1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
28 Address deopt_handler = Runtime::FunctionForId(
29 Runtime::kArrayConstructor)->entry;
31 if (constant_stack_parameter_count == 0) {
32 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
33 JS_FUNCTION_STUB_MODE);
35 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
36 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
41 static void InitializeInternalArrayConstructorDescriptor(
42 Isolate* isolate, CodeStubDescriptor* descriptor,
43 int constant_stack_parameter_count) {
44 Address deopt_handler = Runtime::FunctionForId(
45 Runtime::kInternalArrayConstructor)->entry;
47 if (constant_stack_parameter_count == 0) {
48 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
49 JS_FUNCTION_STUB_MODE);
51 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
52 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
57 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
58 CodeStubDescriptor* descriptor) {
59 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
63 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
64 CodeStubDescriptor* descriptor) {
65 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
69 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
70 CodeStubDescriptor* descriptor) {
71 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
75 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
76 CodeStubDescriptor* descriptor) {
77 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
81 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
82 CodeStubDescriptor* descriptor) {
83 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
87 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
88 CodeStubDescriptor* descriptor) {
89 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
93 #define __ ACCESS_MASM(masm)
96 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
97 Condition cond, bool strong);
98 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
104 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
109 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
110 ExternalReference miss) {
111 // Update the static counter each time a new code stub is generated.
112 isolate()->counters()->code_stubs()->Increment();
114 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
115 int param_count = descriptor.GetEnvironmentParameterCount();
117 // Call the runtime system in a fresh internal frame.
118 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
119 DCHECK(param_count == 0 ||
120 r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
122 for (int i = 0; i < param_count; ++i) {
123 __ push(descriptor.GetEnvironmentParameterRegister(i));
125 __ CallExternalReference(miss, param_count);
132 void DoubleToIStub::Generate(MacroAssembler* masm) {
133 Label out_of_range, only_low, negate, done;
134 Register input_reg = source();
135 Register result_reg = destination();
136 DCHECK(is_truncating());
138 int double_offset = offset();
139 // Account for saved regs if input is sp.
140 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
142 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
143 Register scratch_low =
144 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
145 Register scratch_high =
146 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
147 LowDwVfpRegister double_scratch = kScratchDoubleReg;
149 __ Push(scratch_high, scratch_low, scratch);
151 if (!skip_fastpath()) {
152 // Load double input.
153 __ vldr(double_scratch, MemOperand(input_reg, double_offset));
154 __ vmov(scratch_low, scratch_high, double_scratch);
156 // Do fast-path convert from double to int.
157 __ vcvt_s32_f64(double_scratch.low(), double_scratch);
158 __ vmov(result_reg, double_scratch.low());
160 // If result is not saturated (0x7fffffff or 0x80000000), we are done.
161 __ sub(scratch, result_reg, Operand(1));
162 __ cmp(scratch, Operand(0x7ffffffe));
165 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
166 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
167 if (double_offset == 0) {
168 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
170 __ ldr(scratch_low, MemOperand(input_reg, double_offset));
171 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
175 __ Ubfx(scratch, scratch_high,
176 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
177 // Load scratch with exponent - 1. This is faster than loading
178 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
179 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
180 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
181 // If exponent is greater than or equal to 84, the 32 less significant
182 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
184 // Compare exponent with 84 (compare exponent - 1 with 83).
185 __ cmp(scratch, Operand(83));
186 __ b(ge, &out_of_range);
188 // If we reach this code, 31 <= exponent <= 83.
189 // So, we don't have to handle cases where 0 <= exponent <= 20 for
190 // which we would need to shift right the high part of the mantissa.
191 // Scratch contains exponent - 1.
192 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
193 __ rsb(scratch, scratch, Operand(51), SetCC);
195 // 21 <= exponent <= 51, shift scratch_low and scratch_high
196 // to generate the result.
197 __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
198 // Scratch contains: 52 - exponent.
199 // We needs: exponent - 20.
200 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
201 __ rsb(scratch, scratch, Operand(32));
202 __ Ubfx(result_reg, scratch_high,
203 0, HeapNumber::kMantissaBitsInTopWord);
204 // Set the implicit 1 before the mantissa part in scratch_high.
205 __ orr(result_reg, result_reg,
206 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
207 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
210 __ bind(&out_of_range);
211 __ mov(result_reg, Operand::Zero());
215 // 52 <= exponent <= 83, shift only scratch_low.
216 // On entry, scratch contains: 52 - exponent.
217 __ rsb(scratch, scratch, Operand::Zero());
218 __ mov(result_reg, Operand(scratch_low, LSL, scratch));
221 // If input was positive, scratch_high ASR 31 equals 0 and
222 // scratch_high LSR 31 equals zero.
223 // New result = (result eor 0) + 0 = result.
224 // If the input was negative, we have to negate the result.
225 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
226 // New result = (result eor 0xffffffff) + 1 = 0 - result.
227 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
228 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
232 __ Pop(scratch_high, scratch_low, scratch);
237 // Handle the case where the lhs and rhs are the same object.
238 // Equality is almost reflexive (everything but NaN), so this is a test
239 // for "identity and not NaN".
240 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
241 Condition cond, bool strong) {
243 Label heap_number, return_equal;
245 __ b(ne, ¬_identical);
247 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
248 // so we do the second best thing - test it ourselves.
249 // They are both equal and they are not both Smis so both of them are not
250 // Smis. If it's not a heap number, then return equal.
251 if (cond == lt || cond == gt) {
252 // Call runtime on identical JSObjects.
253 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
255 // Call runtime on identical symbols since we need to throw a TypeError.
256 __ cmp(r4, Operand(SYMBOL_TYPE));
259 // Call the runtime on anything that is converted in the semantics, since
260 // we need to throw a TypeError. Smis have already been ruled out.
261 __ cmp(r4, Operand(HEAP_NUMBER_TYPE));
262 __ b(eq, &return_equal);
263 __ tst(r4, Operand(kIsNotStringMask));
267 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
268 __ b(eq, &heap_number);
269 // Comparing JS objects with <=, >= is complicated.
271 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
273 // Call runtime on identical symbols since we need to throw a TypeError.
274 __ cmp(r4, Operand(SYMBOL_TYPE));
277 // Call the runtime on anything that is converted in the semantics,
278 // since we need to throw a TypeError. Smis and heap numbers have
279 // already been ruled out.
280 __ tst(r4, Operand(kIsNotStringMask));
283 // Normally here we fall through to return_equal, but undefined is
284 // special: (undefined == undefined) == true, but
285 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
286 if (cond == le || cond == ge) {
287 __ cmp(r4, Operand(ODDBALL_TYPE));
288 __ b(ne, &return_equal);
289 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
291 __ b(ne, &return_equal);
293 // undefined <= undefined should fail.
294 __ mov(r0, Operand(GREATER));
296 // undefined >= undefined should fail.
297 __ mov(r0, Operand(LESS));
304 __ bind(&return_equal);
306 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
307 } else if (cond == gt) {
308 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
310 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
314 // For less and greater we don't have to check for NaN since the result of
315 // x < x is false regardless. For the others here is some code to check
317 if (cond != lt && cond != gt) {
318 __ bind(&heap_number);
319 // It is a heap number, so return non-equal if it's NaN and equal if it's
322 // The representation of NaN values has all exponent bits (52..62) set,
323 // and not all mantissa bits (0..51) clear.
324 // Read top bits of double representation (second word of value).
325 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
326 // Test that exponent bits are all set.
327 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
328 // NaNs have all-one exponents so they sign extend to -1.
329 __ cmp(r3, Operand(-1));
330 __ b(ne, &return_equal);
332 // Shift out flag and all exponent bits, retaining only mantissa.
333 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
334 // Or with all low-bits of mantissa.
335 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
336 __ orr(r0, r3, Operand(r2), SetCC);
337 // For equal we already have the right value in r0: Return zero (equal)
338 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
339 // not (it's a NaN). For <= and >= we need to load r0 with the failing
340 // value if it's a NaN.
342 // All-zero means Infinity means equal.
345 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
347 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
352 // No fall through here.
354 __ bind(¬_identical);
358 // See comment at call site.
359 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
365 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
366 (lhs.is(r1) && rhs.is(r0)));
369 __ JumpIfSmi(rhs, &rhs_is_smi);
371 // Lhs is a Smi. Check whether the rhs is a heap number.
372 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
374 // If rhs is not a number and lhs is a Smi then strict equality cannot
375 // succeed. Return non-equal
376 // If rhs is r0 then there is already a non zero value in it.
378 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
382 // Smi compared non-strictly with a non-Smi non-heap-number. Call
387 // Lhs is a smi, rhs is a number.
388 // Convert lhs to a double in d7.
389 __ SmiToDouble(d7, lhs);
390 // Load the double from rhs, tagged HeapNumber r0, to d6.
391 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
393 // We now have both loaded as doubles but we can skip the lhs nan check
397 __ bind(&rhs_is_smi);
398 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
399 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
401 // If lhs is not a number and rhs is a smi then strict equality cannot
402 // succeed. Return non-equal.
403 // If lhs is r0 then there is already a non zero value in it.
405 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
409 // Smi compared non-strictly with a non-smi non-heap-number. Call
414 // Rhs is a smi, lhs is a heap number.
415 // Load the double from lhs, tagged HeapNumber r1, to d7.
416 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
417 // Convert rhs to a double in d6 .
418 __ SmiToDouble(d6, rhs);
419 // Fall through to both_loaded_as_doubles.
423 // See comment at call site.
424 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
427 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
428 (lhs.is(r1) && rhs.is(r0)));
430 // If either operand is a JS object or an oddball value, then they are
431 // not equal since their pointers are different.
432 // There is no test for undetectability in strict equality.
433 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
434 Label first_non_object;
435 // Get the type of the first operand into r2 and compare it with
436 // FIRST_SPEC_OBJECT_TYPE.
437 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
438 __ b(lt, &first_non_object);
440 // Return non-zero (r0 is not zero)
441 Label return_not_equal;
442 __ bind(&return_not_equal);
445 __ bind(&first_non_object);
446 // Check for oddballs: true, false, null, undefined.
447 __ cmp(r2, Operand(ODDBALL_TYPE));
448 __ b(eq, &return_not_equal);
450 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
451 __ b(ge, &return_not_equal);
453 // Check for oddballs: true, false, null, undefined.
454 __ cmp(r3, Operand(ODDBALL_TYPE));
455 __ b(eq, &return_not_equal);
457 // Now that we have the types we might as well check for
458 // internalized-internalized.
