1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 // Declares a Simulator for ARM instructions if we are not generating a native
30 // ARM binary. This Simulator allows us to run and debug ARM code generation on
31 // regular desktop machines.
32 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33 // which will start execution in the Simulator or forwards to the real entry
34 // on a ARM HW platform.
36 #ifndef V8_ARM_SIMULATOR_ARM_H_
37 #define V8_ARM_SIMULATOR_ARM_H_
39 #include "allocation.h"
41 #if !defined(USE_SIMULATOR)
42 // Running without a simulator on a native arm platform.
47 // When running without a simulator we call the entry directly.
48 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
49 (entry(p0, p1, p2, p3, p4))
51 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
52 void*, int*, Address, int, Isolate*);
55 // Call the generated regexp code directly. The code at the entry address
56 // should act as a function matching the type arm_regexp_matcher.
57 // The fifth argument is a dummy that reserves the space used for
58 // the return address added by the ExitFrame in native calls.
59 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
60 (FUNCTION_CAST<arm_regexp_matcher>(entry)( \
61 p0, p1, p2, p3, NULL, p4, p5, p6, p7))
63 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
64 reinterpret_cast<TryCatch*>(try_catch_address)
66 // The stack limit beyond which we will throw stack overflow errors in
67 // generated code. Because generated code on arm uses the C stack, we
68 // just use the C stack limit.
69 class SimulatorStack : public v8::internal::AllStatic {
71 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
75 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
76 return try_catch_address;
79 static inline void UnregisterCTryCatch() { }
82 } } // namespace v8::internal
84 #else // !defined(USE_SIMULATOR)
85 // Running with a simulator.
87 #include "constants-arm.h"
89 #include "assembler.h"
96 static const int LINE_VALID = 0;
97 static const int LINE_INVALID = 1;
99 static const int kPageShift = 12;
100 static const int kPageSize = 1 << kPageShift;
101 static const int kPageMask = kPageSize - 1;
102 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
103 static const int kLineLength = 1 << kLineShift;
104 static const int kLineMask = kLineLength - 1;
107 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
110 char* ValidityByte(int offset) {
111 return &validity_map_[offset >> kLineShift];
114 char* CachedData(int offset) {
115 return &data_[offset];
119 char data_[kPageSize]; // The cached data.
120 static const int kValidityMapSize = kPageSize >> kLineShift;
121 char validity_map_[kValidityMapSize]; // One byte per line.
127 friend class ArmDebugger;
130 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
131 r8, r9, r10, r11, r12, r13, r14, r15,
136 s0 = 0, s1, s2, s3, s4, s5, s6, s7,
137 s8, s9, s10, s11, s12, s13, s14, s15,
138 s16, s17, s18, s19, s20, s21, s22, s23,
139 s24, s25, s26, s27, s28, s29, s30, s31,
140 num_s_registers = 32,
141 d0 = 0, d1, d2, d3, d4, d5, d6, d7,
142 d8, d9, d10, d11, d12, d13, d14, d15,
149 // The currently executing Simulator instance. Potentially there can be one
150 // for each native thread.
151 static Simulator* current(v8::internal::Isolate* isolate);
153 // Accessors for register state. Reading the pc value adheres to the ARM
154 // architecture specification and is off by a 8 from the currently executing
156 void set_register(int reg, int32_t value);
157 int32_t get_register(int reg) const;
158 double get_double_from_register_pair(int reg);
159 void set_dw_register(int dreg, const int* dbl);
162 void set_s_register(int reg, unsigned int value);
163 unsigned int get_s_register(int reg) const;
164 void set_d_register_from_double(int dreg, const double& dbl);
165 double get_double_from_d_register(int dreg);
166 void set_s_register_from_float(int sreg, const float dbl);
167 float get_float_from_s_register(int sreg);
168 void set_s_register_from_sinteger(int reg, const int value);
169 int get_sinteger_from_s_register(int reg);
171 // Special case of set_register and get_register to access the raw PC value.
172 void set_pc(int32_t value);
173 int32_t get_pc() const;
175 // Accessor to the internal simulator stack area.
176 uintptr_t StackLimit() const;
178 // Executes ARM instructions until the PC reaches end_sim_pc.
181 // Call on program start.
182 static void Initialize();
184 // V8 generally calls into generated JS code with 5 parameters and into
185 // generated RegExp code with 7 parameters. This is a convenience function,
186 // which sets up the simulator state and grabs the result on return.
187 int32_t Call(byte* entry, int argument_count, ...);
189 // Push an address onto the JS stack.
190 uintptr_t PushAddress(uintptr_t address);
192 // Pop an address from the JS stack.
193 uintptr_t PopAddress();
196 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
199 // Returns true if pc register contains one of the 'special_values' defined
200 // below (bad_lr, end_sim_pc).
201 bool has_bad_pc() const;
204 enum special_values {
205 // Known bad pc value to ensure that the simulator does not execute
206 // without being properly setup.
208 // A pc value used to signal the simulator to stop execution. Generally
209 // the lr is set to this value on transition from native C code to
210 // simulated execution, so that the simulator can "return" to the native
215 // Unsupported instructions use Format to print an error and stop execution.
216 void Format(Instruction* instr, const char* format);
218 // Checks if the current instruction should be executed based on its
220 bool ConditionallyExecute(Instruction* instr);
222 // Helper functions to set the conditional flags in the architecture state.
