1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/globals.h"
14 // ARM EABI is required.
15 #if defined(__arm__) && !defined(__ARM_EABI__)
16 #error ARM EABI support is required.
22 // Constant pool marker.
23 // Use UDF, the permanently undefined instruction.
24 const int kConstantPoolMarkerMask = 0xfff000f0;
25 const int kConstantPoolMarker = 0xe7f000f0;
26 const int kConstantPoolLengthMaxMask = 0xffff;
27 inline int EncodeConstantPoolLength(int length) {
28 DCHECK((length & kConstantPoolLengthMaxMask) == length);
29 return ((length & 0xfff0) << 4) | (length & 0xf);
31 inline int DecodeConstantPoolLength(int instr) {
32 DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
33 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
37 const int kCodeAgeJumpInstruction = 0xe51ff004;
39 // Number of registers in normal ARM mode.
40 const int kNumRegisters = 16;
43 const int kNumVFPSingleRegisters = 32;
44 const int kNumVFPDoubleRegisters = 32;
45 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
48 const int kPCRegister = 15;
49 const int kNoRegister = -1;
51 // Used in embedded constant pool builder - max reach in bits for
52 // various load instructions (unsigned)
53 const int kLdrMaxReachBits = 12;
54 const int kVldrMaxReachBits = 10;
56 // -----------------------------------------------------------------------------
59 // Defines constants and accessor classes to assemble, disassemble and
60 // simulate ARM instructions.
62 // Section references in the code refer to the "ARM Architecture Reference
63 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
65 // Constants for specific fields are defined in their respective named enums.
66 // General constants are in an anonymous enum in class Instr.
68 // Values for the condition field as defined in section A3.2
72 eq = 0 << 28, // Z set Equal.
73 ne = 1 << 28, // Z clear Not equal.
74 cs = 2 << 28, // C set Unsigned higher or same.
75 cc = 3 << 28, // C clear Unsigned lower.
76 mi = 4 << 28, // N set Negative.
77 pl = 5 << 28, // N clear Positive or zero.
78 vs = 6 << 28, // V set Overflow.
79 vc = 7 << 28, // V clear No overflow.
80 hi = 8 << 28, // C set, Z clear Unsigned higher.
81 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
82 ge = 10 << 28, // N == V Greater or equal.
83 lt = 11 << 28, // N != V Less than.
84 gt = 12 << 28, // Z clear, N == V Greater than.
85 le = 13 << 28, // Z set or N != V Less then or equal
86 al = 14 << 28, // Always.
88 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
89 kNumberOfConditions = 16,
92 hs = cs, // C set Unsigned higher or same.
93 lo = cc // C clear Unsigned lower.
97 inline Condition NegateCondition(Condition cond) {
99 return static_cast<Condition>(cond ^ ne);
103 // Commute a condition such that {a cond b == b cond' a}.
104 inline Condition CommuteCondition(Condition cond) {
128 // -----------------------------------------------------------------------------
129 // Instructions encoding.
131 // Instr is merely used by the Assembler to distinguish 32bit integers
132 // representing instructions from usual 32 bit values.
133 // Instruction objects are pointers to 32bit values, and provide methods to
134 // access the various ISA fields.
135 typedef int32_t Instr;
138 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
139 // as defined in section A3.4
141 AND = 0 << 21, // Logical AND.
142 EOR = 1 << 21, // Logical Exclusive OR.
143 SUB = 2 << 21, // Subtract.
144 RSB = 3 << 21, // Reverse Subtract.
145 ADD = 4 << 21, // Add.
146 ADC = 5 << 21, // Add with Carry.
147 SBC = 6 << 21, // Subtract with Carry.
148 RSC = 7 << 21, // Reverse Subtract with Carry.
149 TST = 8 << 21, // Test.
150 TEQ = 9 << 21, // Test Equivalence.
151 CMP = 10 << 21, // Compare.
152 CMN = 11 << 21, // Compare Negated.
153 ORR = 12 << 21, // Logical (inclusive) OR.
154 MOV = 13 << 21, // Move.
155 BIC = 14 << 21, // Bit Clear.
156 MVN = 15 << 21 // Move Not.
160 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
161 enum MiscInstructionsBits74 {
162 // With bits 22-21 01.