459 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
460 __ orr(r2, r2, Operand(r3));
461 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
462 __ b(eq, &return_not_equal);
466 // See comment at call site.
467 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
470 Label* both_loaded_as_doubles,
471 Label* not_heap_numbers,
473 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
474 (lhs.is(r1) && rhs.is(r0)));
476 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
477 __ b(ne, not_heap_numbers);
478 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
480 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
482 // Both are heap numbers. Load them up then jump to the code we have
484 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
485 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
486 __ jmp(both_loaded_as_doubles);
490 // Fast negative check for internalized-to-internalized equality.
491 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
494 Label* possible_strings,
495 Label* not_both_strings) {
496 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
497 (lhs.is(r1) && rhs.is(r0)));
499 // r2 is object type of rhs.
501 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
502 __ tst(r2, Operand(kIsNotStringMask));
503 __ b(ne, &object_test);
504 __ tst(r2, Operand(kIsNotInternalizedMask));
505 __ b(ne, possible_strings);
506 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
507 __ b(ge, not_both_strings);
508 __ tst(r3, Operand(kIsNotInternalizedMask));
509 __ b(ne, possible_strings);
511 // Both are internalized. We already checked they weren't the same pointer
512 // so they are not equal.
513 __ mov(r0, Operand(NOT_EQUAL));
516 __ bind(&object_test);
517 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
518 __ b(lt, not_both_strings);
519 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
520 __ b(lt, not_both_strings);
521 // If both objects are undetectable, they are equal. Otherwise, they
522 // are not equal, since they are different objects and an object is not
523 // equal to undefined.
524 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
525 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
526 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
527 __ and_(r0, r2, Operand(r3));
528 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
529 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
534 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
536 CompareICState::State expected,
539 if (expected == CompareICState::SMI) {
540 __ JumpIfNotSmi(input, fail);
541 } else if (expected == CompareICState::NUMBER) {
542 __ JumpIfSmi(input, &ok);
543 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
546 // We could be strict about internalized/non-internalized here, but as long as
547 // hydrogen doesn't care, the stub doesn't have to care either.
552 // On entry r1 and r2 are the values to be compared.
553 // On exit r0 is 0, positive or negative to indicate the result of
555 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
558 Condition cc = GetCondition();
561 CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
562 CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
564 Label slow; // Call builtin.
565 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
567 Label not_two_smis, smi_done;
569 __ JumpIfNotSmi(r2, ¬_two_smis);
570 __ mov(r1, Operand(r1, ASR, 1));
571 __ sub(r0, r1, Operand(r0, ASR, 1));
573 __ bind(¬_two_smis);
575 // NOTICE! This code is only reached after a smi-fast-case check, so
576 // it is certain that at least one operand isn't a smi.
578 // Handle the case where the objects are identical. Either returns the answer
579 // or goes to slow. Only falls through if the objects were not identical.
580 EmitIdenticalObjectComparison(masm, &slow, cc, strong());
582 // If either is a Smi (we know that not both are), then they can only
583 // be strictly equal if the other is a HeapNumber.
584 STATIC_ASSERT(kSmiTag == 0);
585 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
586 __ and_(r2, lhs, Operand(rhs));
587 __ JumpIfNotSmi(r2, ¬_smis);
588 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
589 // 1) Return the answer.
591 // 3) Fall through to both_loaded_as_doubles.
592 // 4) Jump to lhs_not_nan.
593 // In cases 3 and 4 we have found out we were dealing with a number-number
594 // comparison. If VFP3 is supported the double values of the numbers have
595 // been loaded into d7 and d6. Otherwise, the double values have been loaded
596 // into r0, r1, r2, and r3.
597 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
599 __ bind(&both_loaded_as_doubles);
600 // The arguments have been converted to doubles and stored in d6 and d7, if
601 // VFP3 is supported, or in r0, r1, r2, and r3.
602 __ bind(&lhs_not_nan);
604 // ARMv7 VFP3 instructions to implement double precision comparison.
605 __ VFPCompareAndSetFlags(d7, d6);
608 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
609 __ mov(r0, Operand(LESS), LeaveCC, lt);
610 __ mov(r0, Operand(GREATER), LeaveCC, gt);
614 // If one of the sides was a NaN then the v flag is set. Load r0 with
615 // whatever it takes to make the comparison fail, since comparisons with NaN
617 if (cc == lt || cc == le) {
618 __ mov(r0, Operand(GREATER));
620 __ mov(r0, Operand(LESS));
625 // At this point we know we are dealing with two different objects,
626 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
628 // This returns non-equal for some object types, or falls through if it
630 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
633 Label check_for_internalized_strings;
634 Label flat_string_check;
635 // Check for heap-number-heap-number comparison. Can jump to slow case,
636 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
637 // that case. If the inputs are not doubles then jumps to
638 // check_for_internalized_strings.
639 // In this case r2 will contain the type of rhs_. Never falls through.
640 EmitCheckForTwoHeapNumbers(masm,
643 &both_loaded_as_doubles,
644 &check_for_internalized_strings,
647 __ bind(&check_for_internalized_strings);
648 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
649 // internalized strings.
650 if (cc == eq && !strict()) {
651 // Returns an answer for two internalized strings or two detectable objects.
652 // Otherwise jumps to string case or not both strings case.
653 // Assumes that r2 is the type of rhs_ on entry.
654 EmitCheckForInternalizedStringsOrObjects(
655 masm, lhs, rhs, &flat_string_check, &slow);
658 // Check for both being sequential one-byte strings,
659 // and inline if that is the case.
660 __ bind(&flat_string_check);
662 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
664 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
667 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
669 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
672 // Never falls through to here.
677 // Figure out which native to call and setup the arguments.
678 Builtins::JavaScript native;
680 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
682 native = strong() ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
683 int ncr; // NaN compare result
684 if (cc == lt || cc == le) {
687 DCHECK(cc == gt || cc == ge); // remaining cases
690 __ mov(r0, Operand(Smi::FromInt(ncr)));
694 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
695 // tagged as a small integer.
696 __ InvokeBuiltin(native, JUMP_FUNCTION);
703 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
704 // We don't allow a GC during a store buffer overflow so there is no need to
705 // store the registers in any particular way, but we do have to store and
707 __ stm(db_w, sp, kCallerSaved | lr.bit());
709 const Register scratch = r1;
711 if (save_doubles()) {
712 __ SaveFPRegs(sp, scratch);
714 const int argument_count = 1;
715 const int fp_argument_count = 0;
717 AllowExternalCallThatCantCauseGC scope(masm);
718 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
719 __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
721 ExternalReference::store_buffer_overflow_function(isolate()),
723 if (save_doubles()) {
724 __ RestoreFPRegs(sp, scratch);
726 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
730 void MathPowStub::Generate(MacroAssembler* masm) {
731 const Register base = r1;
732 const Register exponent = MathPowTaggedDescriptor::exponent();
733 DCHECK(exponent.is(r2));
734 const Register heapnumbermap = r5;
735 const Register heapnumber = r0;
736 const DwVfpRegister double_base = d0;
737 const DwVfpRegister double_exponent = d1;
738 const DwVfpRegister double_result = d2;
739 const DwVfpRegister double_scratch = d3;
740 const SwVfpRegister single_scratch = s6;
741 const Register scratch = r9;
742 const Register scratch2 = r4;
744 Label call_runtime, done, int_exponent;
745 if (exponent_type() == ON_STACK) {
746 Label base_is_smi, unpack_exponent;
747 // The exponent and base are supplied as arguments on the stack.
748 // This can only happen if the stub is called from non-optimized code.
749 // Load input parameters from stack to double registers.
750 __ ldr(base, MemOperand(sp, 1 * kPointerSize));
751 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
753 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
755 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
756 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
757 __ cmp(scratch, heapnumbermap);
758 __ b(ne, &call_runtime);
760 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
761 __ jmp(&unpack_exponent);
763 __ bind(&base_is_smi);
764 __ vmov(single_scratch, scratch);
765 __ vcvt_f64_s32(double_base, single_scratch);
766 __ bind(&unpack_exponent);
768 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
770 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
771 __ cmp(scratch, heapnumbermap);
772 __ b(ne, &call_runtime);
773 __ vldr(double_exponent,
774 FieldMemOperand(exponent, HeapNumber::kValueOffset));
775 } else if (exponent_type() == TAGGED) {
776 // Base is already in double_base.
777 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
779 __ vldr(double_exponent,
780 FieldMemOperand(exponent, HeapNumber::kValueOffset));
783 if (exponent_type() != INTEGER) {
784 Label int_exponent_convert;
785 // Detect integer exponents stored as double.
786 __ vcvt_u32_f64(single_scratch, double_exponent);
787 // We do not check for NaN or Infinity here because comparing numbers on
788 // ARM correctly distinguishes NaNs. We end up calling the built-in.
789 __ vcvt_f64_u32(double_scratch, single_scratch);
790 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
791 __ b(eq, &int_exponent_convert);
793 if (exponent_type() == ON_STACK) {
794 // Detect square root case. Crankshaft detects constant +/-0.5 at
795 // compile time and uses DoMathPowHalf instead. We then skip this check
796 // for non-constant cases of +/-0.5 as these hardly occur.
800 __ vmov(double_scratch, 0.5, scratch);
801 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
802 __ b(ne, ¬_plus_half);
804 // Calculates square root of base. Check for the special case of
805 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
806 __ vmov(double_scratch, -V8_INFINITY, scratch);
807 __ VFPCompareAndSetFlags(double_base, double_scratch);
808 __ vneg(double_result, double_scratch, eq);
811 // Add +0 to convert -0 to +0.
812 __ vadd(double_scratch, double_base, kDoubleRegZero);
813 __ vsqrt(double_result, double_scratch);
816 __ bind(¬_plus_half);
817 __ vmov(double_scratch, -0.5, scratch);
818 __ VFPCompareAndSetFlags(double_exponent, double_scratch);
819 __ b(ne, &call_runtime);
821 // Calculates square root of base. Check for the special case of
822 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
823 __ vmov(double_scratch, -V8_INFINITY, scratch);
824 __ VFPCompareAndSetFlags(double_base, double_scratch);
825 __ vmov(double_result, kDoubleRegZero, eq);
828 // Add +0 to convert -0 to +0.
