 DCHECK(NameDictionary::kEntrySize == 3);
4936 __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4938 // Check if the key is identical to the name.
4939 UseScratchRegisterScope temps(masm);
4940 Register scratch3 = temps.AcquireX();
4941 __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4942 __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
4943 __ Cmp(name, scratch3);
4947 // The inlined probes didn't find the entry.
4948 // Call the complete stub to scan the whole dictionary.
4950 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4951 spill_list.Combine(lr);
4952 spill_list.Remove(scratch1);
4953 spill_list.Remove(scratch2);
4955 __ PushCPURegList(spill_list);
4958 DCHECK(!elements.is(x1));
4960 __ Mov(x0, elements);
4962 __ Mov(x0, elements);
4967 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4969 __ Cbz(x0, ¬_found);
4970 __ Mov(scratch2, x2); // Move entry index into scratch2.
4971 __ PopCPURegList(spill_list);
4974 __ Bind(¬_found);
4975 __ PopCPURegList(spill_list);
4980 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4984 Register properties,
4986 Register scratch0) {
4987 DCHECK(!AreAliased(receiver, properties, scratch0));
4988 DCHECK(name->IsUniqueName());
4989 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4990 // not equal to the name and kProbes-th slot is not used (its name is the
4991 // undefined value), it guarantees the hash table doesn't contain the
4992 // property. It's true even if some slots represent deleted properties
4993 // (their names are the hole value).
4994 for (int i = 0; i < kInlinedProbes; i++) {
4995 // scratch0 points to properties hash.
4996 // Compute the masked index: (hash + i + i * i) & mask.
4997 Register index = scratch0;
4998 // Capacity is smi 2^n.
4999 __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
5000 __ Sub(index, index, 1);
5001 __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
5003 // Scale the index by multiplying by the entry size.
5004 DCHECK(NameDictionary::kEntrySize == 3);
5005 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
5007 Register entity_name = scratch0;
5008 // Having undefined at this place means the name is not contained.
5009 Register tmp = index;
5010 __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
5011 __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
5013 __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
5015 // Stop if found the property.
5016 __ Cmp(entity_name, Operand(name));
5020 __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
5022 // Check if the entry name is not a unique name.
5023 __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
5024 __ Ldrb(entity_name,
5025 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
5026 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
5030 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
5031 spill_list.Combine(lr);
5032 spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
5034 __ PushCPURegList(spill_list);
5036 __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
5037 __ Mov(x1, Operand(name));
5038 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
5040 // Move stub return value to scratch0. Note that scratch0 is not included in
5041 // spill_list and won't be clobbered by PopCPURegList.
5042 __ Mov(scratch0, x0);
5043 __ PopCPURegList(spill_list);
5045 __ Cbz(scratch0, done);
5050 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
5051 // This stub overrides SometimesSetsUpAFrame() to return false. That means
5052 // we cannot call anything that could cause a GC from this stub.
5054 // Arguments are in x0 and x1:
5055 // x0: property dictionary.
5056 // x1: the name of the property we are looking for.
5058 // Return value is in x0 and is zero if lookup failed, non zero otherwise.
5059 // If the lookup is successful, x2 will contains the index of the entry.
5061 Register result = x0;
5062 Register dictionary = x0;
5064 Register index = x2;
5067 Register undefined = x5;
5068 Register entry_key = x6;
5070 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
5072 __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
5073 __ Sub(mask, mask, 1);
5075 __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
5076 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5078 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
5079 // Compute the masked index: (hash + i + i * i) & mask.
5080 // Capacity is smi 2^n.
5082 // Add the probe offset (i + i * i) left shifted to avoid right shifting
5083 // the hash in a separate instruction. The value hash + i + i * i is right
5084 // shifted in the following and instruction.
5085 DCHECK(NameDictionary::GetProbeOffset(i) <
5086 1 << (32 - Name::kHashFieldOffset));
5088 NameDictionary::GetProbeOffset(i) << Name::kHashShift);
5090 __ Mov(index, hash);
5092 __ And(index, mask, Operand(index, LSR, Name::kHashShift));
5094 // Scale the index by multiplying by the entry size.
5095 DCHECK(NameDictionary::kEntrySize == 3);
5096 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
5098 __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
5099 __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
5101 // Having undefined at this place means the name is not contained.
