1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
6 // Declares a Simulator for ARM instructions if we are not generating a native
7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a ARM HW platform.
13 #ifndef V8_ARM_SIMULATOR_ARM_H_
14 #define V8_ARM_SIMULATOR_ARM_H_
16 #include "src/allocation.h"
18 #if !defined(USE_SIMULATOR)
19 // Running without a simulator on a native arm platform.
24 // When running without a simulator we call the entry directly.
25 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
26 (entry(p0, p1, p2, p3, p4))
28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
29 void*, int*, int, Address, int, Isolate*);
32 // Call the generated regexp code directly. The code at the entry address
33 // should act as a function matching the type arm_regexp_matcher.
34 // The fifth argument is a dummy that reserves the space used for
35 // the return address added by the ExitFrame in native calls.
36 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
37 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \
38 p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
40 // The stack limit beyond which we will throw stack overflow errors in
41 // generated code. Because generated code on arm uses the C stack, we
42 // just use the C stack limit.
43 class SimulatorStack : public v8::internal::AllStatic {
45 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
51 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
52 return try_catch_address;
55 static inline void UnregisterCTryCatch() { }
58 } // namespace internal
61 #else // !defined(USE_SIMULATOR)
62 // Running with a simulator.
64 #include "src/arm/constants-arm.h"
65 #include "src/assembler.h"
66 #include "src/hashmap.h"
73 static const int LINE_VALID = 0;
74 static const int LINE_INVALID = 1;
76 static const int kPageShift = 12;
77 static const int kPageSize = 1 << kPageShift;
78 static const int kPageMask = kPageSize - 1;
79 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
80 static const int kLineLength = 1 << kLineShift;
81 static const int kLineMask = kLineLength - 1;
84 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
87 char* ValidityByte(int offset) {
88 return &validity_map_[offset >> kLineShift];
91 char* CachedData(int offset) {
92 return &data_[offset];
96 char data_[kPageSize]; // The cached data.
97 static const int kValidityMapSize = kPageSize >> kLineShift;
98 char validity_map_[kValidityMapSize]; // One byte per line.
104 friend class ArmDebugger;
107 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
108 r8, r9, r10, r11, r12, r13, r14, r15,
113 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
114 s8, s9, s10, s11, s12, s13, s14, s15,
115 s16, s17, s18, s19, s20, s21, s22, s23,
116 s24, s25, s26, s27, s28, s29, s30, s31,
117 num_s_registers = 32,
118 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
119 d8, d9, d10, d11, d12, d13, d14, d15,
120 d16, d17, d18, d19, d20, d21, d22, d23,
121 d24, d25, d26, d27, d28, d29, d30, d31,
122 num_d_registers = 32,
123 q0 = 0, q1, q2, q3, q4, q5, q6, q7,
124 q8, q9, q10, q11, q12, q13, q14, q15,
128 explicit Simulator(Isolate* isolate);
131 // The currently executing Simulator instance. Potentially there can be one
132 // for each native thread.
133 static Simulator* current(v8::internal::Isolate* isolate);
135 // Accessors for register state. Reading the pc value adheres to the ARM
136 // architecture specification and is off by a 8 from the currently executing
138 void set_register(int reg, int32_t value);
139 int32_t get_register(int reg) const;
140 double get_double_from_register_pair(int reg);
141 void set_register_pair_from_double(int reg, double* value);
142 void set_dw_register(int dreg, const int* dbl);
145 void get_d_register(int dreg, uint64_t* value);
146 void set_d_register(int dreg, const uint64_t* value);
147 void get_d_register(int dreg, uint32_t* value);
148 void set_d_register(int dreg, const uint32_t* value);
149 void get_q_register(int qreg, uint64_t* value);
150 void set_q_register(int qreg, const uint64_t* value);
151 void get_q_register(int qreg, uint32_t* value);
152 void set_q_register(int qreg, const uint32_t* value);
154 void set_s_register(int reg, unsigned int value);
155 unsigned int get_s_register(int reg) const;
157 void set_d_register_from_double(int dreg, const double& dbl) {
158 SetVFPRegister<double, 2>(dreg, dbl);
161 double get_double_from_d_register(int dreg) {
162 return GetFromVFPRegister<double, 2>(dreg);
165 void set_s_register_from_float(int sreg, const float flt) {
166 SetVFPRegister<float, 1>(sreg, flt);
169 float get_float_from_s_register(int sreg) {
170 return GetFromVFPRegister<float, 1>(sreg);
173 void set_s_register_from_sinteger(int sreg, const int sint) {
174 SetVFPRegister<int, 1>(sreg, sint);
177 int get_sinteger_from_s_register(int sreg) {
178 return GetFromVFPRegister<int, 1>(sreg);
181 // Special case of set_register and get_register to access the raw PC value.