829 __ vadd(double_scratch, double_base, kDoubleRegZero);
830 __ vmov(double_result, 1.0, scratch);
831 __ vsqrt(double_scratch, double_scratch);
832 __ vdiv(double_result, double_result, double_scratch);
838 AllowExternalCallThatCantCauseGC scope(masm);
839 __ PrepareCallCFunction(0, 2, scratch);
840 __ MovToFloatParameters(double_base, double_exponent);
842 ExternalReference::power_double_double_function(isolate()),
846 __ MovFromFloatResult(double_result);
849 __ bind(&int_exponent_convert);
850 __ vcvt_u32_f64(single_scratch, double_exponent);
851 __ vmov(scratch, single_scratch);
854 // Calculate power with integer exponent.
855 __ bind(&int_exponent);
857 // Get two copies of exponent in the registers scratch and exponent.
858 if (exponent_type() == INTEGER) {
859 __ mov(scratch, exponent);
861 // Exponent has previously been stored into scratch as untagged integer.
862 __ mov(exponent, scratch);
864 __ vmov(double_scratch, double_base); // Back up base.
865 __ vmov(double_result, 1.0, scratch2);
867 // Get absolute value of exponent.
868 __ cmp(scratch, Operand::Zero());
869 __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
870 __ sub(scratch, scratch2, scratch, LeaveCC, mi);
873 __ bind(&while_true);
874 __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
875 __ vmul(double_result, double_result, double_scratch, cs);
876 __ vmul(double_scratch, double_scratch, double_scratch, ne);
877 __ b(ne, &while_true);
879 __ cmp(exponent, Operand::Zero());
881 __ vmov(double_scratch, 1.0, scratch);
882 __ vdiv(double_result, double_scratch, double_result);
883 // Test whether result is zero. Bail out to check for subnormal result.
884 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
885 __ VFPCompareAndSetFlags(double_result, 0.0);
887 // double_exponent may not containe the exponent value if the input was a
888 // smi. We set it with exponent value before bailing out.
889 __ vmov(single_scratch, exponent);
890 __ vcvt_f64_s32(double_exponent, single_scratch);
892 // Returning or bailing out.
893 Counters* counters = isolate()->counters();
894 if (exponent_type() == ON_STACK) {
895 // The arguments are still on the stack.
896 __ bind(&call_runtime);
897 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
899 // The stub is called from non-optimized code, which expects the result
900 // as heap number in exponent.
902 __ AllocateHeapNumber(
903 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
904 __ vstr(double_result,
905 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
906 DCHECK(heapnumber.is(r0));
907 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
912 AllowExternalCallThatCantCauseGC scope(masm);
913 __ PrepareCallCFunction(0, 2, scratch);
914 __ MovToFloatParameters(double_base, double_exponent);
916 ExternalReference::power_double_double_function(isolate()),
920 __ MovFromFloatResult(double_result);
923 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
929 bool CEntryStub::NeedsImmovableCode() {
934 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
935 CEntryStub::GenerateAheadOfTime(isolate);
936 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
937 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
938 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
939 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
940 CreateWeakCellStub::GenerateAheadOfTime(isolate);
941 BinaryOpICStub::GenerateAheadOfTime(isolate);
942 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
943 StoreFastElementStub::GenerateAheadOfTime(isolate);
944 TypeofStub::GenerateAheadOfTime(isolate);
948 void CodeStub::GenerateFPStubs(Isolate* isolate) {
949 // Generate if not already in cache.
950 SaveFPRegsMode mode = kSaveFPRegs;
951 CEntryStub(isolate, 1, mode).GetCode();
952 StoreBufferOverflowStub(isolate, mode).GetCode();
953 isolate->set_fp_stubs_generated(true);
957 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
958 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
963 void CEntryStub::Generate(MacroAssembler* masm) {
964 // Called from JavaScript; parameters are on stack as if calling JS function.
965 // r0: number of arguments including receiver
966 // r1: pointer to builtin function
967 // fp: frame pointer (restored after C call)
968 // sp: stack pointer (restored as callee's sp after C call)
969 // cp: current context (C callee-saved)
971 ProfileEntryHookStub::MaybeCallEntryHook(masm);
973 __ mov(r5, Operand(r1));
975 // Compute the argv pointer in a callee-saved register.
976 __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
977 __ sub(r1, r1, Operand(kPointerSize));
979 // Enter the exit frame that transitions from JavaScript to C++.
980 FrameScope scope(masm, StackFrame::MANUAL);
981 __ EnterExitFrame(save_doubles());
983 // Store a copy of argc in callee-saved registers for later.
984 __ mov(r4, Operand(r0));
986 // r0, r4: number of arguments including receiver (C callee-saved)
987 // r1: pointer to the first argument (C callee-saved)
988 // r5: pointer to builtin function (C callee-saved)
990 // Result returned in r0 or r0+r1 by default.
993 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
994 int frame_alignment_mask = frame_alignment - 1;
995 if (FLAG_debug_code) {
996 if (frame_alignment > kPointerSize) {
997 Label alignment_as_expected;
998 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
999 __ tst(sp, Operand(frame_alignment_mask));
1000 __ b(eq, &alignment_as_expected);
1001 // Don't use Check here, as it will call Runtime_Abort re-entering here.
1002 __ stop("Unexpected alignment");
1003 __ bind(&alignment_as_expected);
1009 // r0 = argc, r1 = argv
1010 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1012 // To let the GC traverse the return address of the exit frames, we need to
1013 // know where the return address is. The CEntryStub is unmovable, so
1014 // we can store the address on the stack to be able to find it again and
1015 // we never have to restore it, because it will not change.
1016 // Compute the return address in lr to return to after the jump below. Pc is
1017 // already at '+ 8' from the current instruction but return is after three
1018 // instructions so add another 4 to pc to get the return address.
1020 // Prevent literal pool emission before return address.
1021 Assembler::BlockConstPoolScope block_const_pool(masm);
1022 __ add(lr, pc, Operand(4));
1023 __ str(lr, MemOperand(sp, 0));
1027 __ VFPEnsureFPSCRState(r2);
1029 // Check result for exception sentinel.
1030 Label exception_returned;
1031 __ CompareRoot(r0, Heap::kExceptionRootIndex);
1032 __ b(eq, &exception_returned);
1034 // Check that there is no pending exception, otherwise we
1035 // should have returned the exception sentinel.
1036 if (FLAG_debug_code) {
1038 ExternalReference pending_exception_address(
1039 Isolate::kPendingExceptionAddress, isolate());
1040 __ mov(r2, Operand(pending_exception_address));
1041 __ ldr(r2, MemOperand(r2));
1042 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
1043 // Cannot use check here as it attempts to generate call into runtime.
1045 __ stop("Unexpected pending exception");
1049 // Exit C frame and return.
1051 // sp: stack pointer
1052 // fp: frame pointer
1053 // Callee-saved register r4 still holds argc.
1054 __ LeaveExitFrame(save_doubles(), r4, true);
1057 // Handling of exception.
1058 __ bind(&exception_returned);
1060 ExternalReference pending_handler_context_address(
1061 Isolate::kPendingHandlerContextAddress, isolate());
1062 ExternalReference pending_handler_code_address(
1063 Isolate::kPendingHandlerCodeAddress, isolate());
1064 ExternalReference pending_handler_offset_address(
1065 Isolate::kPendingHandlerOffsetAddress, isolate());
1066 ExternalReference pending_handler_fp_address(
1067 Isolate::kPendingHandlerFPAddress, isolate());
1068 ExternalReference pending_handler_sp_address(
1069 Isolate::kPendingHandlerSPAddress, isolate());
1071 // Ask the runtime for help to determine the handler. This will set r0 to
1072 // contain the current pending exception, don't clobber it.
1073 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1076 FrameScope scope(masm, StackFrame::MANUAL);
1077 __ PrepareCallCFunction(3, 0, r0);
1078 __ mov(r0, Operand(0));
1079 __ mov(r1, Operand(0));
1080 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1081 __ CallCFunction(find_handler, 3);
1084 // Retrieve the handler context, SP and FP.
1085 __ mov(cp, Operand(pending_handler_context_address));
1086 __ ldr(cp, MemOperand(cp));
1087 __ mov(sp, Operand(pending_handler_sp_address));
1088 __ ldr(sp, MemOperand(sp));
1089 __ mov(fp, Operand(pending_handler_fp_address));
1090 __ ldr(fp, MemOperand(fp));
1092 // If the handler is a JS frame, restore the context to the frame. Note that
1093 // the context will be set to (cp == 0) for non-JS frames.
1094 __ cmp(cp, Operand(0));
1095 __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
1097 // Compute the handler entry address and jump to it.
1098 ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1099 __ mov(r1, Operand(pending_handler_code_address));
1100 __ ldr(r1, MemOperand(r1));
1101 __ mov(r2, Operand(pending_handler_offset_address));
1102 __ ldr(r2, MemOperand(r2));
1103 if (FLAG_enable_embedded_constant_pool) {
1104 __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r1);
1106 __ add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));
1111 void JSEntryStub::Generate(MacroAssembler* masm) {
1118 Label invoke, handler_entry, exit;
1120 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1122 // Called from C, so do not pop argc and args on exit (preserve sp)
1123 // No need to save register-passed args
1124 // Save callee-saved registers (incl. cp and fp), sp, and lr
1125 __ stm(db_w, sp, kCalleeSaved | lr.bit());
1127 // Save callee-saved vfp registers.
1128 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1129 // Set up the reserved register for 0.0.
1130 __ vmov(kDoubleRegZero, 0.0);
1131 __ VFPEnsureFPSCRState(r4);
1133 // Get address of argv, see stm above.
1139 // Set up argv in r4.
1140 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1141 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1142 __ ldr(r4, MemOperand(sp, offset_to_argv));
1144 // Push a frame with special values setup to mark it as an entry frame.
1150 int marker = type();
1151 if (FLAG_enable_embedded_constant_pool) {
1152 __ mov(r8, Operand::Zero());
1154 __ mov(r7, Operand(Smi::FromInt(marker)));
1155 __ mov(r6, Operand(Smi::FromInt(marker)));
1157 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1158 __ ldr(r5, MemOperand(r5));
1159 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1160 __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
1161 (FLAG_enable_embedded_constant_pool ? r8.bit() : 0) |
1164 // Set up frame pointer for the frame to be pushed.
1165 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1167 // If this is the outermost JS call, set js_entry_sp value.
1168 Label non_outermost_js;
1169 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1170 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1171 __ ldr(r6, MemOperand(r5));
1172 __ cmp(r6, Operand::Zero());
1173 __ b(ne, &non_outermost_js);
1174 __ str(fp, MemOperand(r5));
1175 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1178 __ bind(&non_outermost_js);
1179 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1183 // Jump to a faked try block that does the invoke, with a faked catch
1184 // block that sets the pending exception.