5102 __ Cmp(entry_key, undefined);
5103 __ B(eq, ¬_in_dictionary);
5105 // Stop if found the property.
5106 __ Cmp(entry_key, key);
5107 __ B(eq, &in_dictionary);
5109 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
5110 // Check if the entry name is not a unique name.
5111 __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
5112 __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
5113 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
5117 __ Bind(&maybe_in_dictionary);
5118 // If we are doing negative lookup then probing failure should be
5119 // treated as a lookup success. For positive lookup, probing failure
5120 // should be treated as lookup failure.
5121 if (mode() == POSITIVE_LOOKUP) {
5126 __ Bind(&in_dictionary);
5130 __ Bind(¬_in_dictionary);
5137 static void CreateArrayDispatch(MacroAssembler* masm,
5138 AllocationSiteOverrideMode mode) {
5139 ASM_LOCATION("CreateArrayDispatch");
5140 if (mode == DISABLE_ALLOCATION_SITES) {
5141 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
5142 __ TailCallStub(&stub);
5144 } else if (mode == DONT_OVERRIDE) {
5147 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
5148 for (int i = 0; i <= last_index; ++i) {
5150 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
5151 // TODO(jbramley): Is this the best way to handle this? Can we make the
5152 // tail calls conditional, rather than hopping over each one?
5153 __ CompareAndBranch(kind, candidate_kind, ne, &next);
5154 T stub(masm->isolate(), candidate_kind);
5155 __ TailCallStub(&stub);
5159 // If we reached this point there is a problem.
5160 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5168 // TODO(jbramley): If this needs to be a special case, make it a proper template
5169 // specialization, and not a separate function.
5170 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
5171 AllocationSiteOverrideMode mode) {
5172 ASM_LOCATION("CreateArrayDispatchOneArgument");
5174 // x1 - constructor?
5175 // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
5176 // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
5177 // sp[0] - last argument
5179 Register allocation_site = x2;
5182 Label normal_sequence;
5183 if (mode == DONT_OVERRIDE) {
5184 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
5185 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
5186 STATIC_ASSERT(FAST_ELEMENTS == 2);
5187 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
5188 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
5189 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
5191 // Is the low bit set? If so, the array is holey.
5192 __ Tbnz(kind, 0, &normal_sequence);
5195 // Look at the last argument.
5196 // TODO(jbramley): What does a 0 argument represent?
5198 __ Cbz(x10, &normal_sequence);
5200 if (mode == DISABLE_ALLOCATION_SITES) {
5201 ElementsKind initial = GetInitialFastElementsKind();
5202 ElementsKind holey_initial = GetHoleyElementsKind(initial);
5204 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
5206 DISABLE_ALLOCATION_SITES);
5207 __ TailCallStub(&stub_holey);
5209 __ Bind(&normal_sequence);
5210 ArraySingleArgumentConstructorStub stub(masm->isolate(),
5212 DISABLE_ALLOCATION_SITES);
5213 __ TailCallStub(&stub);
5214 } else if (mode == DONT_OVERRIDE) {
5215 // We are going to create a holey array, but our kind is non-holey.
5216 // Fix kind and retry (only if we have an allocation site in the slot).
5217 __ Orr(kind, kind, 1);
5219 if (FLAG_debug_code) {
5220 __ Ldr(x10, FieldMemOperand(allocation_site, 0));
5221 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
5223 __ Assert(eq, kExpectedAllocationSite);
5226 // Save the resulting elements kind in type info. We can't just store 'kind'
5227 // in the AllocationSite::transition_info field because elements kind is
5228 // restricted to a portion of the field; upper bits need to be left alone.
5229 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5230 __ Ldr(x11, FieldMemOperand(allocation_site,
5231 AllocationSite::kTransitionInfoOffset));
5232 __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
5233 __ Str(x11, FieldMemOperand(allocation_site,
5234 AllocationSite::kTransitionInfoOffset));
5236 __ Bind(&normal_sequence);
5238 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
5239 for (int i = 0; i <= last_index; ++i) {
5241 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
5242 __ CompareAndBranch(kind, candidate_kind, ne, &next);
5243 ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
5244 __ TailCallStub(&stub);
5248 // If we reached this point there is a problem.
