1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
39 #include "allocation.h"
41 #if !defined(USE_SIMULATOR)
42 // Running without a simulator on a native arm platform.
47 // When running without a simulator we call the entry directly.
48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49 (entry(p0, p1, p2, p3, p4))
51 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52 void*, int*, Address, int, Isolate*);
55 // Call the generated regexp code directly. The code at the entry address
56 // should act as a function matching the type arm_regexp_matcher.
57 // The fifth argument is a dummy that reserves the space used for
58 // the return address added by the ExitFrame in native calls.
59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
60 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \
61 p0, p1, p2, p3, NULL, p4, p5, p6, p7))
63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64 reinterpret_cast<TryCatch*>(try_catch_address)
66 // The stack limit beyond which we will throw stack overflow errors in
67 // generated code. Because generated code on arm uses the C stack, we
68 // just use the C stack limit.
69 class SimulatorStack : public v8::internal::AllStatic {
71 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
75 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
76 return try_catch_address;
79 static inline void UnregisterCTryCatch() { }
82 } } // namespace v8::internal
84 #else // !defined(USE_SIMULATOR)
85 // Running with a simulator.
87 #include "constants-arm.h"
89 #include "assembler.h"
96 static const int LINE_VALID = 0;
97 static const int LINE_INVALID = 1;
99 static const int kPageShift = 12;
100 static const int kPageSize = 1 << kPageShift;
101 static const int kPageMask = kPageSize - 1;
102 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
103 static const int kLineLength = 1 << kLineShift;
104 static const int kLineMask = kLineLength - 1;
107 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
110 char* ValidityByte(int offset) {
111 return &validity_map_[offset >> kLineShift];
114 char* CachedData(int offset) {
115 return &data_[offset];
119 char data_[kPageSize]; // The cached data.
120 static const int kValidityMapSize = kPageSize >> kLineShift;
121 char validity_map_[kValidityMapSize]; // One byte per line.
127 friend class ArmDebugger;
130 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
131 r8, r9, r10, r11, r12, r13, r14, r15,
136 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
137 s8, s9, s10, s11, s12, s13, s14, s15,
138 s16, s17, s18, s19, s20, s21, s22, s23,
139 s24, s25, s26, s27, s28, s29, s30, s31,
140 num_s_registers = 32,
141 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
142 d8, d9, d10, d11, d12, d13, d14, d15,
149 // The currently executing Simulator instance. Potentially there can be one
150 // for each native thread.
151 static Simulator* current(v8::internal::Isolate* isolate);
153 // Accessors for register state. Reading the pc value adheres to the ARM
154 // architecture specification and is off by a 8 from the currently executing
156 void set_register(int reg, int32_t value);
157 int32_t get_register(int reg) const;
158 void set_dw_register(int dreg, const int* dbl);
161 void set_s_register(int reg, unsigned int value);
162 unsigned int get_s_register(int reg) const;
163 void set_d_register_from_double(int dreg, const double& dbl);
164 double get_double_from_d_register(int dreg);
165 void set_s_register_from_float(int sreg, const float dbl);
166 float get_float_from_s_register(int sreg);
167 void set_s_register_from_sinteger(int reg, const int value);
168 int get_sinteger_from_s_register(int reg);
170 // Special case of set_register and get_register to access the raw PC value.
171 void set_pc(int32_t value);
172 int32_t get_pc() const;
174 // Accessor to the internal simulator stack area.
175 uintptr_t StackLimit() const;
177 // Executes ARM instructions until the PC reaches end_sim_pc.
180 // Call on program start.
181 static void Initialize();
183 // V8 generally calls into generated JS code with 5 parameters and into
184 // generated RegExp code with 7 parameters. This is a convenience function,
185 // which sets up the simulator state and grabs the result on return.
186 int32_t Call(byte* entry, int argument_count, ...);
188 // Push an address onto the JS stack.
189 uintptr_t PushAddress(uintptr_t address);
191 // Pop an address from the JS stack.
192 uintptr_t PopAddress();
195 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
198 // Returns true if pc register contains one of the 'special_values' defined
199 // below (bad_lr, end_sim_pc).
200 bool has_bad_pc() const;
203 enum special_values {
204 // Known bad pc value to ensure that the simulator does not execute
205 // without being properly setup.
207 // A pc value used to signal the simulator to stop execution. Generally
208 // the lr is set to this value on transition from native C code to
209 // simulated execution, so that the simulator can "return" to the native
214 // Unsupported instructions use Format to print an error and stop execution.
215 void Format(Instruction* instr, const char* format);
217 // Checks if the current instruction should be executed based on its
219 bool ConditionallyExecute(Instruction* instr);
221 // Helper functions to set the conditional flags in the architecture state.
222 void SetNZFlags(int32_t val);
223 void SetCFlag(bool val);
224 void SetVFlag(bool val);
225 bool CarryFrom(int32_t left, int32_t right);
226 bool BorrowFrom(int32_t left, int32_t right);
227 bool OverflowFrom(int32_t alu_out,
233 void Compute_FPSCR_Flags(double val1, double val2);
234 void Copy_FPSCR_to_APSR();
236 // Helper functions to decode common "addressing" modes
237 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
238 int32_t GetImm(Instruction* instr, bool* carry_out);
239 void ProcessPUW(Instruction* instr,
242 intptr_t* start_address,
243 intptr_t* end_address);
244 void HandleRList(Instruction* instr, bool load);
245 void HandleVList(Instruction* inst);
246 void SoftwareInterrupt(Instruction* instr);
248 // Stop helper functions.