1187 // Block literal pool emission whilst taking the position of the handler
1188 // entry. This avoids making the assumption that literal pools are always
1189 // emitted after an instruction is emitted, rather than before.
1191 Assembler::BlockConstPoolScope block_const_pool(masm);
1192 __ bind(&handler_entry);
1193 handler_offset_ = handler_entry.pos();
1194 // Caught exception: Store result (exception) in the pending exception
1195 // field in the JSEnv and return a failure sentinel. Coming in here the
1196 // fp will be invalid because the PushStackHandler below sets it to 0 to
1197 // signal the existence of the JSEntry frame.
1198 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1201 __ str(r0, MemOperand(ip));
1202 __ LoadRoot(r0, Heap::kExceptionRootIndex);
1205 // Invoke: Link this frame into the handler chain.
1207 // Must preserve r0-r4, r5-r6 are available.
1208 __ PushStackHandler();
1209 // If an exception not caught by another handler occurs, this handler
1210 // returns control to the code after the bl(&invoke) above, which
1211 // restores all kCalleeSaved registers (including cp and fp) to their
1212 // saved values before returning a failure to C.
1214 // Clear any pending exceptions.
1215 __ mov(r5, Operand(isolate()->factory()->the_hole_value()));
1216 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1218 __ str(r5, MemOperand(ip));
1220 // Invoke the function by calling through JS entry trampoline builtin.
1221 // Notice that we cannot store a reference to the trampoline code directly in
1222 // this stub, because runtime stubs are not traversed when doing GC.
1224 // Expected registers by Builtins::JSEntryTrampoline
1230 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1231 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1233 __ mov(ip, Operand(construct_entry));
1235 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1236 __ mov(ip, Operand(entry));
1238 __ ldr(ip, MemOperand(ip)); // deref address
1239 __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1241 // Branch and link to JSEntryTrampoline.
1244 // Unlink this frame from the handler chain.
1245 __ PopStackHandler();
1247 __ bind(&exit); // r0 holds result
1248 // Check if the current stack frame is marked as the outermost JS frame.
1249 Label non_outermost_js_2;
1251 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1252 __ b(ne, &non_outermost_js_2);
1253 __ mov(r6, Operand::Zero());
1254 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
1255 __ str(r6, MemOperand(r5));
1256 __ bind(&non_outermost_js_2);
1258 // Restore the top frame descriptors from the stack.
1261 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1262 __ str(r3, MemOperand(ip));
1264 // Reset the stack to the callee saved registers.
1265 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1267 // Restore callee-saved registers and return.
1269 if (FLAG_debug_code) {
1270 __ mov(lr, Operand(pc));
1274 // Restore callee-saved vfp registers.
1275 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1277 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
1281 // Uses registers r0 to r4.
1282 // Expected input (depending on whether args are in registers or on the stack):
1283 // * object: r0 or at sp + 1 * kPointerSize.
1284 // * function: r1 or at sp.
1286 // An inlined call site may have been generated before calling this stub.
1287 // In this case the offset to the inline sites to patch are passed in r5 and r6.
1288 // (See LCodeGen::DoInstanceOfKnownGlobal)
1289 void InstanceofStub::Generate(MacroAssembler* masm) {
1290 // Call site inlining and patching implies arguments in registers.
1291 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1293 // Fixed register usage throughout the stub:
1294 const Register object = r0; // Object (lhs).
1295 Register map = r3; // Map of the object.
1296 const Register function = r1; // Function (rhs).
1297 const Register prototype = r4; // Prototype of the function.
1298 const Register scratch = r2;
1300 Label slow, loop, is_instance, is_not_instance, not_js_object;
1302 if (!HasArgsInRegisters()) {
1303 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
1304 __ ldr(function, MemOperand(sp, 0));
1307 // Check that the left hand is a JS object and load map.
1308 __ JumpIfSmi(object, ¬_js_object);
1309 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
1311 // If there is a call site cache don't look in the global cache, but do the
1312 // real lookup and update the call site cache.
1313 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1315 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1317 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
1319 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1320 __ Ret(HasArgsInRegisters() ? 0 : 2);
1325 // Get the prototype of the function.
1326 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1328 // Check that the function prototype is a JS object.
1329 __ JumpIfSmi(prototype, &slow);
1330 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1332 // Update the global instanceof or call site inlined cache with the current
1333 // map and function. The cached answer will be set when it is known below.
1334 if (!HasCallSiteInlineCheck()) {
1335 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1336 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1338 DCHECK(HasArgsInRegisters());
1339 // Patch the (relocated) inlined map check.
1341 // The map_load_offset was stored in r5
1342 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1343 const Register map_load_offset = r5;
1344 __ sub(r9, lr, map_load_offset);
1345 // Get the map location in r5 and patch it.
1346 __ GetRelocatedValueLocation(r9, map_load_offset, scratch);
1347 __ ldr(map_load_offset, MemOperand(map_load_offset));
1348 __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset));
1351 // |map_load_offset| points at the beginning of the cell. Calculate the
1352 // field containing the map.
1353 __ add(function, map_load_offset, Operand(Cell::kValueOffset - 1));
1354 __ RecordWriteField(map_load_offset, Cell::kValueOffset, r8, function,
1355 kLRHasNotBeenSaved, kDontSaveFPRegs,
1356 OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1359 // Register mapping: r3 is object map and r4 is function prototype.
1360 // Get prototype of object into r2.
1361 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1363 // We don't need map any more. Use it as a scratch register.
1364 Register scratch2 = map;
1367 // Loop through the prototype chain looking for the function prototype.
1368 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
1370 __ cmp(scratch, Operand(prototype));
1371 __ b(eq, &is_instance);
1372 __ cmp(scratch, scratch2);
1373 __ b(eq, &is_not_instance);
1374 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1375 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1377 Factory* factory = isolate()->factory();
1379 __ bind(&is_instance);
1380 if (!HasCallSiteInlineCheck()) {
1381 __ mov(r0, Operand(Smi::FromInt(0)));
1382 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1383 if (ReturnTrueFalseObject()) {
1384 __ Move(r0, factory->true_value());
1387 // Patch the call site to return true.
1388 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
1389 // The bool_load_offset was stored in r6
1390 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1391 const Register bool_load_offset = r6;
1392 __ sub(r9, lr, bool_load_offset);
1393 // Get the boolean result location in scratch and patch it.
1394 __ GetRelocatedValueLocation(r9, scratch, scratch2);
1395 __ str(r0, MemOperand(scratch));
1397 if (!ReturnTrueFalseObject()) {
1398 __ mov(r0, Operand(Smi::FromInt(0)));
1401 __ Ret(HasArgsInRegisters() ? 0 : 2);
1403 __ bind(&is_not_instance);
1404 if (!HasCallSiteInlineCheck()) {
1405 __ mov(r0, Operand(Smi::FromInt(1)));
1406 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
1407 if (ReturnTrueFalseObject()) {
1408 __ Move(r0, factory->false_value());
1411 // Patch the call site to return false.
1412 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
1413 // The bool_load_offset was stored in r6
1414 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1415 const Register bool_load_offset = r6;
1416 __ sub(r9, lr, bool_load_offset);
1418 // Get the boolean result location in scratch and patch it.
1419 __ GetRelocatedValueLocation(r9, scratch, scratch2);
1420 __ str(r0, MemOperand(scratch));
1422 if (!ReturnTrueFalseObject()) {
1423 __ mov(r0, Operand(Smi::FromInt(1)));
1426 __ Ret(HasArgsInRegisters() ? 0 : 2);
1428 Label object_not_null, object_not_null_or_smi;
1429 __ bind(¬_js_object);
1430 // Before null, smi and string value checks, check that the rhs is a function
1431 // as for a non-function rhs an exception needs to be thrown.
1432 __ JumpIfSmi(function, &slow);
1433 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
1436 // Null is not instance of anything.
1437 __ cmp(object, Operand(isolate()->factory()->null_value()));
1438 __ b(ne, &object_not_null);
1439 if (ReturnTrueFalseObject()) {
1440 __ Move(r0, factory->false_value());
1442 __ mov(r0, Operand(Smi::FromInt(1)));
1444 __ Ret(HasArgsInRegisters() ? 0 : 2);
1446 __ bind(&object_not_null);
1447 // Smi values are not instances of anything.
1448 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1449 if (ReturnTrueFalseObject()) {
1450 __ Move(r0, factory->false_value());
1452 __ mov(r0, Operand(Smi::FromInt(1)));
1454 __ Ret(HasArgsInRegisters() ? 0 : 2);
1456 __ bind(&object_not_null_or_smi);
1457 // String values are not instances of anything.
1458 __ IsObjectJSStringType(object, scratch, &slow);
1459 if (ReturnTrueFalseObject()) {
1460 __ Move(r0, factory->false_value());
1462 __ mov(r0, Operand(Smi::FromInt(1)));
1464 __ Ret(HasArgsInRegisters() ? 0 : 2);
1466 // Slow-case. Tail call builtin.
1468 if (!ReturnTrueFalseObject()) {
1469 if (HasArgsInRegisters()) {
1472 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1475 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1477 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1479 __ cmp(r0, Operand::Zero());
1480 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
1481 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
1482 __ Ret(HasArgsInRegisters() ? 0 : 2);
1487 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1489 Register receiver = LoadDescriptor::ReceiverRegister();
1490 // Ensure that the vector and slot registers won't be clobbered before
1491 // calling the miss handler.
1492 DCHECK(!AreAliased(r4, r5, LoadWithVectorDescriptor::VectorRegister(),
1493 LoadWithVectorDescriptor::SlotRegister()));
1495 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r4,
1498 PropertyAccessCompiler::TailCallBuiltin(
1499 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1503 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1504 // Return address is in lr.
1507 Register receiver = LoadDescriptor::ReceiverRegister();
1508 Register index = LoadDescriptor::NameRegister();
1509 Register scratch = r5;
1510 Register result = r0;
1511 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1512 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1513 result.is(LoadWithVectorDescriptor::SlotRegister()));
1515 // StringCharAtGenerator doesn't use the result register until it's passed
1516 // the different miss possibilities. If it did, we would have a conflict
1517 // when FLAG_vector_ics is true.
1518 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1519 &miss, // When not a string.
1520 &miss, // When not a number.
1521 &miss, // When index out of range.
1522 STRING_INDEX_IS_ARRAY_INDEX,
1523 RECEIVER_IS_STRING);
1524 char_at_generator.GenerateFast(masm);
1527 StubRuntimeCallHelper call_helper;
1528 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1531 PropertyAccessCompiler::TailCallBuiltin(
1532 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1536 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1537 CHECK(!has_new_target());
1538 // The displacement is the offset of the last parameter (if any)
1539 // relative to the frame pointer.