5249 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5257 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
5258 int to_index = GetSequenceIndexFromFastElementsKind(
5259 TERMINAL_FAST_ELEMENTS_KIND);
5260 for (int i = 0; i <= to_index; ++i) {
5261 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5262 T stub(isolate, kind);
5264 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
5265 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
5272 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
5273 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
5275 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
5277 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
5282 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
5284 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
5285 for (int i = 0; i < 2; i++) {
5286 // For internal arrays we only need a few things
5287 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
5289 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
5291 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
5297 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5298 MacroAssembler* masm,
5299 AllocationSiteOverrideMode mode) {
5301 if (argument_count() == ANY) {
5302 Label zero_case, n_case;
5303 __ Cbz(argc, &zero_case);
5308 CreateArrayDispatchOneArgument(masm, mode);
5310 __ Bind(&zero_case);
5312 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5316 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5318 } else if (argument_count() == NONE) {
5319 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5320 } else if (argument_count() == ONE) {
5321 CreateArrayDispatchOneArgument(masm, mode);
5322 } else if (argument_count() == MORE_THAN_ONE) {
5323 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5330 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5331 ASM_LOCATION("ArrayConstructorStub::Generate");
5332 // ----------- S t a t e -------------
5333 // -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
5334 // -- x1 : constructor
5335 // -- x2 : AllocationSite or undefined
5336 // -- x3 : original constructor
5337 // -- sp[0] : last argument
5338 // -----------------------------------
5339 Register constructor = x1;
5340 Register allocation_site = x2;
5341 Register original_constructor = x3;
5343 if (FLAG_debug_code) {
5344 // The array construct code is only set for the global and natives
5345 // builtin Array functions which always have maps.
5347 Label unexpected_map, map_ok;
5348 // Initial map for the builtin Array function should be a map.
5349 __ Ldr(x10, FieldMemOperand(constructor,
5350 JSFunction::kPrototypeOrInitialMapOffset));
5351 // Will both indicate a NULL and a Smi.
5352 __ JumpIfSmi(x10, &unexpected_map);
5353 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
5354 __ Bind(&unexpected_map);
5355 __ Abort(kUnexpectedInitialMapForArrayFunction);
5358 // We should either have undefined in the allocation_site register or a
5359 // valid AllocationSite.
5360 __ AssertUndefinedOrAllocationSite(allocation_site, x10);
5364 __ Cmp(original_constructor, constructor);
5365 __ B(ne, &subclassing);
5369 // Get the elements kind and case on that.
5370 __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
5373 UntagSmiFieldMemOperand(allocation_site,
5374 AllocationSite::kTransitionInfoOffset));
5375 __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
5376 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5379 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5381 // Subclassing support.
5382 __ Bind(&subclassing);
5383 __ Push(constructor, original_constructor);
5385 switch (argument_count()) {
5388 __ add(x0, x0, Operand(2));
5391 __ Mov(x0, Operand(2));
5394 __ Mov(x0, Operand(3));
5397 __ JumpToExternalReference(
5398 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
5402 void InternalArrayConstructorStub::GenerateCase(
5403 MacroAssembler* masm, ElementsKind kind) {
5404 Label zero_case, n_case;
5407 __ Cbz(argc, &zero_case);
5408 __ CompareAndBranch(argc, 1, ne, &n_case);
5411 if (IsFastPackedElementsKind(kind)) {
5414 // We might need to create a holey array; look at the first argument.
5416 __ Cbz(x10, &packed_case);
5418 InternalArraySingleArgumentConstructorStub
5419 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5420 __ TailCallStub(&stub1_holey);
5422 __ Bind(&packed_case);
5424 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5425 __ TailCallStub(&stub1);
5427 __ Bind(&zero_case);
5429 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5430 __ TailCallStub(&stub0);
5434 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5435 __ TailCallStub(&stubN);
5439 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5440 // ----------- S t a t e -------------
5442 // -- x1 : constructor
5443 // -- sp[0] : return address
5444 // -- sp[4] : last argument
5445 // -----------------------------------
5447 Register constructor = x1;
5449 if (FLAG_debug_code) {
5450 // The array construct code is only set for the global and natives
5451 // builtin Array functions which always have maps.
5453 Label unexpected_map, map_ok;
5454 // Initial map for the builtin Array function should be a map.