182 void set_pc(int32_t value);
183 int32_t get_pc() const;
185 Address get_sp() const {
186 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
189 // Accessor to the internal simulator stack area.
190 uintptr_t StackLimit(uintptr_t c_limit) const;
192 // Executes ARM instructions until the PC reaches end_sim_pc.
195 // Call on program start.
196 static void Initialize(Isolate* isolate);
198 static void TearDown(HashMap* i_cache, Redirection* first);
200 // V8 generally calls into generated JS code with 5 parameters and into
201 // generated RegExp code with 7 parameters. This is a convenience function,
202 // which sets up the simulator state and grabs the result on return.
203 int32_t Call(byte* entry, int argument_count, ...);
204 // Alternative: call a 2-argument double function.
205 void CallFP(byte* entry, double d0, double d1);
206 int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
207 double CallFPReturnsDouble(byte* entry, double d0, double d1);
209 // Push an address onto the JS stack.
210 uintptr_t PushAddress(uintptr_t address);
212 // Pop an address from the JS stack.
213 uintptr_t PopAddress();
216 void set_last_debugger_input(char* input);
217 char* last_debugger_input() { return last_debugger_input_; }
220 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
223 // Returns true if pc register contains one of the 'special_values' defined
224 // below (bad_lr, end_sim_pc).
225 bool has_bad_pc() const;
227 // EABI variant for double arguments in use.
228 bool use_eabi_hardfloat() {
229 #if USE_EABI_HARDFLOAT
237 enum special_values {
238 // Known bad pc value to ensure that the simulator does not execute
239 // without being properly setup.
241 // A pc value used to signal the simulator to stop execution. Generally
242 // the lr is set to this value on transition from native C code to
243 // simulated execution, so that the simulator can "return" to the native
248 // Unsupported instructions use Format to print an error and stop execution.
249 void Format(Instruction* instr, const char* format);
251 // Checks if the current instruction should be executed based on its
253 inline bool ConditionallyExecute(Instruction* instr);
255 // Helper functions to set the conditional flags in the architecture state.
256 void SetNZFlags(int32_t val);
257 void SetCFlag(bool val);
258 void SetVFlag(bool val);
259 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
260 bool BorrowFrom(int32_t left, int32_t right);
261 bool OverflowFrom(int32_t alu_out,
266 inline int GetCarry() {
267 return c_flag_ ? 1 : 0;
271 void Compute_FPSCR_Flags(float val1, float val2);
272 void Compute_FPSCR_Flags(double val1, double val2);
273 void Copy_FPSCR_to_APSR();
274 inline float canonicalizeNaN(float value);
275 inline double canonicalizeNaN(double value);
277 // Helper functions to decode common "addressing" modes
278 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
279 int32_t GetImm(Instruction* instr, bool* carry_out);
280 int32_t ProcessPU(Instruction* instr,
283 intptr_t* start_address,
284 intptr_t* end_address);
285 void HandleRList(Instruction* instr, bool load);
286 void HandleVList(Instruction* inst);
287 void SoftwareInterrupt(Instruction* instr);
289 // Stop helper functions.
290 inline bool isStopInstruction(Instruction* instr);
291 inline bool isWatchedStop(uint32_t bkpt_code);
292 inline bool isEnabledStop(uint32_t bkpt_code);
293 inline void EnableStop(uint32_t bkpt_code);
294 inline void DisableStop(uint32_t bkpt_code);
295 inline void IncreaseStopCounter(uint32_t bkpt_code);
296 void PrintStopInfo(uint32_t code);
298 // Read and write memory.
299 inline uint8_t ReadBU(int32_t addr);
300 inline int8_t ReadB(int32_t addr);
301 inline void WriteB(int32_t addr, uint8_t value);
302 inline void WriteB(int32_t addr, int8_t value);
304 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
305 inline int16_t ReadH(int32_t addr, Instruction* instr);
306 // Note: Overloaded on the sign of the value.