1540 const int kDisplacement =
1541 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1542 DCHECK(r1.is(ArgumentsAccessReadDescriptor::index()));
1543 DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1545 // Check that the key is a smi.
1547 __ JumpIfNotSmi(r1, &slow);
1549 // Check if the calling frame is an arguments adaptor frame.
1551 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1552 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
1553 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1556 // Check index against formal parameters count limit passed in
1557 // through register r0. Use unsigned comparison to get negative
1562 // Read the argument from the stack and return it.
1564 __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
1565 __ ldr(r0, MemOperand(r3, kDisplacement));
1568 // Arguments adaptor case: Check index against actual arguments
1569 // limit found in the arguments adaptor frame. Use unsigned
1570 // comparison to get negative check for free.
1572 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1576 // Read the argument from the adaptor frame and return it.
1578 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
1579 __ ldr(r0, MemOperand(r3, kDisplacement));
1582 // Slow-case: Handle non-smi or out-of-bounds access to arguments
1583 // by calling the runtime system.
1586 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1590 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1591 // sp[0] : number of parameters
1592 // sp[4] : receiver displacement
1595 CHECK(!has_new_target());
1597 // Check if the calling frame is an arguments adaptor frame.
1599 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1600 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
1601 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1604 // Patch the arguments.length and the parameters pointer in the current frame.
1605 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1606 __ str(r2, MemOperand(sp, 0 * kPointerSize));
1607 __ add(r3, r3, Operand(r2, LSL, 1));
1608 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1609 __ str(r3, MemOperand(sp, 1 * kPointerSize));
1612 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1616 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1618 // sp[0] : number of parameters (tagged)
1619 // sp[4] : address of receiver argument
1621 // Registers used over whole function:
1622 // r6 : allocated object (tagged)
1623 // r9 : mapped parameter count (tagged)
1625 CHECK(!has_new_target());
1627 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
1628 // r1 = parameter count (tagged)
1630 // Check if the calling frame is an arguments adaptor frame.
1632 Label adaptor_frame, try_allocate;
1633 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1634 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
1635 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1636 __ b(eq, &adaptor_frame);
1638 // No adaptor, parameter count = argument count.
1640 __ b(&try_allocate);
1642 // We have an adaptor frame. Patch the parameters pointer.
1643 __ bind(&adaptor_frame);
1644 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1645 __ add(r3, r3, Operand(r2, LSL, 1));
1646 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1647 __ str(r3, MemOperand(sp, 1 * kPointerSize));
1649 // r1 = parameter count (tagged)
1650 // r2 = argument count (tagged)
1651 // Compute the mapped parameter count = min(r1, r2) in r1.
1652 __ cmp(r1, Operand(r2));
1653 __ mov(r1, Operand(r2), LeaveCC, gt);
1655 __ bind(&try_allocate);
1657 // Compute the sizes of backing store, parameter map, and arguments object.
1658 // 1. Parameter map, has 2 extra words containing context and backing store.
1659 const int kParameterMapHeaderSize =
1660 FixedArray::kHeaderSize + 2 * kPointerSize;
1661 // If there are no mapped parameters, we do not need the parameter_map.
1662 __ cmp(r1, Operand(Smi::FromInt(0)));
1663 __ mov(r9, Operand::Zero(), LeaveCC, eq);
1664 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
1665 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
1667 // 2. Backing store.
1668 __ add(r9, r9, Operand(r2, LSL, 1));
1669 __ add(r9, r9, Operand(FixedArray::kHeaderSize));
1671 // 3. Arguments object.
1672 __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize));
1674 // Do the allocation of all three objects in one go.
1675 __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
1677 // r0 = address of new object(s) (tagged)
1678 // r2 = argument count (smi-tagged)
1679 // Get the arguments boilerplate from the current native context into r4.
1680 const int kNormalOffset =
1681 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1682 const int kAliasedOffset =
1683 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1685 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1686 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
1687 __ cmp(r1, Operand::Zero());
1688 __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
1689 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
1691 // r0 = address of new object (tagged)
1692 // r1 = mapped parameter count (tagged)
1693 // r2 = argument count (smi-tagged)
1694 // r4 = address of arguments map (tagged)
1695 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
1696 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
1697 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
1698 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
1700 // Set up the callee in-object property.
1701 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1702 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
1703 __ AssertNotSmi(r3);
1704 const int kCalleeOffset = JSObject::kHeaderSize +
1705 Heap::kArgumentsCalleeIndex * kPointerSize;
1706 __ str(r3, FieldMemOperand(r0, kCalleeOffset));
1708 // Use the length (smi tagged) and set that as an in-object property too.
1710 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1711 const int kLengthOffset = JSObject::kHeaderSize +
1712 Heap::kArgumentsLengthIndex * kPointerSize;
1713 __ str(r2, FieldMemOperand(r0, kLengthOffset));
1715 // Set up the elements pointer in the allocated arguments object.
1716 // If we allocated a parameter map, r4 will point there, otherwise
1717 // it will point to the backing store.
1718 __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize));
1719 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
1721 // r0 = address of new object (tagged)
1722 // r1 = mapped parameter count (tagged)
1723 // r2 = argument count (tagged)
1724 // r4 = address of parameter map or backing store (tagged)
1725 // Initialize parameter map. If there are no mapped arguments, we're done.
1726 Label skip_parameter_map;
1727 __ cmp(r1, Operand(Smi::FromInt(0)));
1728 // Move backing store address to r3, because it is
1729 // expected there when filling in the unmapped arguments.
1730 __ mov(r3, r4, LeaveCC, eq);
1731 __ b(eq, &skip_parameter_map);
1733 __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex);
1734 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
1735 __ add(r6, r1, Operand(Smi::FromInt(2)));
1736 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
1737 __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
1738 __ add(r6, r4, Operand(r1, LSL, 1));
1739 __ add(r6, r6, Operand(kParameterMapHeaderSize));
1740 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
1742 // Copy the parameter slots and the holes in the arguments.
1743 // We need to fill in mapped_parameter_count slots. They index the context,
1744 // where parameters are stored in reverse order, at
1745 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1746 // The mapped parameter thus need to get indices
1747 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1748 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1749 // We loop from right to left.
1750 Label parameters_loop, parameters_test;
1752 __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
1753 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1754 __ sub(r9, r9, Operand(r1));
1755 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
1756 __ add(r3, r4, Operand(r6, LSL, 1));
1757 __ add(r3, r3, Operand(kParameterMapHeaderSize));
1759 // r6 = loop variable (tagged)
1760 // r1 = mapping index (tagged)
1761 // r3 = address of backing store (tagged)
1762 // r4 = address of parameter map (tagged), which is also the address of new
1763 // object + Heap::kSloppyArgumentsObjectSize (tagged)
1764 // r0 = temporary scratch (a.o., for address calculation)
1765 // r5 = the hole value
1766 __ jmp(¶meters_test);
1768 __ bind(¶meters_loop);
1769 __ sub(r6, r6, Operand(Smi::FromInt(1)));
1770 __ mov(r0, Operand(r6, LSL, 1));
1771 __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1772 __ str(r9, MemOperand(r4, r0));
1773 __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1774 __ str(r5, MemOperand(r3, r0));
1775 __ add(r9, r9, Operand(Smi::FromInt(1)));
1776 __ bind(¶meters_test);
1777 __ cmp(r6, Operand(Smi::FromInt(0)));
1778 __ b(ne, ¶meters_loop);
1780 // Restore r0 = new object (tagged)
1781 __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
1783 __ bind(&skip_parameter_map);
1784 // r0 = address of new object (tagged)
1785 // r2 = argument count (tagged)
1786 // r3 = address of backing store (tagged)
1788 // Copy arguments header and remaining slots (if there are any).
1789 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
1790 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
1791 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
1793 Label arguments_loop, arguments_test;
1795 __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
1796 __ sub(r4, r4, Operand(r9, LSL, 1));
1797 __ jmp(&arguments_test);
1799 __ bind(&arguments_loop);
1800 __ sub(r4, r4, Operand(kPointerSize));
1801 __ ldr(r6, MemOperand(r4, 0));
1802 __ add(r5, r3, Operand(r9, LSL, 1));
1803 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
1804 __ add(r9, r9, Operand(Smi::FromInt(1)));
1806 __ bind(&arguments_test);
1807 __ cmp(r9, Operand(r2));
1808 __ b(lt, &arguments_loop);
1810 // Return and remove the on-stack parameters.
1811 __ add(sp, sp, Operand(3 * kPointerSize));
1814 // Do the runtime call to allocate the arguments object.
1815 // r0 = address of new object (tagged)
1816 // r2 = argument count (tagged)
1818 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
1819 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1823 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1824 // Return address is in lr.
1827 Register receiver = LoadDescriptor::ReceiverRegister();
1828 Register key = LoadDescriptor::NameRegister();
1830 // Check that the key is an array index, that is Uint32.
1831 __ NonNegativeSmiTst(key);
1834 // Everything is fine, call runtime.
1835 __ Push(receiver, key); // Receiver, key.
1837 // Perform tail call to the entry.
1838 __ TailCallExternalReference(
1839 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1844 PropertyAccessCompiler::TailCallBuiltin(
1845 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1849 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1850 // sp[0] : number of parameters
1851 // sp[4] : receiver displacement
1853 // Check if the calling frame is an arguments adaptor frame.
1854 Label adaptor_frame, try_allocate, runtime;
1855 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1856 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
1857 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1858 __ b(eq, &adaptor_frame);
1860 // Get the length from the frame.
1861 __ ldr(r1, MemOperand(sp, 0));
1862 __ b(&try_allocate);
1864 // Patch the arguments.length and the parameters pointer.
1865 __ bind(&adaptor_frame);
1866 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1867 if (has_new_target()) {
1868 __ cmp(r1, Operand(Smi::FromInt(0)));
1869 Label skip_decrement;
1870 __ b(eq, &skip_decrement);
1871 // Subtract 1 from smi-tagged arguments count.
1872 __ sub(r1, r1, Operand(2));
1873 __ bind(&skip_decrement);
1875 __ str(r1, MemOperand(sp, 0));
1876 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
1877 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1878 __ str(r3, MemOperand(sp, 1 * kPointerSize));
1880 // Try the new space allocation. Start out with computing the size
1881 // of the arguments object and the elements array in words.