249 inline bool isStopInstruction(Instruction* instr);
250 inline bool isWatchedStop(uint32_t bkpt_code);
251 inline bool isEnabledStop(uint32_t bkpt_code);
252 inline void EnableStop(uint32_t bkpt_code);
253 inline void DisableStop(uint32_t bkpt_code);
254 inline void IncreaseStopCounter(uint32_t bkpt_code);
255 void PrintStopInfo(uint32_t code);
257 // Read and write memory.
258 inline uint8_t ReadBU(int32_t addr);
259 inline int8_t ReadB(int32_t addr);
260 inline void WriteB(int32_t addr, uint8_t value);
261 inline void WriteB(int32_t addr, int8_t value);
263 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
264 inline int16_t ReadH(int32_t addr, Instruction* instr);
265 // Note: Overloaded on the sign of the value.
266 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
267 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
269 inline int ReadW(int32_t addr, Instruction* instr);
270 inline void WriteW(int32_t addr, int value, Instruction* instr);
272 int32_t* ReadDW(int32_t addr);
273 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
275 // Executing is handled based on the instruction type.
276 // Both type 0 and type 1 rolled into one.
277 void DecodeType01(Instruction* instr);
278 void DecodeType2(Instruction* instr);
279 void DecodeType3(Instruction* instr);
280 void DecodeType4(Instruction* instr);
281 void DecodeType5(Instruction* instr);
282 void DecodeType6(Instruction* instr);
283 void DecodeType7(Instruction* instr);
286 void DecodeTypeVFP(Instruction* instr);
287 void DecodeType6CoprocessorIns(Instruction* instr);
289 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
290 void DecodeVCMP(Instruction* instr);
291 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
292 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
294 // Executes one instruction.
295 void InstructionDecode(Instruction* instr);
298 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
299 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
301 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
303 // Runtime call support.
304 static void* RedirectExternalReference(
305 void* external_function,
306 v8::internal::ExternalReference::Type type);
308 // For use in calls that take two double values, constructed from r0, r1, r2
310 void GetFpArgs(double* x, double* y);
311 void SetFpResult(const double& result);
312 void TrashCallerSaveRegisters();
314 // Architecture state.
315 // Saturating instructions require a Q flag to indicate saturation.
316 // There is currently no way to read the CPSR directly, and thus read the Q
317 // flag, so this is left unimplemented.
318 int32_t registers_[16];
324 // VFP architecture state.
325 unsigned int vfp_register[num_s_registers];
331 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
332 VFPRoundingMode FPSCR_rounding_mode_;
334 // VFP FP exception flags architecture state.
335 bool inv_op_vfp_flag_;
336 bool div_zero_vfp_flag_;
337 bool overflow_vfp_flag_;
338 bool underflow_vfp_flag_;
339 bool inexact_vfp_flag_;
341 // Simulator support.
347 v8::internal::HashMap* i_cache_;
349 // Registered breakpoints.
350 Instruction* break_pc_;
353 v8::internal::Isolate* isolate_;
355 // A stop is watched if its code is less than kNumOfWatchedStops.
356 // Only watched stops support enabling/disabling and the counter feature.
357 static const uint32_t kNumOfWatchedStops = 256;
359 // Breakpoint is disabled if bit 31 is set.
360 static const uint32_t kStopDisabledBit = 1 << 31;
362 // A stop is enabled, meaning the simulator will stop when meeting the
363 // instruction, if bit 31 of watched_stops[code].count is unset.
364 // The value watched_stops[code].count & ~(1 << 31) indicates how many times
365 // the breakpoint was hit or gone through.
366 struct StopCountAndDesc {
370 StopCountAndDesc watched_stops[kNumOfWatchedStops];
374 // When running with the simulator transition into simulated execution at this
376 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
377 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
378 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
380 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
381 Simulator::current(Isolate::Current())->Call( \
382 entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
384 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
385 try_catch_address == NULL ? \
386 NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
389 // The simulator has its own stack. Thus it has a different stack limit from
390 // the C-based native code. Setting the c_limit to indicate a very small
391 // stack cause stack overflow errors, since the simulator ignores the input.
392 // This is unlikely to be an issue in practice, though it might cause testing
393 // trouble down the line.
394 class SimulatorStack : public v8::internal::AllStatic {
396 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
397 return Simulator::current(Isolate::Current())->StackLimit();
400 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
401 Simulator* sim = Simulator::current(Isolate::Current());
402 return sim->PushAddress(try_catch_address);
405 static inline void UnregisterCTryCatch() {
406 Simulator::current(Isolate::Current())->PopAddress();
410 } } // namespace v8::internal
412 #endif // !defined(USE_SIMULATOR)
413 #endif // V8_ARM_SIMULATOR_ARM_H_