168 // With bits 22-21 11.
173 // Instruction encoding bits and masks.
175 H = 1 << 5, // Halfword (or byte).
176 S6 = 1 << 6, // Signed (or unsigned).
177 L = 1 << 20, // Load (or store).
178 S = 1 << 20, // Set condition code (or leave unchanged).
179 W = 1 << 21, // Writeback base register (or leave unchanged).
180 A = 1 << 21, // Accumulate in multiply instruction (or not).
181 B = 1 << 22, // Unsigned byte (or word).
182 N = 1 << 22, // Long (or short).
183 U = 1 << 23, // Positive (or negative) offset/index.
184 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
185 I = 1 << 25, // Immediate shifter operand (or not).
208 // Instruction bit masks.
209 kCondMask = 15 << 28,
210 kALUMask = 0x6f << 21,
211 kRdMask = 15 << 12, // In str instruction.
212 kCoprocessorMask = 15 << 8,
213 kOpCodeMask = 15 << 21, // In data-processing instructions.
214 kImm24Mask = (1 << 24) - 1,
215 kImm16Mask = (1 << 16) - 1,
216 kImm8Mask = (1 << 8) - 1,
217 kOff12Mask = (1 << 12) - 1,
218 kOff8Mask = (1 << 8) - 1
222 // -----------------------------------------------------------------------------
223 // Addressing modes and instruction variants.
225 // Condition code updating mode.
227 SetCC = 1 << 20, // Set condition code.
228 LeaveCC = 0 << 20 // Leave condition code unchanged.
232 // Status register selection.
239 // Shifter types for Data-processing operands as defined in section A5.1.2.
241 LSL = 0 << 5, // Logical shift left.
242 LSR = 1 << 5, // Logical shift right.
243 ASR = 2 << 5, // Arithmetic shift right.
244 ROR = 3 << 5, // Rotate right.
246 // RRX is encoded as ROR with shift_imm == 0.
247 // Use a special code to make the distinction. The RRX ShiftOp is only used
248 // as an argument, and will never actually be encoded. The Assembler will
249 // detect it and emit the correct ROR shift operand with shift_imm == 0.
255 // Status register fields.
256 enum SRegisterField {
257 CPSR_c = CPSR | 1 << 16,
258 CPSR_x = CPSR | 1 << 17,
259 CPSR_s = CPSR | 1 << 18,
260 CPSR_f = CPSR | 1 << 19,
261 SPSR_c = SPSR | 1 << 16,
262 SPSR_x = SPSR | 1 << 17,
263 SPSR_s = SPSR | 1 << 18,
264 SPSR_f = SPSR | 1 << 19
267 // Status register field mask (or'ed SRegisterField enum values).
268 typedef uint32_t SRegisterFieldMask;
271 // Memory operand addressing mode.
273 // Bit encoding P U W.
274 Offset = (8|4|0) << 21, // Offset (without writeback to base).
275 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
276 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
277 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
278 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
279 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
283 // Load/store multiple addressing mode.
285 // Bit encoding P U W .
286 da = (0|0|0) << 21, // Decrement after.
287 ia = (0|4|0) << 21, // Increment after.
288 db = (8|0|0) << 21, // Decrement before.
289 ib = (8|4|0) << 21, // Increment before.
290 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
291 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
292 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
293 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
295 // Alias modes for comparison when writeback does not matter.
296 da_x = (0|0|0) << 21, // Decrement after.
297 ia_x = (0|4|0) << 21, // Increment after.
298 db_x = (8|0|0) << 21, // Decrement before.
299 ib_x = (8|4|0) << 21, // Increment before.
301 kBlockAddrModeMask = (8|4|1) << 21
305 // Coprocessor load/store operand size.