1882 Label add_arguments_object;
1883 __ bind(&try_allocate);
1884 __ SmiUntag(r1, SetCC);
1885 __ b(eq, &add_arguments_object);
1886 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
1887 __ bind(&add_arguments_object);
1888 __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1890 // Do the allocation of both objects in one go.
1891 __ Allocate(r1, r0, r2, r3, &runtime,
1892 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1894 // Get the arguments boilerplate from the current native context.
1895 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1896 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
1897 __ ldr(r4, MemOperand(
1898 r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
1900 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
1901 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
1902 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
1903 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
1905 // Get the length (smi tagged) and set that as an in-object property too.
1906 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1907 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
1909 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
1910 Heap::kArgumentsLengthIndex * kPointerSize));
1912 // If there are no actual arguments, we're done.
1914 __ cmp(r1, Operand::Zero());
1917 // Get the parameters pointer from the stack.
1918 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
1920 // Set up the elements pointer in the allocated arguments object and
1921 // initialize the header in the elements fixed array.
1922 __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize));
1923 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
1924 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
1925 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
1926 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
1929 // Copy the fixed array slots.
1931 // Set up r4 to point to the first array slot.
1932 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1934 // Pre-decrement r2 with kPointerSize on each iteration.
1935 // Pre-decrement in order to skip receiver.
1936 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
1937 // Post-increment r4 with kPointerSize on each iteration.
1938 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
1939 __ sub(r1, r1, Operand(1));
1940 __ cmp(r1, Operand::Zero());
1943 // Return and remove the on-stack parameters.
1945 __ add(sp, sp, Operand(3 * kPointerSize));
1948 // Do the runtime call to allocate the arguments object.
1950 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1954 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
1955 // Stack layout on entry.
1956 // sp[0] : language mode
1957 // sp[4] : index of rest parameter
1958 // sp[8] : number of parameters
1959 // sp[12] : receiver displacement
1962 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1963 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
1964 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1967 // Patch the arguments.length and the parameters pointer.
1968 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1969 __ str(r1, MemOperand(sp, 2 * kPointerSize));
1970 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
1971 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
1972 __ str(r3, MemOperand(sp, 3 * kPointerSize));
1975 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
1979 void RegExpExecStub::Generate(MacroAssembler* masm) {
1980 // Just jump directly to runtime if native RegExp is not selected at compile
1981 // time or if regexp entry in generated code is turned off runtime switch or
1983 #ifdef V8_INTERPRETED_REGEXP
1984 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1985 #else // V8_INTERPRETED_REGEXP
1987 // Stack frame on entry.
1988 // sp[0]: last_match_info (expected JSArray)
1989 // sp[4]: previous index
1990 // sp[8]: subject string
1991 // sp[12]: JSRegExp object
1993 const int kLastMatchInfoOffset = 0 * kPointerSize;
1994 const int kPreviousIndexOffset = 1 * kPointerSize;
1995 const int kSubjectOffset = 2 * kPointerSize;
1996 const int kJSRegExpOffset = 3 * kPointerSize;
1999 // Allocation of registers for this function. These are in callee save
2000 // registers and will be preserved by the call to the native RegExp code, as
2001 // this code is called using the normal C calling convention. When calling
2002 // directly from generated code the native RegExp code will not do a GC and
2003 // therefore the content of these registers are safe to use after the call.
2004 Register subject = r4;
2005 Register regexp_data = r5;
2006 Register last_match_info_elements = no_reg; // will be r6;
2008 // Ensure that a RegExp stack is allocated.
2009 ExternalReference address_of_regexp_stack_memory_address =
2010 ExternalReference::address_of_regexp_stack_memory_address(isolate());
2011 ExternalReference address_of_regexp_stack_memory_size =
2012 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2013 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
2014 __ ldr(r0, MemOperand(r0, 0));
2015 __ cmp(r0, Operand::Zero());
2018 // Check that the first argument is a JSRegExp object.
2019 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
2020 __ JumpIfSmi(r0, &runtime);
2021 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
2024 // Check that the RegExp has been compiled (data contains a fixed array).
2025 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
2026 if (FLAG_debug_code) {
2027 __ SmiTst(regexp_data);
2028 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2029 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
2030 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2033 // regexp_data: RegExp data (FixedArray)
2034 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2035 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2036 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2039 // regexp_data: RegExp data (FixedArray)
2040 // Check that the number of captures fit in the static offsets vector buffer.
2042 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2043 // Check (number_of_captures + 1) * 2 <= offsets vector size
2044 // Or number_of_captures * 2 <= offsets vector size - 2
2045 // Multiplying by 2 comes for free since r2 is smi-tagged.
2046 STATIC_ASSERT(kSmiTag == 0);
2047 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2048 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2049 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
2052 // Reset offset for possibly sliced string.
2053 __ mov(r9, Operand::Zero());
2054 __ ldr(subject, MemOperand(sp, kSubjectOffset));
2055 __ JumpIfSmi(subject, &runtime);
2056 __ mov(r3, subject); // Make a copy of the original subject string.
2057 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2058 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2059 // subject: subject string
2060 // r3: subject string
2061 // r0: subject string instance type
2062 // regexp_data: RegExp data (FixedArray)
2063 // Handle subject string according to its encoding and representation:
2064 // (1) Sequential string? If yes, go to (5).
2065 // (2) Anything but sequential or cons? If yes, go to (6).
2066 // (3) Cons string. If the string is flat, replace subject with first string.
2067 // Otherwise bailout.
2068 // (4) Is subject external? If yes, go to (7).
2069 // (5) Sequential string. Load regexp code according to encoding.
2073 // Deferred code at the end of the stub:
2074 // (6) Not a long external string? If yes, go to (8).
2075 // (7) External string. Make it, offset-wise, look like a sequential string.
2077 // (8) Short external string or not a string? If yes, bail out to runtime.
2078 // (9) Sliced string. Replace subject with parent. Go to (4).
2080 Label seq_string /* 5 */, external_string /* 7 */,
2081 check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
2082 not_long_external /* 8 */;
2084 // (1) Sequential string? If yes, go to (5).
2087 Operand(kIsNotStringMask |
2088 kStringRepresentationMask |
2089 kShortExternalStringMask),
2091 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2092 __ b(eq, &seq_string); // Go to (5).
2094 // (2) Anything but sequential or cons? If yes, go to (6).
2095 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2096 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2097 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2098 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2099 __ cmp(r1, Operand(kExternalStringTag));
2100 __ b(ge, ¬_seq_nor_cons); // Go to (6).
2102 // (3) Cons string. Check that it's flat.
2103 // Replace subject with first string and reload instance type.
2104 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
2105 __ CompareRoot(r0, Heap::kempty_stringRootIndex);
2107 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2109 // (4) Is subject external? If yes, go to (7).
2110 __ bind(&check_underlying);
2111 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2112 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2113 STATIC_ASSERT(kSeqStringTag == 0);
2114 __ tst(r0, Operand(kStringRepresentationMask));
2115 // The underlying external string is never a short external string.
2116 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2117 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2118 __ b(ne, &external_string); // Go to (7).
2120 // (5) Sequential string. Load regexp code according to encoding.
2121 __ bind(&seq_string);
2122 // subject: sequential subject string (or look-alike, external string)
2123 // r3: original subject string
2124 // Load previous index and check range before r3 is overwritten. We have to
2125 // use r3 instead of subject here because subject might have been only made
2126 // to look like a sequential string when it actually is an external string.
2127 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
2128 __ JumpIfNotSmi(r1, &runtime);
2129 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
2130 __ cmp(r3, Operand(r1));
2134 STATIC_ASSERT(4 == kOneByteStringTag);
2135 STATIC_ASSERT(kTwoByteStringTag == 0);
2136 __ and_(r0, r0, Operand(kStringEncodingMask));
2137 __ mov(r3, Operand(r0, ASR, 2), SetCC);
2138 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
2140 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
2142 // (E) Carry on. String handling is done.
2143 // r6: irregexp code
2144 // Check that the irregexp code has been generated for the actual string
2145 // encoding. If it has, the field contains a code object otherwise it contains
2146 // a smi (code flushing support).
2147 __ JumpIfSmi(r6, &runtime);
2149 // r1: previous index
2150 // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
2152 // subject: Subject string
2153 // regexp_data: RegExp data (FixedArray)
2154 // All checks done. Now push arguments for native regexp code.
2155 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
2157 // Isolates: note we add an additional parameter here (isolate pointer).
2158 const int kRegExpExecuteArguments = 9;
2159 const int kParameterRegisters = 4;
2160 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2162 // Stack pointer now points to cell where return address is to be written.
2163 // Arguments are before that on the stack or in registers.
2165 // Argument 9 (sp[20]): Pass current isolate address.
2166 __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
2167 __ str(r0, MemOperand(sp, 5 * kPointerSize));
2169 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
2170 __ mov(r0, Operand(1));
2171 __ str(r0, MemOperand(sp, 4 * kPointerSize));
2173 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
2174 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
2175 __ ldr(r0, MemOperand(r0, 0));
2176 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
2177 __ ldr(r2, MemOperand(r2, 0));
2178 __ add(r0, r0, Operand(r2));
2179 __ str(r0, MemOperand(sp, 3 * kPointerSize));
2181 // Argument 6: Set the number of capture registers to zero to force global
2182 // regexps to behave as non-global. This does not affect non-global regexps.
2183 __ mov(r0, Operand::Zero());
2184 __ str(r0, MemOperand(sp, 2 * kPointerSize));
2186 // Argument 5 (sp[4]): static offsets vector buffer.
2188 Operand(ExternalReference::address_of_static_offsets_vector(
2190 __ str(r0, MemOperand(sp, 1 * kPointerSize));
2192 // For arguments 4 and 3 get string length, calculate start of string data and
2193 // calculate the shift of the index (0 for one-byte and 1 for two-byte).
2194 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2195 __ eor(r3, r3, Operand(1));
2196 // Load the length from the original subject string from the previous stack
2197 // frame. Therefore we have to use fp, which points exactly to two pointer
2198 // sizes below the previous sp. (Because creating a new stack frame pushes
2199 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2200 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2201 // If slice offset is not 0, load the length from the original sliced string.
2202 // Argument 4, r3: End of string data
2203 // Argument 3, r2: Start of string data
2204 // Prepare start and end index of the input.
2205 __ add(r9, r7, Operand(r9, LSL, r3));
2206 __ add(r2, r9, Operand(r1, LSL, r3));
2208 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
2210 __ add(r3, r9, Operand(r7, LSL, r3));
2212 // Argument 2 (r1): Previous index.