307 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
308 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
310 inline int ReadW(int32_t addr, Instruction* instr);
311 inline void WriteW(int32_t addr, int value, Instruction* instr);
313 int32_t* ReadDW(int32_t addr);
314 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
316 // Executing is handled based on the instruction type.
317 // Both type 0 and type 1 rolled into one.
318 void DecodeType01(Instruction* instr);
319 void DecodeType2(Instruction* instr);
320 void DecodeType3(Instruction* instr);
321 void DecodeType4(Instruction* instr);
322 void DecodeType5(Instruction* instr);
323 void DecodeType6(Instruction* instr);
324 void DecodeType7(Instruction* instr);
327 void DecodeTypeVFP(Instruction* instr);
328 void DecodeType6CoprocessorIns(Instruction* instr);
329 void DecodeSpecialCondition(Instruction* instr);
331 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
332 void DecodeVCMP(Instruction* instr);
333 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
334 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
336 // Executes one instruction.
337 void InstructionDecode(Instruction* instr);
340 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
341 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
343 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
345 // Runtime call support.
346 static void* RedirectExternalReference(
347 void* external_function,
348 v8::internal::ExternalReference::Type type);
350 // Handle arguments and return value for runtime FP functions.
351 void GetFpArgs(double* x, double* y, int32_t* z);
352 void SetFpResult(const double& result);
353 void TrashCallerSaveRegisters();
355 template<class ReturnType, int register_size>
356 ReturnType GetFromVFPRegister(int reg_index);
358 template<class InputType, int register_size>
359 void SetVFPRegister(int reg_index, const InputType& value);
361 void CallInternal(byte* entry);
363 // Architecture state.
364 // Saturating instructions require a Q flag to indicate saturation.
365 // There is currently no way to read the CPSR directly, and thus read the Q
366 // flag, so this is left unimplemented.
367 int32_t registers_[16];
373 // VFP architecture state.
374 unsigned int vfp_registers_[num_d_registers * 2];
380 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
381 VFPRoundingMode FPSCR_rounding_mode_;
382 bool FPSCR_default_NaN_mode_;
384 // VFP FP exception flags architecture state.
385 bool inv_op_vfp_flag_;
386 bool div_zero_vfp_flag_;
387 bool overflow_vfp_flag_;
388 bool underflow_vfp_flag_;
389 bool inexact_vfp_flag_;
391 // Simulator support.
397 char* last_debugger_input_;
400 v8::internal::HashMap* i_cache_;
402 // Registered breakpoints.
403 Instruction* break_pc_;
406 v8::internal::Isolate* isolate_;
408 // A stop is watched if its code is less than kNumOfWatchedStops.
409 // Only watched stops support enabling/disabling and the counter feature.
410 static const uint32_t kNumOfWatchedStops = 256;
412 // Breakpoint is disabled if bit 31 is set.
413 static const uint32_t kStopDisabledBit = 1 << 31;
415 // A stop is enabled, meaning the simulator will stop when meeting the
416 // instruction, if bit 31 of watched_stops_[code].count is unset.
417 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
418 // the breakpoint was hit or gone through.
419 struct StopCountAndDesc {
423 StopCountAndDesc watched_stops_[kNumOfWatchedStops];
427 // When running with the simulator transition into simulated execution at this
429 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
430 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
431 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
433 #define CALL_GENERATED_FP_INT(entry, p0, p1) \
434 Simulator::current(Isolate::Current())->CallFPReturnsInt( \
435 FUNCTION_ADDR(entry), p0, p1)
437 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
438 Simulator::current(Isolate::Current())->Call( \
439 entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
442 // The simulator has its own stack. Thus it has a different stack limit from
443 // the C-based native code. The JS-based limit normally points near the end of
444 // the simulator stack. When the C-based limit is exhausted we reflect that by
445 // lowering the JS-based limit as well, to make stack checks trigger.
446 class SimulatorStack : public v8::internal::AllStatic {
448 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
450 return Simulator::current(isolate)->StackLimit(c_limit);
453 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
454 Simulator* sim = Simulator::current(Isolate::Current());
455 return sim->PushAddress(try_catch_address);
458 static inline void UnregisterCTryCatch() {
459 Simulator::current(Isolate::Current())->PopAddress();
463 } // namespace internal
466 #endif // !defined(USE_SIMULATOR)
467 #endif // V8_ARM_SIMULATOR_ARM_H_