5455 __ Ldr(x10, FieldMemOperand(constructor,
5456 JSFunction::kPrototypeOrInitialMapOffset));
5457 // Will both indicate a NULL and a Smi.
5458 __ JumpIfSmi(x10, &unexpected_map);
5459 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
5460 __ Bind(&unexpected_map);
5461 __ Abort(kUnexpectedInitialMapForArrayFunction);
5466 // Figure out the right elements kind
5467 __ Ldr(x10, FieldMemOperand(constructor,
5468 JSFunction::kPrototypeOrInitialMapOffset));
5470 // Retrieve elements_kind from map.
5471 __ LoadElementsKindFromMap(kind, x10);
5473 if (FLAG_debug_code) {
5475 __ Cmp(x3, FAST_ELEMENTS);
5476 __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
5477 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5480 Label fast_elements_case;
5481 __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
5482 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5484 __ Bind(&fast_elements_case);
5485 GenerateCase(masm, FAST_ELEMENTS);
5489 // The number of register that CallApiFunctionAndReturn will need to save on
5490 // the stack. The space for these registers need to be allocated in the
5491 // ExitFrame before calling CallApiFunctionAndReturn.
5492 static const int kCallApiFunctionSpillSpace = 4;
5495 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5496 return static_cast<int>(ref0.address() - ref1.address());
5500 // Calls an API function. Allocates HandleScope, extracts returned value
5501 // from handle and propagates exceptions.
5502 // 'stack_space' is the space to be unwound on exit (includes the call JS
5503 // arguments space and the additional space allocated for the fast call).
5504 // 'spill_offset' is the offset from the stack pointer where
5505 // CallApiFunctionAndReturn can spill registers.
5506 static void CallApiFunctionAndReturn(
5507 MacroAssembler* masm, Register function_address,
5508 ExternalReference thunk_ref, int stack_space,
5509 MemOperand* stack_space_operand, int spill_offset,
5510 MemOperand return_value_operand, MemOperand* context_restore_operand) {
5511 ASM_LOCATION("CallApiFunctionAndReturn");
5512 Isolate* isolate = masm->isolate();
5513 ExternalReference next_address =
5514 ExternalReference::handle_scope_next_address(isolate);
5515 const int kNextOffset = 0;
5516 const int kLimitOffset = AddressOffset(
5517 ExternalReference::handle_scope_limit_address(isolate), next_address);
5518 const int kLevelOffset = AddressOffset(
5519 ExternalReference::handle_scope_level_address(isolate), next_address);
5521 DCHECK(function_address.is(x1) || function_address.is(x2));
5523 Label profiler_disabled;
5524 Label end_profiler_check;
5525 __ Mov(x10, ExternalReference::is_profiling_address(isolate));
5526 __ Ldrb(w10, MemOperand(x10));
5527 __ Cbz(w10, &profiler_disabled);
5528 __ Mov(x3, thunk_ref);
5529 __ B(&end_profiler_check);
5531 __ Bind(&profiler_disabled);
5532 __ Mov(x3, function_address);
5533 __ Bind(&end_profiler_check);
5535 // Save the callee-save registers we are going to use.
5536 // TODO(all): Is this necessary? ARM doesn't do it.
5537 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
5538 __ Poke(x19, (spill_offset + 0) * kXRegSize);
5539 __ Poke(x20, (spill_offset + 1) * kXRegSize);
5540 __ Poke(x21, (spill_offset + 2) * kXRegSize);
5541 __ Poke(x22, (spill_offset + 3) * kXRegSize);
5543 // Allocate HandleScope in callee-save registers.
5544 // We will need to restore the HandleScope after the call to the API function,
5545 // by allocating it in callee-save registers they will be preserved by C code.
5546 Register handle_scope_base = x22;
5547 Register next_address_reg = x19;
5548 Register limit_reg = x20;
5549 Register level_reg = w21;
5551 __ Mov(handle_scope_base, next_address);
5552 __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5553 __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5554 __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5555 __ Add(level_reg, level_reg, 1);
5556 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5558 if (FLAG_log_timer_events) {
5559 FrameScope frame(masm, StackFrame::MANUAL);
5560 __ PushSafepointRegisters();
5561 __ Mov(x0, ExternalReference::isolate_address(isolate));
5562 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5564 __ PopSafepointRegisters();
5567 // Native call returns to the DirectCEntry stub which redirects to the
5568 // return address pushed on stack (could have moved after GC).
