1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
39 #include "allocation.h"
41 #if !defined(USE_SIMULATOR)
42 // Running without a simulator on a native arm platform.
47 // When running without a simulator we call the entry directly.
48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49 (entry(p0, p1, p2, p3, p4))
51 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52 void*, int*, Address, int, Isolate*);
55 // Call the generated regexp code directly. The code at the entry address
56 // should act as a function matching the type arm_regexp_matcher.
57 // The fifth argument is a dummy that reserves the space used for
58 // the return address added by the ExitFrame in native calls.
59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
60 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \
61 p0, p1, p2, p3, NULL, p4, p5, p6, p7))
63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64 reinterpret_cast<TryCatch*>(try_catch_address)
66 // The stack limit beyond which we will throw stack overflow errors in
67 // generated code. Because generated code on arm uses the C stack, we
68 // just use the C stack limit.
69 class SimulatorStack : public v8::internal::AllStatic {
71 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
77 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
78 return try_catch_address;
81 static inline void UnregisterCTryCatch() { }
84 } } // namespace v8::internal
86 #else // !defined(USE_SIMULATOR)
87 // Running with a simulator.
89 #include "constants-arm.h"
91 #include "assembler.h"
98 static const int LINE_VALID = 0;
99 static const int LINE_INVALID = 1;
101 static const int kPageShift = 12;
102 static const int kPageSize = 1 << kPageShift;
103 static const int kPageMask = kPageSize - 1;
104 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
105 static const int kLineLength = 1 << kLineShift;
106 static const int kLineMask = kLineLength - 1;
109 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
112 char* ValidityByte(int offset) {
113 return &validity_map_[offset >> kLineShift];
116 char* CachedData(int offset) {
117 return &data_[offset];
121 char data_[kPageSize]; // The cached data.
122 static const int kValidityMapSize = kPageSize >> kLineShift;
123 char validity_map_[kValidityMapSize]; // One byte per line.
129 friend class ArmDebugger;
132 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
133 r8, r9, r10, r11, r12, r13, r14, r15,
138 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
139 s8, s9, s10, s11, s12, s13, s14, s15,
140 s16, s17, s18, s19, s20, s21, s22, s23,
141 s24, s25, s26, s27, s28, s29, s30, s31,
142 num_s_registers = 32,
143 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
144 d8, d9, d10, d11, d12, d13, d14, d15,
148 explicit Simulator(Isolate* isolate);
151 // The currently executing Simulator instance. Potentially there can be one
152 // for each native thread.
153 static Simulator* current(v8::internal::Isolate* isolate);
155 // Accessors for register state. Reading the pc value adheres to the ARM
156 // architecture specification and is off by a 8 from the currently executing
158 void set_register(int reg, int32_t value);
159 int32_t get_register(int reg) const;
160 double get_double_from_register_pair(int reg);
161 void set_dw_register(int dreg, const int* dbl);
164 void set_s_register(int reg, unsigned int value);
165 unsigned int get_s_register(int reg) const;
166 void set_d_register_from_double(int dreg, const double& dbl);
167 double get_double_from_d_register(int dreg);
168 void set_s_register_from_float(int sreg, const float dbl);
169 float get_float_from_s_register(int sreg);
170 void set_s_register_from_sinteger(int reg, const int value);
171 int get_sinteger_from_s_register(int reg);
173 // Special case of set_register and get_register to access the raw PC value.
174 void set_pc(int32_t value);
175 int32_t get_pc() const;
177 // Accessor to the internal simulator stack area.
178 uintptr_t StackLimit() const;
180 // Executes ARM instructions until the PC reaches end_sim_pc.
183 // Call on program start.
184 static void Initialize(Isolate* isolate);
186 // V8 generally calls into generated JS code with 5 parameters and into
187 // generated RegExp code with 7 parameters. This is a convenience function,
188 // which sets up the simulator state and grabs the result on return.
189 int32_t Call(byte* entry, int argument_count, ...);
191 // Push an address onto the JS stack.
192 uintptr_t PushAddress(uintptr_t address);
194 // Pop an address from the JS stack.
195 uintptr_t PopAddress();
198 void set_last_debugger_input(char* input);
199 char* last_debugger_input() { return last_debugger_input_; }
202 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
205 // Returns true if pc register contains one of the 'special_values' defined
206 // below (bad_lr, end_sim_pc).
207 bool has_bad_pc() const;
209 // EABI variant for double arguments in use.
210 bool use_eabi_hardfloat() {
211 #if USE_EABI_HARDFLOAT
219 enum special_values {
220 // Known bad pc value to ensure that the simulator does not execute
221 // without being properly setup.
223 // A pc value used to signal the simulator to stop execution. Generally
224 // the lr is set to this value on transition from native C code to
225 // simulated execution, so that the simulator can "return" to the native
230 // Unsupported instructions use Format to print an error and stop execution.
231 void Format(Instruction* instr, const char* format);
233 // Checks if the current instruction should be executed based on its
235 bool ConditionallyExecute(Instruction* instr);
237 // Helper functions to set the conditional flags in the architecture state.