2215 // Argument 1 (r0): Subject string.
2216 __ mov(r0, subject);
2218 // Locate the code entry and call it.
2219 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
2220 DirectCEntryStub stub(isolate());
2221 stub.GenerateCall(masm, r6);
2223 __ LeaveExitFrame(false, no_reg, true);
2225 last_match_info_elements = r6;
2228 // subject: subject string (callee saved)
2229 // regexp_data: RegExp data (callee saved)
2230 // last_match_info_elements: Last match info elements (callee saved)
2231 // Check the result.
2233 __ cmp(r0, Operand(1));
2234 // We expect exactly one result since we force the called regexp to behave
2238 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
2240 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2241 // If not exception it can only be retry. Handle that in the runtime system.
2243 // Result must now be exception. If there is no pending exception already a
2244 // stack overflow (on the backtrack stack) was detected in RegExp code but
2245 // haven't created the exception yet. Handle that in the runtime system.
2246 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2247 __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
2248 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2250 __ ldr(r0, MemOperand(r2, 0));
2254 // For exception, throw the exception again.
2255 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
2258 // For failure and exception return null.
2259 __ mov(r0, Operand(isolate()->factory()->null_value()));
2260 __ add(sp, sp, Operand(4 * kPointerSize));
2263 // Process the result from the native regexp code.
2266 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2267 // Calculate number of capture registers (number_of_captures + 1) * 2.
2268 // Multiplying by 2 comes for free since r1 is smi-tagged.
2269 STATIC_ASSERT(kSmiTag == 0);
2270 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2271 __ add(r1, r1, Operand(2)); // r1 was a smi.
2273 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
2274 __ JumpIfSmi(r0, &runtime);
2275 __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
2277 // Check that the JSArray is in fast case.
2278 __ ldr(last_match_info_elements,
2279 FieldMemOperand(r0, JSArray::kElementsOffset));
2280 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2281 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
2283 // Check that the last match info has space for the capture registers and the
2284 // additional information.
2286 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2287 __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
2288 __ cmp(r2, Operand::SmiUntag(r0));
2291 // r1: number of capture registers
2292 // r4: subject string
2293 // Store the capture count.
2295 __ str(r2, FieldMemOperand(last_match_info_elements,
2296 RegExpImpl::kLastCaptureCountOffset));
2297 // Store last subject and last input.
2299 FieldMemOperand(last_match_info_elements,
2300 RegExpImpl::kLastSubjectOffset));
2301 __ mov(r2, subject);
2302 __ RecordWriteField(last_match_info_elements,
2303 RegExpImpl::kLastSubjectOffset,
2308 __ mov(subject, r2);
2310 FieldMemOperand(last_match_info_elements,
2311 RegExpImpl::kLastInputOffset));
2312 __ RecordWriteField(last_match_info_elements,
2313 RegExpImpl::kLastInputOffset,
2319 // Get the static offsets vector filled by the native regexp code.
2320 ExternalReference address_of_static_offsets_vector =
2321 ExternalReference::address_of_static_offsets_vector(isolate());
2322 __ mov(r2, Operand(address_of_static_offsets_vector));
2324 // r1: number of capture registers
2325 // r2: offsets vector
2326 Label next_capture, done;
2327 // Capture register counter starts from number of capture registers and
2328 // counts down until wraping after zero.
2330 last_match_info_elements,
2331 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2332 __ bind(&next_capture);
2333 __ sub(r1, r1, Operand(1), SetCC);
2335 // Read the value from the static offsets vector buffer.
2336 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
2337 // Store the smi value in the last match info.
2339 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
2340 __ jmp(&next_capture);
2343 // Return last match info.
2344 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
2345 __ add(sp, sp, Operand(4 * kPointerSize));
2348 // Do the runtime call to execute the regexp.
2350 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2352 // Deferred code for string handling.
2353 // (6) Not a long external string? If yes, go to (8).
2354 __ bind(¬_seq_nor_cons);
2355 // Compare flags are still set.
2356 __ b(gt, ¬_long_external); // Go to (8).
2358 // (7) External string. Make it, offset-wise, look like a sequential string.
2359 __ bind(&external_string);
2360 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
2361 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
2362 if (FLAG_debug_code) {
2363 // Assert that we do not have a cons or slice (indirect strings) here.
2364 // Sequential strings have already been ruled out.
2365 __ tst(r0, Operand(kIsIndirectStringMask));
2366 __ Assert(eq, kExternalStringExpectedButNotFound);
2369 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2370 // Move the pointer so that offset-wise, it looks like a sequential string.
2371 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2374 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2375 __ jmp(&seq_string); // Go to (5).
2377 // (8) Short external string or not a string? If yes, bail out to runtime.
2378 __ bind(¬_long_external);
2379 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2380 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
2383 // (9) Sliced string. Replace subject with parent. Go to (4).
2384 // Load offset into r9 and replace subject string with parent.
2385 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2387 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2388 __ jmp(&check_underlying); // Go to (4).
2389 #endif // V8_INTERPRETED_REGEXP
2393 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
2394 // r0 : number of arguments to the construct function
2395 // r2 : Feedback vector
2396 // r3 : slot in feedback vector (Smi)
2397 // r1 : the function to call
2398 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2400 // Number-of-arguments register must be smi-tagged to call out.
2402 __ Push(r3, r2, r1, r0);
2406 __ Pop(r3, r2, r1, r0);
2411 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2412 // Cache the called function in a feedback vector slot. Cache states
2413 // are uninitialized, monomorphic (indicated by a JSFunction), and
2415 // r0 : number of arguments to the construct function
2416 // r1 : the function to call
2417 // r2 : Feedback vector
2418 // r3 : slot in feedback vector (Smi)
2419 Label initialize, done, miss, megamorphic, not_array_function;
2421 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2422 masm->isolate()->heap()->megamorphic_symbol());
2423 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2424 masm->isolate()->heap()->uninitialized_symbol());
2426 // Load the cache state into r4.
2427 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2428 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2430 // A monomorphic cache hit or an already megamorphic state: invoke the
2431 // function without changing the state.
2432 // We don't know if r4 is a WeakCell or a Symbol, but it's harmless to read at
2433 // this position in a symbol (see static asserts in type-feedback-vector.h).
2434 Label check_allocation_site;
2435 Register feedback_map = r5;
2436 Register weak_value = r8;
2437 __ ldr(weak_value, FieldMemOperand(r4, WeakCell::kValueOffset));
2438 __ cmp(r1, weak_value);
2440 __ CompareRoot(r4, Heap::kmegamorphic_symbolRootIndex);
2442 __ ldr(feedback_map, FieldMemOperand(r4, HeapObject::kMapOffset));
2443 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
2444 __ b(ne, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
2446 // If the weak cell is cleared, we have a new chance to become monomorphic.
2447 __ JumpIfSmi(weak_value, &initialize);
2448 __ jmp(&megamorphic);
2450 if (!FLAG_pretenuring_call_new) {
2451 __ bind(&check_allocation_site);
2452 // If we came here, we need to see if we are the array function.
2453 // If we didn't have a matching function, and we didn't find the megamorph
2454 // sentinel, then we have in the slot either some other function or an
2456 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
2459 // Make sure the function is the Array() function
2460 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2462 __ b(ne, &megamorphic);
2468 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2470 __ CompareRoot(r4, Heap::kuninitialized_symbolRootIndex);
2471 __ b(eq, &initialize);
2472 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2473 // write-barrier is needed.
2474 __ bind(&megamorphic);
2475 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2476 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2477 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
2480 // An uninitialized cache is patched with the function
2481 __ bind(&initialize);
2483 if (!FLAG_pretenuring_call_new) {
2484 // Make sure the function is the Array() function
2485 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2487 __ b(ne, ¬_array_function);
2489 // The target function is the Array constructor,
2490 // Create an AllocationSite if we don't already have it, store it in the
2492 CreateAllocationSiteStub create_stub(masm->isolate());
2493 CallStubInRecordCallTarget(masm, &create_stub);
2496 __ bind(¬_array_function);
2499 CreateWeakCellStub create_stub(masm->isolate());
2500 CallStubInRecordCallTarget(masm, &create_stub);
2505 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2506 // Do not transform the receiver for strict mode functions.
2507 __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2508 __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset));
2509 __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
2513 // Do not transform the receiver for native (Compilerhints already in r3).
2514 __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
2519 static void EmitSlowCase(MacroAssembler* masm,
2521 Label* non_function) {
2522 // Check for function proxy.
2523 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
2524 __ b(ne, non_function);
2525 __ push(r1); // put proxy as additional argument
2526 __ mov(r0, Operand(argc + 1, RelocInfo::NONE32));
2527 __ mov(r2, Operand::Zero());
2528 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY);
2530 Handle<Code> adaptor =
2531 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2532 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2535 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2536 // of the original receiver from the call site).
2537 __ bind(non_function);
2538 __ str(r1, MemOperand(sp, argc * kPointerSize));
2539 __ mov(r0, Operand(argc)); // Set up the number of arguments.
2540 __ mov(r2, Operand::Zero());
2541 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION);
2542 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2543 RelocInfo::CODE_TARGET);
2547 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2548 // Wrap the receiver and patch it back onto the stack.
2549 { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
2551 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2554 __ str(r0, MemOperand(sp, argc * kPointerSize));
2559 static void CallFunctionNoFeedback(MacroAssembler* masm,
2560 int argc, bool needs_checks,
2561 bool call_as_method) {
2562 // r1 : the function to call
2563 Label slow, non_function, wrap, cont;
2566 // Check that the function is really a JavaScript function.
2567 // r1: pushed function (to be verified)
2568 __ JumpIfSmi(r1, &non_function);
2570 // Goto slow case if we do not have a function.
2571 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2575 // Fast-case: Invoke the function now.
2576 // r1: pushed function
2577 ParameterCount actual(argc);
2579 if (call_as_method) {
2581 EmitContinueIfStrictOrNative(masm, &cont);
2584 // Compute the receiver in sloppy mode.
2585 __ ldr(r3, MemOperand(sp, argc * kPointerSize));
2588 __ JumpIfSmi(r3, &wrap);
2589 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2598 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
2601 // Slow-case: Non-function called.
2603 EmitSlowCase(masm, argc, &non_function);
2606 if (call_as_method) {
2608 EmitWrapCase(masm, argc, &cont);
2613 void CallFunctionStub::Generate(MacroAssembler* masm) {
2614 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2618 void CallConstructStub::Generate(MacroAssembler* masm) {
2619 // r0 : number of arguments
2620 // r1 : the function to call
2621 // r2 : feedback vector
2622 // r3 : (only if r2 is not the megamorphic symbol) slot in feedback
2624 Label slow, non_function_call;
2626 // Check that the function is not a smi.