307 Long = 1 << 22, // Long load/store coprocessor.
308 Short = 0 << 22 // Short load/store coprocessor.
314 NeonS8 = 0x1, // U = 0, imm3 = 0b001
315 NeonS16 = 0x2, // U = 0, imm3 = 0b010
316 NeonS32 = 0x4, // U = 0, imm3 = 0b100
317 NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001
318 NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010
319 NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100
320 NeonDataTypeSizeMask = 0x7,
321 NeonDataTypeUMask = 1 << 24
338 // -----------------------------------------------------------------------------
339 // Supervisor Call (svc) specific support.
341 // Special Software Interrupt codes when used in the presence of the ARM
343 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
344 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
345 enum SoftwareInterruptCodes {
346 // transition to C code
347 kCallRtRedirected = 0x10,
353 const uint32_t kStopCodeMask = kStopCode - 1;
354 const uint32_t kMaxStopCode = kStopCode - 1;
355 const int32_t kDefaultStopCode = -1;
358 // Type of VFP register. Determines register encoding.
359 enum VFPRegPrecision {
360 kSinglePrecision = 0,
365 // VFP FPSCR constants.
366 enum VFPConversionMode {
368 kDefaultRoundToZero = 1
371 // This mask does not include the "inexact" or "input denormal" cumulative
372 // exceptions flags, because we usually don't want to check for it.
373 const uint32_t kVFPExceptionMask = 0xf;
374 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
375 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
376 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
377 const uint32_t kVFPInexactExceptionBit = 1 << 4;
378 const uint32_t kVFPFlushToZeroMask = 1 << 24;
379 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
381 const uint32_t kVFPNConditionFlagBit = 1 << 31;
382 const uint32_t kVFPZConditionFlagBit = 1 << 30;
383 const uint32_t kVFPCConditionFlagBit = 1 << 29;
384 const uint32_t kVFPVConditionFlagBit = 1 << 28;
387 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
388 enum VFPRoundingMode {
389 RN = 0 << 22, // Round to Nearest.
390 RP = 1 << 22, // Round towards Plus Infinity.
391 RM = 2 << 22, // Round towards Minus Infinity.
392 RZ = 3 << 22, // Round towards zero.
395 kRoundToNearest = RN,
396 kRoundToPlusInf = RP,
397 kRoundToMinusInf = RM,
401 const uint32_t kVFPRoundingModeMask = 3 << 22;
403 enum CheckForInexactConversion {
404 kCheckForInexactConversion,
405 kDontCheckForInexactConversion
408 // -----------------------------------------------------------------------------
411 // Branch hints are not used on the ARM. They are defined so that they can
412 // appear in shared function signatures, but will be ignored in ARM
414 enum Hint { no_hint };
416 // Hints are not used on the arm. Negating is trivial.
417 inline Hint NegateHint(Hint ignored) { return no_hint; }
420 // -----------------------------------------------------------------------------
421 // Instruction abstraction.
423 // The class Instruction enables access to individual fields defined in the ARM
424 // architecture instruction set encoding as described in figure A3-1.
425 // Note that the Assembler uses typedef int32_t Instr.
427 // Example: Test whether the instruction at ptr does set the condition code
430 // bool InstructionSetsConditionCodes(byte* ptr) {
431 // Instruction* instr = Instruction::At(ptr);
432 // int type = instr->TypeValue();
433 // return ((type == 0) || (type == 1)) && instr->HasS();
444 // Helper macro to define static accessors.
445 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
446 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
447 static inline return_type Name(Instr instr) { \
448 char* temp = reinterpret_cast<char*>(&instr); \
449 return reinterpret_cast<Instruction*>(temp)->Name(); \
452 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
454 // Get the raw instruction bits.
455 inline Instr InstructionBits() const {
456 return *reinterpret_cast<const Instr*>(this);
459 // Set the raw instruction bits to value.
460 inline void SetInstructionBits(Instr value) {
461 *reinterpret_cast<Instr*>(this) = value;
464 // Read one particular bit out of the instruction bits.
