1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
39 #include "allocation.h"
41 #if !defined(USE_SIMULATOR)
42 // Running without a simulator on a native arm platform.
47 // When running without a simulator we call the entry directly.
48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49 (entry(p0, p1, p2, p3, p4))
51 // Call the generated regexp code directly. The entry function pointer should
52 // expect seven int/pointer sized arguments and return an int.
53 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
54 (entry(p0, p1, p2, p3, NULL, p4, p5, p6))
56 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
57 (reinterpret_cast<TryCatch*>(try_catch_address))
59 // The stack limit beyond which we will throw stack overflow errors in
60 // generated code. Because generated code on arm uses the C stack, we
61 // just use the C stack limit.
62 class SimulatorStack : public v8::internal::AllStatic {
64 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
68 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
69 return try_catch_address;
72 static inline void UnregisterCTryCatch() { }
75 } } // namespace v8::internal
77 #else // !defined(USE_SIMULATOR)
78 // Running with a simulator.
80 #include "constants-arm.h"
82 #include "assembler.h"
89 static const int LINE_VALID = 0;
90 static const int LINE_INVALID = 1;
92 static const int kPageShift = 12;
93 static const int kPageSize = 1 << kPageShift;
94 static const int kPageMask = kPageSize - 1;
95 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
96 static const int kLineLength = 1 << kLineShift;
97 static const int kLineMask = kLineLength - 1;
100 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
103 char* ValidityByte(int offset) {
104 return &validity_map_[offset >> kLineShift];
107 char* CachedData(int offset) {
108 return &data_[offset];
112 char data_[kPageSize]; // The cached data.
113 static const int kValidityMapSize = kPageSize >> kLineShift;
114 char validity_map_[kValidityMapSize]; // One byte per line.
120 friend class Debugger;
123 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
124 r8, r9, r10, r11, r12, r13, r14, r15,
129 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
130 s8, s9, s10, s11, s12, s13, s14, s15,
131 s16, s17, s18, s19, s20, s21, s22, s23,
132 s24, s25, s26, s27, s28, s29, s30, s31,
133 num_s_registers = 32,
134 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
135 d8, d9, d10, d11, d12, d13, d14, d15,
142 // The currently executing Simulator instance. Potentially there can be one
143 // for each native thread.
144 static Simulator* current();
146 // Accessors for register state. Reading the pc value adheres to the ARM
147 // architecture specification and is off by a 8 from the currently executing
149 void set_register(int reg, int32_t value);
150 int32_t get_register(int reg) const;
151 void set_dw_register(int dreg, const int* dbl);
154 void set_s_register(int reg, unsigned int value);
155 unsigned int get_s_register(int reg) const;
156 void set_d_register_from_double(int dreg, const double& dbl);
157 double get_double_from_d_register(int dreg);
158 void set_s_register_from_float(int sreg, const float dbl);
159 float get_float_from_s_register(int sreg);
160 void set_s_register_from_sinteger(int reg, const int value);
161 int get_sinteger_from_s_register(int reg);
163 // Special case of set_register and get_register to access the raw PC value.
164 void set_pc(int32_t value);
165 int32_t get_pc() const;
167 // Accessor to the internal simulator stack area.
168 uintptr_t StackLimit() const;
170 // Executes ARM instructions until the PC reaches end_sim_pc.
173 // Call on program start.
174 static void Initialize();
176 // V8 generally calls into generated JS code with 5 parameters and into
177 // generated RegExp code with 7 parameters. This is a convenience function,
178 // which sets up the simulator state and grabs the result on return.
179 int32_t Call(byte* entry, int argument_count, ...);
181 // Push an address onto the JS stack.
182 uintptr_t PushAddress(uintptr_t address);
184 // Pop an address from the JS stack.
185 uintptr_t PopAddress();
188 static void FlushICache(void* start, size_t size);
190 // Returns true if pc register contains one of the 'special_values' defined
191 // below (bad_lr, end_sim_pc).
192 bool has_bad_pc() const;
195 enum special_values {
196 // Known bad pc value to ensure that the simulator does not execute
197 // without being properly setup.
199 // A pc value used to signal the simulator to stop execution. Generally
200 // the lr is set to this value on transition from native C code to
201 // simulated execution, so that the simulator can "return" to the native
206 // Unsupported instructions use Format to print an error and stop execution.
207 void Format(Instruction* instr, const char* format);
209 // Checks if the current instruction should be executed based on its
211 bool ConditionallyExecute(Instruction* instr);
213 // Helper functions to set the conditional flags in the architecture state.
214 void SetNZFlags(int32_t val);
215 void SetCFlag(bool val);
216 void SetVFlag(bool val);
217 bool CarryFrom(int32_t left, int32_t right);
218 bool BorrowFrom(int32_t left, int32_t right);
219 bool OverflowFrom(int32_t alu_out,
225 void Compute_FPSCR_Flags(double val1, double val2);
226 void Copy_FPSCR_to_APSR();
228 // Helper functions to decode common "addressing" modes
229 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
230 int32_t GetImm(Instruction* instr, bool* carry_out);
231 void HandleRList(Instruction* instr, bool load);
232 void SoftwareInterrupt(Instruction* instr);
234 // Stop helper functions.
