1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
6 // Declares a Simulator for ARM instructions if we are not generating a native
7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a ARM HW platform.
13 #ifndef V8_ARM_SIMULATOR_ARM_H_
14 #define V8_ARM_SIMULATOR_ARM_H_
16 #include "src/allocation.h"
18 #if !defined(USE_SIMULATOR)
19 // Running without a simulator on a native arm platform.
24 // When running without a simulator we call the entry directly.
25 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
26 (entry(p0, p1, p2, p3, p4))
28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
29 void*, int*, int, Address, int, Isolate*);
32 // Call the generated regexp code directly. The code at the entry address
33 // should act as a function matching the type arm_regexp_matcher.
34 // The fifth argument is a dummy that reserves the space used for
35 // the return address added by the ExitFrame in native calls.
36 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
37 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \
38 p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
40 // The stack limit beyond which we will throw stack overflow errors in
41 // generated code. Because generated code on arm uses the C stack, we
42 // just use the C stack limit.
43 class SimulatorStack : public v8::internal::AllStatic {
45 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
51 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
52 return try_catch_address;
55 static inline void UnregisterCTryCatch() { }
58 } } // namespace v8::internal
60 #else // !defined(USE_SIMULATOR)
61 // Running with a simulator.
63 #include "src/arm/constants-arm.h"
64 #include "src/assembler.h"
65 #include "src/hashmap.h"
72 static const int LINE_VALID = 0;
73 static const int LINE_INVALID = 1;
75 static const int kPageShift = 12;
76 static const int kPageSize = 1 << kPageShift;
77 static const int kPageMask = kPageSize - 1;
78 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
79 static const int kLineLength = 1 << kLineShift;
80 static const int kLineMask = kLineLength - 1;
83 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
86 char* ValidityByte(int offset) {
87 return &validity_map_[offset >> kLineShift];
90 char* CachedData(int offset) {
91 return &data_[offset];
95 char data_[kPageSize]; // The cached data.
96 static const int kValidityMapSize = kPageSize >> kLineShift;
97 char validity_map_[kValidityMapSize]; // One byte per line.
103 friend class ArmDebugger;
106 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
107 r8, r9, r10, r11, r12, r13, r14, r15,
112 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
113 s8, s9, s10, s11, s12, s13, s14, s15,
114 s16, s17, s18, s19, s20, s21, s22, s23,
115 s24, s25, s26, s27, s28, s29, s30, s31,
116 num_s_registers = 32,
117 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
118 d8, d9, d10, d11, d12, d13, d14, d15,
119 d16, d17, d18, d19, d20, d21, d22, d23,
120 d24, d25, d26, d27, d28, d29, d30, d31,
121 num_d_registers = 32,
122 q0 = 0, q1, q2, q3, q4, q5, q6, q7,
123 q8, q9, q10, q11, q12, q13, q14, q15,
127 explicit Simulator(Isolate* isolate);
130 // The currently executing Simulator instance. Potentially there can be one
131 // for each native thread.
132 static Simulator* current(v8::internal::Isolate* isolate);
134 // Accessors for register state. Reading the pc value adheres to the ARM
135 // architecture specification and is off by a 8 from the currently executing
137 void set_register(int reg, int32_t value);
138 int32_t get_register(int reg) const;
139 double get_double_from_register_pair(int reg);
140 void set_register_pair_from_double(int reg, double* value);
141 void set_dw_register(int dreg, const int* dbl);
144 void get_d_register(int dreg, uint64_t* value);
145 void set_d_register(int dreg, const uint64_t* value);
146 void get_d_register(int dreg, uint32_t* value);
147 void set_d_register(int dreg, const uint32_t* value);
148 void get_q_register(int qreg, uint64_t* value);
149 void set_q_register(int qreg, const uint64_t* value);
150 void get_q_register(int qreg, uint32_t* value);
151 void set_q_register(int qreg, const uint32_t* value);
153 void set_s_register(int reg, unsigned int value);
154 unsigned int get_s_register(int reg) const;
156 void set_d_register_from_double(int dreg, const double& dbl) {
157 SetVFPRegister<double, 2>(dreg, dbl);
160 double get_double_from_d_register(int dreg) {
161 return GetFromVFPRegister<double, 2>(dreg);
164 void set_s_register_from_float(int sreg, const float flt) {
165 SetVFPRegister<float, 1>(sreg, flt);
168 float get_float_from_s_register(int sreg) {
169 return GetFromVFPRegister<float, 1>(sreg);
172 void set_s_register_from_sinteger(int sreg, const int sint) {
173 SetVFPRegister<int, 1>(sreg, sint);
176 int get_sinteger_from_s_register(int sreg) {
177 return GetFromVFPRegister<int, 1>(sreg);
180 // Special case of set_register and get_register to access the raw PC value.