465 inline int Bit(int nr) const {
466 return (InstructionBits() >> nr) & 1;
469 // Read a bit field's value out of the instruction bits.
470 inline int Bits(int hi, int lo) const {
471 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
474 // Read a bit field out of the instruction bits.
475 inline int BitField(int hi, int lo) const {
476 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
481 // Read one particular bit out of the instruction bits.
482 static inline int Bit(Instr instr, int nr) {
483 return (instr >> nr) & 1;
486 // Read the value of a bit field out of the instruction bits.
487 static inline int Bits(Instr instr, int hi, int lo) {
488 return (instr >> lo) & ((2 << (hi - lo)) - 1);
492 // Read a bit field out of the instruction bits.
493 static inline int BitField(Instr instr, int hi, int lo) {
494 return instr & (((2 << (hi - lo)) - 1) << lo);
498 // Accessors for the different named fields used in the ARM encoding.
499 // The naming of these accessor corresponds to figure A3-1.
501 // Two kind of accessors are declared:
502 // - <Name>Field() will return the raw field, i.e. the field's bits at their
503 // original place in the instruction encoding.
504 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
505 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
506 // - <Name>Value() will return the field value, shifted back to bit 0.
507 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
508 // 0xC0810002 ConditionField(instr) will return 0xC.
511 // Generally applicable fields
512 inline Condition ConditionValue() const {
513 return static_cast<Condition>(Bits(31, 28));
515 inline Condition ConditionField() const {
516 return static_cast<Condition>(BitField(31, 28));
518 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
519 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
521 inline int TypeValue() const { return Bits(27, 25); }
522 inline int SpecialValue() const { return Bits(27, 23); }
524 inline int RnValue() const { return Bits(19, 16); }
525 DECLARE_STATIC_ACCESSOR(RnValue);
526 inline int RdValue() const { return Bits(15, 12); }
527 DECLARE_STATIC_ACCESSOR(RdValue);
529 inline int CoprocessorValue() const { return Bits(11, 8); }
531 // Vn(19-16) | Vd(15-12) | Vm(3-0)
532 inline int VnValue() const { return Bits(19, 16); }
533 inline int VmValue() const { return Bits(3, 0); }
534 inline int VdValue() const { return Bits(15, 12); }
535 inline int NValue() const { return Bit(7); }
536 inline int MValue() const { return Bit(5); }
537 inline int DValue() const { return Bit(22); }
538 inline int RtValue() const { return Bits(15, 12); }
539 inline int PValue() const { return Bit(24); }
540 inline int UValue() const { return Bit(23); }
541 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
542 inline int Opc2Value() const { return Bits(19, 16); }
543 inline int Opc3Value() const { return Bits(7, 6); }
544 inline int SzValue() const { return Bit(8); }
545 inline int VLValue() const { return Bit(20); }
546 inline int VCValue() const { return Bit(8); }
547 inline int VAValue() const { return Bits(23, 21); }
548 inline int VBValue() const { return Bits(6, 5); }
549 inline int VFPNRegValue(VFPRegPrecision pre) {
550 return VFPGlueRegValue(pre, 16, 7);
552 inline int VFPMRegValue(VFPRegPrecision pre) {
553 return VFPGlueRegValue(pre, 0, 5);
555 inline int VFPDRegValue(VFPRegPrecision pre) {
556 return VFPGlueRegValue(pre, 12, 22);
559 // Fields used in Data processing instructions
560 inline int OpcodeValue() const {
561 return static_cast<Opcode>(Bits(24, 21));
563 inline Opcode OpcodeField() const {
564 return static_cast<Opcode>(BitField(24, 21));
566 inline int SValue() const { return Bit(20); }
568 inline int RmValue() const { return Bits(3, 0); }
569 DECLARE_STATIC_ACCESSOR(RmValue);
570 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
571 inline ShiftOp ShiftField() const {
572 return static_cast<ShiftOp>(BitField(6, 5));
574 inline int RegShiftValue() const { return Bit(4); }
575 inline int RsValue() const { return Bits(11, 8); }
576 inline int ShiftAmountValue() const { return Bits(11, 7); }
578 inline int RotateValue() const { return Bits(11, 8); }
579 DECLARE_STATIC_ACCESSOR(RotateValue);
580 inline int Immed8Value() const { return Bits(7, 0); }