223 void SetNZFlags(int32_t val);
224 void SetCFlag(bool val);
225 void SetVFlag(bool val);
226 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
227 bool BorrowFrom(int32_t left, int32_t right);
228 bool OverflowFrom(int32_t alu_out,
233 inline int GetCarry() {
234 return c_flag_ ? 1 : 0;
238 void Compute_FPSCR_Flags(double val1, double val2);
239 void Copy_FPSCR_to_APSR();
241 // Helper functions to decode common "addressing" modes
242 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
243 int32_t GetImm(Instruction* instr, bool* carry_out);
244 void ProcessPUW(Instruction* instr,
247 intptr_t* start_address,
248 intptr_t* end_address);
249 void HandleRList(Instruction* instr, bool load);
250 void HandleVList(Instruction* inst);
251 void SoftwareInterrupt(Instruction* instr);
253 // Stop helper functions.
254 inline bool isStopInstruction(Instruction* instr);
255 inline bool isWatchedStop(uint32_t bkpt_code);
256 inline bool isEnabledStop(uint32_t bkpt_code);
257 inline void EnableStop(uint32_t bkpt_code);
258 inline void DisableStop(uint32_t bkpt_code);
259 inline void IncreaseStopCounter(uint32_t bkpt_code);
260 void PrintStopInfo(uint32_t code);
262 // Read and write memory.
263 inline uint8_t ReadBU(int32_t addr);
264 inline int8_t ReadB(int32_t addr);
265 inline void WriteB(int32_t addr, uint8_t value);
266 inline void WriteB(int32_t addr, int8_t value);
268 inline uint16_t ReadHU(int32_t addr, Instruction* instr);
269 inline int16_t ReadH(int32_t addr, Instruction* instr);
270 // Note: Overloaded on the sign of the value.
271 inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
272 inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
274 inline int ReadW(int32_t addr, Instruction* instr);
275 inline void WriteW(int32_t addr, int value, Instruction* instr);
277 int32_t* ReadDW(int32_t addr);
278 void WriteDW(int32_t addr, int32_t value1, int32_t value2);
280 // Executing is handled based on the instruction type.
281 // Both type 0 and type 1 rolled into one.
282 void DecodeType01(Instruction* instr);
283 void DecodeType2(Instruction* instr);
284 void DecodeType3(Instruction* instr);
285 void DecodeType4(Instruction* instr);
286 void DecodeType5(Instruction* instr);
287 void DecodeType6(Instruction* instr);
288 void DecodeType7(Instruction* instr);
291 void DecodeTypeVFP(Instruction* instr);
292 void DecodeType6CoprocessorIns(Instruction* instr);
294 void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
295 void DecodeVCMP(Instruction* instr);
296 void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
297 void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
299 // Executes one instruction.
300 void InstructionDecode(Instruction* instr);
303 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
304 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
306 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
308 // Runtime call support.
309 static void* RedirectExternalReference(
310 void* external_function,
311 v8::internal::ExternalReference::Type type);
313 // For use in calls that take two double values, constructed from r0, r1, r2
315 void GetFpArgs(double* x, double* y);
316 void SetFpResult(const double& result);
317 void TrashCallerSaveRegisters();
319 // Architecture state.
320 // Saturating instructions require a Q flag to indicate saturation.
321 // There is currently no way to read the CPSR directly, and thus read the Q
322 // flag, so this is left unimplemented.
323 int32_t registers_[16];
329 // VFP architecture state.
330 unsigned int vfp_register[num_s_registers];
336 // VFP rounding mode. See ARM DDI 0406B Page A2-29.
337 VFPRoundingMode FPSCR_rounding_mode_;
339 // VFP FP exception flags architecture state.
340 bool inv_op_vfp_flag_;
341 bool div_zero_vfp_flag_;
342 bool overflow_vfp_flag_;
343 bool underflow_vfp_flag_;
344 bool inexact_vfp_flag_;
346 // Simulator support.
352 v8::internal::HashMap* i_cache_;
354 // Registered breakpoints.
355 Instruction* break_pc_;
358 v8::internal::Isolate* isolate_;
360 // A stop is watched if its code is less than kNumOfWatchedStops.
361 // Only watched stops support enabling/disabling and the counter feature.
362 static const uint32_t kNumOfWatchedStops = 256;
364 // Breakpoint is disabled if bit 31 is set.
365 static const uint32_t kStopDisabledBit = 1 << 31;
367 // A stop is enabled, meaning the simulator will stop when meeting the
368 // instruction, if bit 31 of watched_stops[code].count is unset.
369 // The value watched_stops[code].count & ~(1 << 31) indicates how many times
370 // the breakpoint was hit or gone through.
371 struct StopCountAndDesc {
375 StopCountAndDesc watched_stops[kNumOfWatchedStops];
379 // When running with the simulator transition into simulated execution at this
381 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
382 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
383 FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
385 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \
386 Simulator::current(Isolate::Current())->Call( \
387 entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7)
389 #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \
390 try_catch_address == NULL ? \
391 NULL : *(reinterpret_cast<TryCatch**>(try_catch_address))
394 // The simulator has its own stack. Thus it has a different stack limit from
395 // the C-based native code. Setting the c_limit to indicate a very small
396 // stack cause stack overflow errors, since the simulator ignores the input.
397 // This is unlikely to be an issue in practice, though it might cause testing
398 // trouble down the line.
399 class SimulatorStack : public v8::internal::AllStatic {
401 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
402 return Simulator::current(Isolate::Current())->StackLimit();
405 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
406 Simulator* sim = Simulator::current(Isolate::Current());
407 return sim->PushAddress(try_catch_address);
410 static inline void UnregisterCTryCatch() {
411 Simulator::current(Isolate::Current())->PopAddress();
415 } } // namespace v8::internal
417 #endif // !defined(USE_SIMULATOR)
418 #endif // V8_ARM_SIMULATOR_ARM_H_