5569 // DirectCEntry stub itself is generated early and never moves.
5570 DirectCEntryStub stub(isolate);
5571 stub.GenerateCall(masm, x3);
5573 if (FLAG_log_timer_events) {
5574 FrameScope frame(masm, StackFrame::MANUAL);
5575 __ PushSafepointRegisters();
5576 __ Mov(x0, ExternalReference::isolate_address(isolate));
5577 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5579 __ PopSafepointRegisters();
5582 Label promote_scheduled_exception;
5583 Label delete_allocated_handles;
5584 Label leave_exit_frame;
5585 Label return_value_loaded;
5587 // Load value from ReturnValue.
5588 __ Ldr(x0, return_value_operand);
5589 __ Bind(&return_value_loaded);
5590 // No more valid handles (the result handle was the last one). Restore
5591 // previous handle scope.
5592 __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5593 if (__ emit_debug_code()) {
5594 __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
5595 __ Cmp(w1, level_reg);
5596 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5598 __ Sub(level_reg, level_reg, 1);
5599 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5600 __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
5601 __ Cmp(limit_reg, x1);
5602 __ B(ne, &delete_allocated_handles);
5604 // Leave the API exit frame.
5605 __ Bind(&leave_exit_frame);
5606 // Restore callee-saved registers.
5607 __ Peek(x19, (spill_offset + 0) * kXRegSize);
5608 __ Peek(x20, (spill_offset + 1) * kXRegSize);
5609 __ Peek(x21, (spill_offset + 2) * kXRegSize);
5610 __ Peek(x22, (spill_offset + 3) * kXRegSize);
5612 bool restore_context = context_restore_operand != NULL;
5613 if (restore_context) {
5614 __ Ldr(cp, *context_restore_operand);
5617 if (stack_space_operand != NULL) {
5618 __ Ldr(w2, *stack_space_operand);
5621 __ LeaveExitFrame(false, x1, !restore_context);
5623 // Check if the function scheduled an exception.
5624 __ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
5625 __ Ldr(x5, MemOperand(x5));
5626 __ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex,
5627 &promote_scheduled_exception);
5629 if (stack_space_operand != NULL) {
5632 __ Drop(stack_space);
5636 // Re-throw by promoting a scheduled exception.
5637 __ Bind(&promote_scheduled_exception);
5638 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5640 // HandleScope limit has changed. Delete allocated extensions.
5641 __ Bind(&delete_allocated_handles);
5642 __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5643 // Save the return value in a callee-save register.
5644 Register saved_result = x19;
5645 __ Mov(saved_result, x0);
5646 __ Mov(x0, ExternalReference::isolate_address(isolate));
5647 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5649 __ Mov(x0, saved_result);
5650 __ B(&leave_exit_frame);
5654 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5655 const ParameterCount& argc,
5656 bool return_first_arg,
5657 bool call_data_undefined) {
5658 // ----------- S t a t e -------------
5660 // -- x4 : call_data
5662 // -- x1 : api_function_address
5663 // -- x3 : number of arguments if argc is a register
5666 // -- sp[0] : last argument
5668 // -- sp[(argc - 1) * 8] : first argument
5669 // -- sp[argc * 8] : receiver
5670 // -----------------------------------
5672 Register callee = x0;
5673 Register call_data = x4;
5674 Register holder = x2;
5675 Register api_function_address = x1;
5676 Register context = cp;
5678 typedef FunctionCallbackArguments FCA;
5680 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5681 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5682 STATIC_ASSERT(FCA::kDataIndex == 4);
5683 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5684 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5685 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5686 STATIC_ASSERT(FCA::kHolderIndex == 0);
5687 STATIC_ASSERT(FCA::kArgsLength == 7);
5689 DCHECK(argc.is_immediate() || x3.is(argc.reg()));
5691 // FunctionCallbackArguments: context, callee and call data.
5692 __ Push(context, callee, call_data);
5694 // Load context from callee
5695 __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5697 if (!call_data_undefined) {
5698 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
5700 Register isolate_reg = x5;
5701 __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
5703 // FunctionCallbackArguments:
5704 // return value, return value default, isolate, holder.