181 void set_pc(int32_t value);
182 int32_t get_pc() const;
185 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
188 // Accessor to the internal simulator stack area.
189 uintptr_t StackLimit() const;
191 // Executes ARM instructions until the PC reaches end_sim_pc.
194 // Call on program start.
195 static void Initialize(Isolate* isolate);
197 // V8 generally calls into generated JS code with 5 parameters and into
198 // generated RegExp code with 7 parameters. This is a convenience function,
199 // which sets up the simulator state and grabs the result on return.
200 int32_t Call(byte* entry, int argument_count, ...);
201 // Alternative: call a 2-argument double function.
202 void CallFP(byte* entry, double d0, double d1);
203 int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
204 double CallFPReturnsDouble(byte* entry, double d0, double d1);
206 // Push an address onto the JS stack.
207 uintptr_t PushAddress(uintptr_t address);
209 // Pop an address from the JS stack.
210 uintptr_t PopAddress();
213 void set_last_debugger_input(char* input);
214 char* last_debugger_input() { return last_debugger_input_; }
217 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
220 // Returns true if pc register contains one of the 'special_values' defined
221 // below (bad_lr, end_sim_pc).
222 bool has_bad_pc() const;
224 // EABI variant for double arguments in use.
225 bool use_eabi_hardfloat() {
226 #if USE_EABI_HARDFLOAT
234 enum special_values {
235 // Known bad pc value to ensure that the simulator does not execute
236 // without being properly setup.
238 // A pc value used to signal the simulator to stop execution. Generally
239 // the lr is set to this value on transition from native C code to
240 // simulated execution, so that the simulator can "return" to the native
245 // Unsupported instructions use Format to print an error and stop execution.
246 void Format(Instruction* instr, const char* format);
248 // Checks if the current instruction should be executed based on its
250 inline bool ConditionallyExecute(Instruction* instr);
252 // Helper functions to set the conditional flags in the architecture state.
253 void SetNZFlags(int32_t val);
254 void SetCFlag(bool val);
255 void SetVFlag(bool val);
256 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
257 bool BorrowFrom(int32_t left, int32_t right);
258 bool OverflowFrom(int32_t alu_out,
263 inline int GetCarry() {
264 return c_flag_ ? 1 : 0;
268 void Compute_FPSCR_Flags(float val1, float val2);
269 void Compute_FPSCR_Flags(double val1, double val2);
270 void Copy_FPSCR_to_APSR();
271 inline float canonicalizeNaN(float value);
272 inline double canonicalizeNaN(double value);
274 // Helper functions to decode common "addressing" modes
275 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
276 int32_t GetImm(Instruction* instr, bool* carry_out);
277 int32_t ProcessPU(Instruction* instr,
280 intptr_t* start_address,
281 intptr_t* end_address);
282 void HandleRList(Instruction* instr, bool load);
283 void HandleVList(Instruction* inst);
284 void SoftwareInterrupt(Instruction* instr);
286 // Stop helper functions.
287 inline bool isStopInstruction(Instruction* instr);
288 inline bool isWatchedStop(uint32_t bkpt_code);
289 inline bool isEnabledStop(uint32_t bkpt_code);
290 inline void EnableStop(uint32_t bkpt_code);
291 inline void DisableStop(uint32_t bkpt_code);
292 inline void IncreaseStopCounter(uint32_t bkpt_code);
293 void PrintStopInfo(uint32_t code);
295 // Read and write memory.
296 inline uint8_t ReadBU(int32_t addr);
297 inline int8_t ReadB(int32_t addr);
298 inline void WriteB(int32_t addr, uint8_t value);
299 inline void WriteB(int32_t addr, int8_t value);
301 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
302 inline int16_t ReadH(int32_t addr, Instruction* instr);
303 // Note: Overloaded on the sign of the value.
