1 // Copyright 2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
41 // When running without a simulator we call the entry directly.
42 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
43 reinterpret_cast<Object*>(entry(p0, p1, p2, p3, p4))
45 // Calculated the stack limit beyond which we will throw stack overflow errors.
46 // This macro must be called from a C++ method. It relies on being able to take
47 // the address of "this" to get a value on the current execution stack and then
48 // calculates the stack limit based on that value.
49 #define GENERATED_CODE_STACK_LIMIT(limit) \
50 (reinterpret_cast<uintptr_t>(this) - limit)
52 #else // defined(__arm__)
54 // When running with the simulator transition into simulated execution at this
56 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
57 assembler::arm::Simulator::current()->Call((int32_t)entry, (int32_t)p0, \
58 (int32_t)p1, (int32_t)p2, (int32_t)p3, (int32_t)p4)
60 // The simulator has its own stack. Thus it has a different stack limit from
61 // the C-based native code.
62 #define GENERATED_CODE_STACK_LIMIT(limit) \
63 (assembler::arm::Simulator::current()->StackLimit())
66 #include "constants-arm.h"
69 namespace assembler { namespace arm {
73 friend class Debugger;
77 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
78 r8, r9, r10, r11, r12, r13, r14, r15,
88 // The currently executing Simulator instance. Potentially there can be one
89 // for each native thread.
90 static Simulator* current();
92 // Accessors for register state. Reading the pc value adheres to the ARM
93 // architecture specification and is off by a 8 from the currently executing
95 void set_register(int reg, int32_t value);
96 int32_t get_register(int reg) const;
98 // Special case of set_register and get_register to access the raw PC value.
99 void set_pc(int32_t value);
100 int32_t get_pc() const;
102 // Accessor to the internal simulator stack area.
103 uintptr_t StackLimit() const;
105 // Executes ARM instructions until the PC reaches end_sim_pc.
108 // V8 generally calls into generated code with 5 parameters. This is a
109 // convenience function, which sets up the simulator state and grabs the
111 v8::internal::Object* Call(int32_t entry, int32_t p0, int32_t p1,
112 int32_t p2, int32_t p3, int32_t p4);
115 enum special_values {
116 // Known bad pc value to ensure that the simulator does not execute
117 // without being properly setup.
119 // A pc value used to signal the simulator to stop execution. Generally
120 // the lr is set to this value on transition from native C code to
121 // simulated execution, so that the simulator can "return" to the native
126 // Unsupported instructions use Format to print an error and stop execution.
127 void Format(Instr* instr, const char* format);
129 // Checks if the current instruction should be executed based on its
131 bool ConditionallyExecute(Instr* instr);
133 // Helper functions to set the conditional flags in the architecture state.
134 void SetNZFlags(int32_t val);
135 void SetCFlag(bool val);
136 void SetVFlag(bool val);
137 bool CarryFrom(int32_t left, int32_t right);
138 bool BorrowFrom(int32_t left, int32_t right);
139 bool OverflowFrom(int32_t alu_out,
144 // Helper functions to decode common "addressing" modes
145 int32_t GetShiftRm(Instr* instr, bool* carry_out);
146 int32_t GetImm(Instr* instr, bool* carry_out);
147 void HandleRList(Instr* instr, bool load);
148 void SoftwareInterrupt(Instr* instr);
150 // Read and write memory.
151 inline uint8_t ReadBU(int32_t addr);
152 inline int8_t ReadB(int32_t addr);
153 inline void WriteB(int32_t addr, uint8_t value);
154 inline void WriteB(int32_t addr, int8_t value);
156 inline uint16_t ReadHU(int32_t addr, Instr* instr);
157 inline int16_t ReadH(int32_t addr, Instr* instr);
158 // Note: Overloaded on the sign of the value.
159 inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
160 inline void WriteH(int32_t addr, int16_t value, Instr* instr);
162 inline int ReadW(int32_t addr, Instr* instr);
163 inline void WriteW(int32_t addr, int value, Instr* instr);
165 // Executing is handled based on the instruction type.
166 void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one
167 void DecodeType2(Instr* instr);
168 void DecodeType3(Instr* instr);
169 void DecodeType4(Instr* instr);
170 void DecodeType5(Instr* instr);
171 void DecodeType6(Instr* instr);
172 void DecodeType7(Instr* instr);
174 // Executes one instruction.
175 void InstructionDecode(Instr* instr);
177 // For use in calls that take two double values, constructed from r0, r1, r2
179 void GetFpArgs(double* x, double* y);
180 void SetFpResult(const double& result);
181 void TrashCallerSaveRegisters();
183 // architecture state
184 int32_t registers_[16];
195 // registered breakpoints
197 instr_t break_instr_;
200 } } // namespace assembler::arm
202 #endif // defined(__arm__)
204 #endif // V8_ARM_SIMULATOR_ARM_H_