5705 __ Push(call_data, call_data, isolate_reg, holder);
5707 // Prepare arguments.
5709 __ Mov(args, masm->StackPointer());
5711 // Allocate the v8::Arguments structure in the arguments' space, since it's
5712 // not controlled by GC.
5713 const int kApiStackSpace = 4;
5715 // Allocate space for CallApiFunctionAndReturn can store some scratch
5716 // registeres on the stack.
5717 const int kCallApiFunctionSpillSpace = 4;
5719 FrameScope frame_scope(masm, StackFrame::MANUAL);
5720 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5722 DCHECK(!AreAliased(x0, api_function_address));
5723 // x0 = FunctionCallbackInfo&
5724 // Arguments is after the return address.
5725 __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
5726 if (argc.is_immediate()) {
5727 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
5729 Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
5730 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
5731 // FunctionCallbackInfo::length_ = argc and
5732 // FunctionCallbackInfo::is_construct_call = 0
5733 __ Mov(x10, argc.immediate());
5734 __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
5736 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
5737 __ Add(x10, args, Operand(argc.reg(), LSL, kPointerSizeLog2));
5738 __ Add(x10, x10, (FCA::kArgsLength - 1) * kPointerSize);
5739 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
5740 // FunctionCallbackInfo::length_ = argc and
5741 // FunctionCallbackInfo::is_construct_call
5742 __ Add(x10, argc.reg(), FCA::kArgsLength + 1);
5743 __ Mov(x10, Operand(x10, LSL, kPointerSizeLog2));
5744 __ Stp(argc.reg(), x10, MemOperand(x0, 2 * kPointerSize));
5747 ExternalReference thunk_ref =
5748 ExternalReference::invoke_function_callback(masm->isolate());
5750 AllowExternalCallThatCantCauseGC scope(masm);
5751 MemOperand context_restore_operand(
5752 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5753 // Stores return the first js argument
5754 int return_value_offset = 0;
5755 if (return_first_arg) {
5756 return_value_offset = 2 + FCA::kArgsLength;
5758 return_value_offset = 2 + FCA::kReturnValueOffset;
5760 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5761 int stack_space = 0;
5762 MemOperand is_construct_call_operand =
5763 MemOperand(masm->StackPointer(), 4 * kPointerSize);
5764 MemOperand* stack_space_operand = &is_construct_call_operand;
5765 if (argc.is_immediate()) {
5766 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5767 stack_space_operand = NULL;
5770 const int spill_offset = 1 + kApiStackSpace;
5771 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5772 stack_space_operand, spill_offset,
5773 return_value_operand, &context_restore_operand);
5777 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5778 bool call_data_undefined = this->call_data_undefined();
5779 CallApiFunctionStubHelper(masm, ParameterCount(x3), false,
5780 call_data_undefined);
5784 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5785 bool is_store = this->is_store();
5786 int argc = this->argc();
5787 bool call_data_undefined = this->call_data_undefined();
5788 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5789 call_data_undefined);
5793 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5794 // ----------- S t a t e -------------
5796 // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
5798 // -- x2 : api_function_address
5799 // -----------------------------------
5801 Register api_function_address = ApiGetterDescriptor::function_address();
5802 DCHECK(api_function_address.is(x2));
5804 __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
5805 __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
5807 const int kApiStackSpace = 1;
5809 // Allocate space for CallApiFunctionAndReturn can store some scratch
5810 // registeres on the stack.
5811 const int kCallApiFunctionSpillSpace = 4;
5813 FrameScope frame_scope(masm, StackFrame::MANUAL);
5814 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5816 // Create PropertyAccessorInfo instance on the stack above the exit frame with
5817 // x1 (internal::Object** args_) as the data.
5818 __ Poke(x1, 1 * kPointerSize);
5819 __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
5821 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5823 ExternalReference thunk_ref =
5824 ExternalReference::invoke_accessor_getter_callback(isolate());
5826 const int spill_offset = 1 + kApiStackSpace;
5827 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5828 kStackUnwindSpace, NULL, spill_offset,
5829 MemOperand(fp, 6 * kPointerSize), NULL);
5835 } // namespace internal
5838 #endif // V8_TARGET_ARCH_ARM64