581 DECLARE_STATIC_ACCESSOR(Immed8Value);
582 inline int Immed4Value() const { return Bits(19, 16); }
583 inline int ImmedMovwMovtValue() const {
584 return Immed4Value() << 12 | Offset12Value(); }
585 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
587 // Fields used in Load/Store instructions
588 inline int PUValue() const { return Bits(24, 23); }
589 inline int PUField() const { return BitField(24, 23); }
590 inline int BValue() const { return Bit(22); }
591 inline int WValue() const { return Bit(21); }
592 inline int LValue() const { return Bit(20); }
593 // with register uses same fields as Data processing instructions above
595 inline int Offset12Value() const { return Bits(11, 0); }
597 inline int RlistValue() const { return Bits(15, 0); }
598 // extra loads and stores
599 inline int SignValue() const { return Bit(6); }
600 inline int HValue() const { return Bit(5); }
601 inline int ImmedHValue() const { return Bits(11, 8); }
602 inline int ImmedLValue() const { return Bits(3, 0); }
604 // Fields used in Branch instructions
605 inline int LinkValue() const { return Bit(24); }
606 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
608 // Fields used in Software interrupt instructions
609 inline SoftwareInterruptCodes SvcValue() const {
610 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
613 // Test for special encodings of type 0 instructions (extra loads and stores,
614 // as well as multiplications).
615 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
617 // Test for miscellaneous instructions encodings of type 0 instructions.
618 inline bool IsMiscType0() const { return (Bit(24) == 1)
621 && ((Bit(7) == 0)); }
623 // Test for a nop instruction, which falls under type 1.
624 inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
626 // Test for a stop instruction.
627 inline bool IsStop() const {
628 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
631 // Special accessors that test for existence of a value.
632 inline bool HasS() const { return SValue() == 1; }
633 inline bool HasB() const { return BValue() == 1; }
634 inline bool HasW() const { return WValue() == 1; }
635 inline bool HasL() const { return LValue() == 1; }
636 inline bool HasU() const { return UValue() == 1; }
637 inline bool HasSign() const { return SignValue() == 1; }
638 inline bool HasH() const { return HValue() == 1; }
639 inline bool HasLink() const { return LinkValue() == 1; }
641 // Decoding the double immediate in the vmov instruction.
642 double DoubleImmedVmov() const;
644 // Instructions are read of out a code stream. The only way to get a
645 // reference to an instruction is to convert a pointer. There is no way
646 // to allocate or create instances of class Instruction.
647 // Use the At(pc) function to create references to Instruction.
648 static Instruction* At(byte* pc) {
649 return reinterpret_cast<Instruction*>(pc);
654 // Join split register codes, depending on single or double precision.
655 // four_bit is the position of the least-significant bit of the four
656 // bit specifier. one_bit is the position of the additional single bit
658 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
659 if (pre == kSinglePrecision) {
660 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
662 return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
665 // We need to prevent the creation of instances of class Instruction.
666 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
670 // Helper functions for converting between register numbers and names.
673 // Return the name of the register.
674 static const char* Name(int reg);
676 // Lookup the register number for the name provided.
677 static int Number(const char* name);
679 struct RegisterAlias {
685 static const char* names_[kNumRegisters];
686 static const RegisterAlias aliases_[];
689 // Helper functions for converting between VFP register numbers and names.
692 // Return the name of the register.
693 static const char* Name(int reg, bool is_double);
695 // Lookup the register number for the name provided.
696 // Set flag pointed by is_double to true if register
697 // is double-precision.
698 static int Number(const char* name, bool* is_double);
701 static const char* names_[kNumVFPRegisters];
705 } // namespace internal
708 #endif // V8_ARM_CONSTANTS_ARM_H_