238 void SetNZFlags(int32_t val);
239 void SetCFlag(bool val);
240 void SetVFlag(bool val);
241 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
242 bool BorrowFrom(int32_t left, int32_t right);
243 bool OverflowFrom(int32_t alu_out,
248 inline int GetCarry() {
249 return c_flag_ ? 1 : 0;
253 void Compute_FPSCR_Flags(double val1, double val2);
254 void Copy_FPSCR_to_APSR();
256 // Helper functions to decode common "addressing" modes
257 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
258 int32_t GetImm(Instruction* instr, bool* carry_out);
259 void ProcessPUW(Instruction* instr,
262 intptr_t* start_address,
263 intptr_t* end_address);
264 void HandleRList(Instruction* instr, bool load);
265 void HandleVList(Instruction* inst);
266 void SoftwareInterrupt(Instruction* instr);
268 // Stop helper functions.
269 inline bool isStopInstruction(Instruction* instr);
270 inline bool isWatchedStop(uint32_t bkpt_code);
271 inline bool isEnabledStop(uint32_t bkpt_code);
272 inline void EnableStop(uint32_t bkpt_code);
273 inline void DisableStop(uint32_t bkpt_code);
274 inline void IncreaseStopCounter(uint32_t bkpt_code);
275 void PrintStopInfo(uint32_t code);
277 // Read and write memory.
278 inline uint8_t ReadBU(int32_t addr);
279 inline int8_t ReadB(int32_t addr);
280 inline void WriteB(int32_t addr, uint8_t value);
281 inline void WriteB(int32_t addr, int8_t value);
283 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
284 inline int16_t ReadH(int32_t addr, Instruction* instr);
285 // Note: Overloaded on the sign of the value.
286 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
287 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
289 inline int ReadW(int32_t addr, Instruction* instr);
290 inline void WriteW(int32_t addr, int value, Instruction* instr);
292 int32_t* ReadDW(int32_t addr);
293 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
295 // Executing is handled based on the instruction type.
296 // Both type 0 and type 1 rolled into one.
297 void DecodeType01(Instruction* instr);
298 void DecodeType2(Instruction* instr);
299 void DecodeType3(Instruction* instr);
300 void DecodeType4(Instruction* instr);
301 void DecodeType5(Instruction* instr);
302 void DecodeType6(Instruction* instr);
303 void DecodeType7(Instruction* instr);
306 void DecodeTypeVFP(Instruction* instr);
307 void DecodeType6CoprocessorIns(Instruction* instr);
309 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
310 void DecodeVCMP(Instruction* instr);
311 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
312 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
314 // Executes one instruction.
315 void InstructionDecode(Instruction* instr);
318 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
319 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
321 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
323 // Runtime call support.
324 static void* RedirectExternalReference(
325 void* external_function,
326 v8::internal::ExternalReference::Type type);
328 // For use in calls that take double value arguments.
329 void GetFpArgs(double* x, double* y);
330 void GetFpArgs(double* x);
331 void GetFpArgs(double* x, int32_t* y);
332 void SetFpResult(const double& result);
333 void TrashCallerSaveRegisters();
335 // Architecture state.
336 // Saturating instructions require a Q flag to indicate saturation.
337 // There is currently no way to read the CPSR directly, and thus read the Q
338 // flag, so this is left unimplemented.
339 int32_t registers_[16];
345 // VFP architecture state.
346 unsigned int vfp_register[num_s_registers];
352 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
353 VFPRoundingMode FPSCR_rounding_mode_;
355 // VFP FP exception flags architecture state.
356 bool inv_op_vfp_flag_;
357 bool div_zero_vfp_flag_;
358 bool overflow_vfp_flag_;
359 bool underflow_vfp_flag_;
360 bool inexact_vfp_flag_;
362 // Simulator support.
368 char* last_debugger_input_;
371 v8::internal::HashMap* i_cache_;
373 // Registered breakpoints.
374 Instruction* break_pc_;
377 v8::internal::Isolate* isolate_;
379 // A stop is watched if its code is less than kNumOfWatchedStops.
380 // Only watched stops support enabling/disabling and the counter feature.
381 static const uint32_t kNumOfWatchedStops = 256;
383 // Breakpoint is disabled if bit 31 is set.
384 static const uint32_t kStopDisabledBit = 1 << 31;
386 // A stop is enabled, meaning the simulator will stop when meeting the
387 // instruction, if bit 31 of watched_stops[code].count is unset.
388 // The value watched_stops[code].count & ~(1 << 31) indicates how many times
389 // the breakpoint was hit or gone through.
390 struct StopCountAndDesc {
394 StopCountAndDesc watched_stops[kNumOfWatchedStops];
398 // When running with the simulator transition into simulated execution at this
400 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
401 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
402 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
404 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
405 Simulator::current(Isolate::Current())->Call( \
406 entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
408 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
409 try_catch_address == NULL ? \
410 NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
413 // The simulator has its own stack. Thus it has a different stack limit from
414 // the C-based native code. Setting the c_limit to indicate a very small
415 // stack cause stack overflow errors, since the simulator ignores the input.
416 // This is unlikely to be an issue in practice, though it might cause testing
417 // trouble down the line.
418 class SimulatorStack : public v8::internal::AllStatic {
420 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
422 return Simulator::current(isolate)->StackLimit();
425 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
426 Simulator* sim = Simulator::current(Isolate::Current());
427 return sim->PushAddress(try_catch_address);
430 static inline void UnregisterCTryCatch() {
431 Simulator::current(Isolate::Current())->PopAddress();
435 } } // namespace v8::internal
437 #endif // !defined(USE_SIMULATOR)
438 #endif // V8_ARM_SIMULATOR_ARM_H_