304 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
305 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
307 inline int ReadW(int32_t addr, Instruction* instr);
308 inline void WriteW(int32_t addr, int value, Instruction* instr);
310 int32_t* ReadDW(int32_t addr);
311 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
313 // Executing is handled based on the instruction type.
314 // Both type 0 and type 1 rolled into one.
315 void DecodeType01(Instruction* instr);
316 void DecodeType2(Instruction* instr);
317 void DecodeType3(Instruction* instr);
318 void DecodeType4(Instruction* instr);
319 void DecodeType5(Instruction* instr);
320 void DecodeType6(Instruction* instr);
321 void DecodeType7(Instruction* instr);
324 void DecodeTypeVFP(Instruction* instr);
325 void DecodeType6CoprocessorIns(Instruction* instr);
326 void DecodeSpecialCondition(Instruction* instr);
328 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
329 void DecodeVCMP(Instruction* instr);
330 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
331 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
333 // Executes one instruction.
334 void InstructionDecode(Instruction* instr);
337 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
338 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
340 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
342 // Runtime call support.
343 static void* RedirectExternalReference(
344 void* external_function,
345 v8::internal::ExternalReference::Type type);
347 // Handle arguments and return value for runtime FP functions.
348 void GetFpArgs(double* x, double* y, int32_t* z);
349 void SetFpResult(const double& result);
350 void TrashCallerSaveRegisters();
352 template<class ReturnType, int register_size>
353 ReturnType GetFromVFPRegister(int reg_index);
355 template<class InputType, int register_size>
356 void SetVFPRegister(int reg_index, const InputType& value);
358 void CallInternal(byte* entry);
360 // Architecture state.
361 // Saturating instructions require a Q flag to indicate saturation.
362 // There is currently no way to read the CPSR directly, and thus read the Q
363 // flag, so this is left unimplemented.
364 int32_t registers_[16];
370 // VFP architecture state.
371 unsigned int vfp_registers_[num_d_registers * 2];
377 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
378 VFPRoundingMode FPSCR_rounding_mode_;
379 bool FPSCR_default_NaN_mode_;
381 // VFP FP exception flags architecture state.
382 bool inv_op_vfp_flag_;
383 bool div_zero_vfp_flag_;
384 bool overflow_vfp_flag_;
385 bool underflow_vfp_flag_;
386 bool inexact_vfp_flag_;
388 // Simulator support.
394 char* last_debugger_input_;
397 v8::internal::HashMap* i_cache_;
399 // Registered breakpoints.
400 Instruction* break_pc_;
403 v8::internal::Isolate* isolate_;
405 // A stop is watched if its code is less than kNumOfWatchedStops.
406 // Only watched stops support enabling/disabling and the counter feature.
407 static const uint32_t kNumOfWatchedStops = 256;
409 // Breakpoint is disabled if bit 31 is set.
410 static const uint32_t kStopDisabledBit = 1 << 31;
412 // A stop is enabled, meaning the simulator will stop when meeting the
413 // instruction, if bit 31 of watched_stops_[code].count is unset.
414 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
415 // the breakpoint was hit or gone through.
416 struct StopCountAndDesc {
420 StopCountAndDesc watched_stops_[kNumOfWatchedStops];
424 // When running with the simulator transition into simulated execution at this
426 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
427 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
428 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
430 #define CALL_GENERATED_FP_INT(entry, p0, p1) \
431 Simulator::current(Isolate::Current())->CallFPReturnsInt( \
432 FUNCTION_ADDR(entry), p0, p1)
434 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
435 Simulator::current(Isolate::Current())->Call( \
436 entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
439 // The simulator has its own stack. Thus it has a different stack limit from
440 // the C-based native code. Setting the c_limit to indicate a very small
441 // stack cause stack overflow errors, since the simulator ignores the input.
442 // This is unlikely to be an issue in practice, though it might cause testing
443 // trouble down the line.
444 class SimulatorStack : public v8::internal::AllStatic {
446 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
448 return Simulator::current(isolate)->StackLimit();
451 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
452 Simulator* sim = Simulator::current(Isolate::Current());
453 return sim->PushAddress(try_catch_address);
456 static inline void UnregisterCTryCatch() {
457 Simulator::current(Isolate::Current())->PopAddress();
461 } } // namespace v8::internal
463 #endif // !defined(USE_SIMULATOR)
464 #endif // V8_ARM_SIMULATOR_ARM_H_