235 inline bool isStopInstruction(Instruction* instr);
236 inline bool isWatchedStop(uint32_t bkpt_code);
237 inline bool isEnabledStop(uint32_t bkpt_code);
238 inline void EnableStop(uint32_t bkpt_code);
239 inline void DisableStop(uint32_t bkpt_code);
240 inline void IncreaseStopCounter(uint32_t bkpt_code);
241 void PrintStopInfo(uint32_t code);
243 // Read and write memory.
244 inline uint8_t ReadBU(int32_t addr);
245 inline int8_t ReadB(int32_t addr);
246 inline void WriteB(int32_t addr, uint8_t value);
247 inline void WriteB(int32_t addr, int8_t value);
249 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
250 inline int16_t ReadH(int32_t addr, Instruction* instr);
251 // Note: Overloaded on the sign of the value.
252 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
253 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
255 inline int ReadW(int32_t addr, Instruction* instr);
256 inline void WriteW(int32_t addr, int value, Instruction* instr);
258 int32_t* ReadDW(int32_t addr);
259 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
261 // Executing is handled based on the instruction type.
262 // Both type 0 and type 1 rolled into one.
263 void DecodeType01(Instruction* instr);
264 void DecodeType2(Instruction* instr);
265 void DecodeType3(Instruction* instr);
266 void DecodeType4(Instruction* instr);
267 void DecodeType5(Instruction* instr);
268 void DecodeType6(Instruction* instr);
269 void DecodeType7(Instruction* instr);
272 void DecodeTypeVFP(Instruction* instr);
273 void DecodeType6CoprocessorIns(Instruction* instr);
275 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
276 void DecodeVCMP(Instruction* instr);
277 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
278 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
280 // Executes one instruction.
281 void InstructionDecode(Instruction* instr);
284 static void CheckICache(Instruction* instr);
285 static void FlushOnePage(intptr_t start, int size);
286 static CachePage* GetCachePage(void* page);
288 // Runtime call support.
289 static void* RedirectExternalReference(
290 void* external_function,
291 v8::internal::ExternalReference::Type type);
293 // For use in calls that take two double values, constructed from r0, r1, r2
295 void GetFpArgs(double* x, double* y);
296 void SetFpResult(const double& result);
297 void TrashCallerSaveRegisters();
299 // Architecture state.
300 // Saturating instructions require a Q flag to indicate saturation.
301 // There is currently no way to read the CPSR directly, and thus read the Q
302 // flag, so this is left unimplemented.
303 int32_t registers_[16];
309 // VFP architecture state.
310 unsigned int vfp_register[num_s_registers];
316 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
317 VFPRoundingMode FPSCR_rounding_mode_;
319 // VFP FP exception flags architecture state.
320 bool inv_op_vfp_flag_;
321 bool div_zero_vfp_flag_;
322 bool overflow_vfp_flag_;
323 bool underflow_vfp_flag_;
324 bool inexact_vfp_flag_;
326 // Simulator support.
330 static bool initialized_;
333 static v8::internal::HashMap* i_cache_;
335 // Registered breakpoints.
336 Instruction* break_pc_;
339 // A stop is watched if its code is less than kNumOfWatchedStops.
340 // Only watched stops support enabling/disabling and the counter feature.
341 static const uint32_t kNumOfWatchedStops = 256;
343 // Breakpoint is disabled if bit 31 is set.
344 static const uint32_t kStopDisabledBit = 1 << 31;
346 // A stop is enabled, meaning the simulator will stop when meeting the
347 // instruction, if bit 31 of watched_stops[code].count is unset.
348 // The value watched_stops[code].count & ~(1 << 31) indicates how many times
349 // the breakpoint was hit or gone through.
350 struct StopCountAndDesc {
354 StopCountAndDesc watched_stops[kNumOfWatchedStops];
358 // When running with the simulator transition into simulated execution at this
360 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
361 reinterpret_cast<Object*>(Simulator::current()->Call( \
362 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
364 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
365 Simulator::current()->Call( \
366 FUNCTION_ADDR(entry), 8, p0, p1, p2, p3, NULL, p4, p5, p6)
368 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
369 try_catch_address == \
370 NULL ? NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
373 // The simulator has its own stack. Thus it has a different stack limit from
374 // the C-based native code. Setting the c_limit to indicate a very small
375 // stack cause stack overflow errors, since the simulator ignores the input.
376 // This is unlikely to be an issue in practice, though it might cause testing
377 // trouble down the line.
378 class SimulatorStack : public v8::internal::AllStatic {
380 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
381 return Simulator::current()->StackLimit();
384 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
385 Simulator* sim = Simulator::current();
386 return sim->PushAddress(try_catch_address);
389 static inline void UnregisterCTryCatch() {
390 Simulator::current()->PopAddress();
394 } } // namespace v8::internal
396 #endif // !defined(USE_SIMULATOR)
397 #endif // V8_ARM_SIMULATOR_ARM_H_