2627 __ JumpIfSmi(r1, &non_function_call);
2628 // Check that the function is a JSFunction.
2629 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2632 if (RecordCallTarget()) {
2633 GenerateRecordCallTarget(masm);
2635 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
2636 if (FLAG_pretenuring_call_new) {
2637 // Put the AllocationSite from the feedback vector into r2.
2638 // By adding kPointerSize we encode that we know the AllocationSite
2639 // entry is at the feedback vector slot given by r3 + 1.
2640 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize));
2642 Label feedback_register_initialized;
2643 // Put the AllocationSite from the feedback vector into r2, or undefined.
2644 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
2645 __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
2646 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2647 __ b(eq, &feedback_register_initialized);
2648 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2649 __ bind(&feedback_register_initialized);
2652 __ AssertUndefinedOrAllocationSite(r2, r5);
2655 // Pass function as original constructor.
2656 if (IsSuperConstructorCall()) {
2657 __ mov(r4, Operand(1 * kPointerSize));
2658 __ add(r4, r4, Operand(r0, LSL, kPointerSizeLog2));
2659 __ ldr(r3, MemOperand(sp, r4));
2664 // Jump to the function-specific construct stub.
2665 Register jmp_reg = r4;
2666 __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2667 __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
2668 SharedFunctionInfo::kConstructStubOffset));
2669 __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2671 // r0: number of arguments
2672 // r1: called object
2676 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
2677 __ b(ne, &non_function_call);
2678 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2681 __ bind(&non_function_call);
2682 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2684 // Set expected number of arguments to zero (not changing r0).
2685 __ mov(r2, Operand::Zero());
2686 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2687 RelocInfo::CODE_TARGET);
2691 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2692 __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2693 __ ldr(vector, FieldMemOperand(vector,
2694 JSFunction::kSharedFunctionInfoOffset));
2695 __ ldr(vector, FieldMemOperand(vector,
2696 SharedFunctionInfo::kFeedbackVectorOffset));
2700 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2705 int argc = arg_count();
2706 ParameterCount actual(argc);
2708 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2712 __ mov(r0, Operand(arg_count()));
2713 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2714 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2716 // Verify that r4 contains an AllocationSite
2717 __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
2718 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
2723 ArrayConstructorStub stub(masm->isolate(), arg_count());
2724 __ TailCallStub(&stub);
2729 // The slow case, we need this no matter what to complete a call after a miss.
2730 CallFunctionNoFeedback(masm,
2736 __ stop("Unexpected code address");
2740 void CallICStub::Generate(MacroAssembler* masm) {
2742 // r3 - slot id (Smi)
2744 const int with_types_offset =
2745 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
2746 const int generic_offset =
2747 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
2748 Label extra_checks_or_miss, slow_start;
2749 Label slow, non_function, wrap, cont;
2750 Label have_js_function;
2751 int argc = arg_count();
2752 ParameterCount actual(argc);
2754 // The checks. First, does r1 match the recorded monomorphic target?
2755 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2756 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
2758 // We don't know that we have a weak cell. We might have a private symbol
2759 // or an AllocationSite, but the memory is safe to examine.
2760 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2762 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2763 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2764 // computed, meaning that it can't appear to be a pointer. If the low bit is
2765 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2767 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2768 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2769 WeakCell::kValueOffset &&
2770 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2772 __ ldr(r5, FieldMemOperand(r4, WeakCell::kValueOffset));
2774 __ b(ne, &extra_checks_or_miss);
2776 // The compare above could have been a SMI/SMI comparison. Guard against this
2777 // convincing us that we have a monomorphic JSFunction.
2778 __ JumpIfSmi(r1, &extra_checks_or_miss);
2780 __ bind(&have_js_function);
2781 if (CallAsMethod()) {
2782 EmitContinueIfStrictOrNative(masm, &cont);
2783 // Compute the receiver in sloppy mode.
2784 __ ldr(r3, MemOperand(sp, argc * kPointerSize));
2786 __ JumpIfSmi(r3, &wrap);
2787 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2793 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
2796 EmitSlowCase(masm, argc, &non_function);
2798 if (CallAsMethod()) {
2800 EmitWrapCase(masm, argc, &cont);
2803 __ bind(&extra_checks_or_miss);
2804 Label uninitialized, miss;
2806 __ CompareRoot(r4, Heap::kmegamorphic_symbolRootIndex);
2807 __ b(eq, &slow_start);
2809 // The following cases attempt to handle MISS cases without going to the
2811 if (FLAG_trace_ic) {
2815 __ CompareRoot(r4, Heap::kuninitialized_symbolRootIndex);
2816 __ b(eq, &uninitialized);
2818 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2819 // to handle it here. More complex cases are dealt with in the runtime.
2820 __ AssertNotSmi(r4);
2821 __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE);
2823 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
2824 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2825 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
2826 // We have to update statistics for runtime profiling.
2827 __ ldr(r4, FieldMemOperand(r2, with_types_offset));
2828 __ sub(r4, r4, Operand(Smi::FromInt(1)));
2829 __ str(r4, FieldMemOperand(r2, with_types_offset));
2830 __ ldr(r4, FieldMemOperand(r2, generic_offset));
2831 __ add(r4, r4, Operand(Smi::FromInt(1)));
2832 __ str(r4, FieldMemOperand(r2, generic_offset));
2833 __ jmp(&slow_start);
2835 __ bind(&uninitialized);
2837 // We are going monomorphic, provided we actually have a JSFunction.
2838 __ JumpIfSmi(r1, &miss);
2840 // Goto miss case if we do not have a function.
2841 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2844 // Make sure the function is not the Array() function, which requires special
2845 // behavior on MISS.
2846 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
2851 __ ldr(r4, FieldMemOperand(r2, with_types_offset));
2852 __ add(r4, r4, Operand(Smi::FromInt(1)));
2853 __ str(r4, FieldMemOperand(r2, with_types_offset));
2855 // Store the function. Use a stub since we need a frame for allocation.
2860 FrameScope scope(masm, StackFrame::INTERNAL);
2861 CreateWeakCellStub create_stub(masm->isolate());
2863 __ CallStub(&create_stub);
2867 __ jmp(&have_js_function);
2869 // We are here because tracing is on or we encountered a MISS case we can't
2875 __ bind(&slow_start);
2876 // Check that the function is really a JavaScript function.
2877 // r1: pushed function (to be verified)
2878 __ JumpIfSmi(r1, &non_function);
2880 // Goto slow case if we do not have a function.
2881 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
2883 __ jmp(&have_js_function);
2887 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2888 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2890 // Push the receiver and the function and feedback info.
2891 __ Push(r1, r2, r3);
2894 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2895 : IC::kCallIC_Customization_Miss;
2897 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2898 __ CallExternalReference(miss, 3);
2900 // Move result to edi and exit the internal frame.
2905 // StringCharCodeAtGenerator
2906 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2907 // If the receiver is a smi trigger the non-string case.
2908 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2909 __ JumpIfSmi(object_, receiver_not_string_);
2911 // Fetch the instance type of the receiver into result register.
2912 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2913 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2914 // If the receiver is not a string trigger the non-string case.
2915 __ tst(result_, Operand(kIsNotStringMask));
2916 __ b(ne, receiver_not_string_);
2919 // If the index is non-smi trigger the non-smi case.
2920 __ JumpIfNotSmi(index_, &index_not_smi_);
2921 __ bind(&got_smi_index_);
2923 // Check for index out of range.
2924 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
2925 __ cmp(ip, Operand(index_));
2926 __ b(ls, index_out_of_range_);
2928 __ SmiUntag(index_);
2930 StringCharLoadGenerator::Generate(masm,
2941 void StringCharCodeAtGenerator::GenerateSlow(
2942 MacroAssembler* masm, EmbedMode embed_mode,
2943 const RuntimeCallHelper& call_helper) {
2944 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2946 // Index is not a smi.
2947 __ bind(&index_not_smi_);
2948 // If index is a heap number, try converting it to an integer.
2951 Heap::kHeapNumberMapRootIndex,
2954 call_helper.BeforeCall(masm);
2955 if (embed_mode == PART_OF_IC_HANDLER) {
2956 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2957 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2959 // index_ is consumed by runtime conversion function.
2960 __ Push(object_, index_);
2962 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2963 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2965 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2966 // NumberToSmi discards numbers that are not exact integers.
2967 __ CallRuntime(Runtime::kNumberToSmi, 1);
2969 // Save the conversion result before the pop instructions below
2970 // have a chance to overwrite it.
2971 __ Move(index_, r0);
2972 if (embed_mode == PART_OF_IC_HANDLER) {
2973 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2974 LoadWithVectorDescriptor::SlotRegister(), object_);
2978 // Reload the instance type.
2979 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2980 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2981 call_helper.AfterCall(masm);
2982 // If index is still not a smi, it must be out of range.
2983 __ JumpIfNotSmi(index_, index_out_of_range_);
2984 // Otherwise, return to the fast path.
2985 __ jmp(&got_smi_index_);
2987 // Call runtime. We get here when the receiver is a string and the
2988 // index is a number, but the code of getting the actual character
2989 // is too complex (e.g., when the string needs to be flattened).
2990 __ bind(&call_runtime_);
2991 call_helper.BeforeCall(masm);
2993 __ Push(object_, index_);
2994 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2995 __ Move(result_, r0);
2996 call_helper.AfterCall(masm);
2999 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3003 // -------------------------------------------------------------------------
3004 // StringCharFromCodeGenerator
3006 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3007 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3008 STATIC_ASSERT(kSmiTag == 0);
3009 STATIC_ASSERT(kSmiShiftSize == 0);
3010 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3012 Operand(kSmiTagMask |
3013 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3014 __ b(ne, &slow_case_);
3016 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3017 // At this point code register contains smi tagged one-byte char code.
3018 __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
3019 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3020 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
3021 __ b(eq, &slow_case_);
3026 void StringCharFromCodeGenerator::GenerateSlow(
3027 MacroAssembler* masm,
3028 const RuntimeCallHelper& call_helper) {
3029 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3031 __ bind(&slow_case_);
3032 call_helper.BeforeCall(masm);
3034 __ CallRuntime(Runtime::kCharFromCode, 1);
3035 __ Move(result_, r0);
3036 call_helper.AfterCall(masm);
3039 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3043 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
3046 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3051 String::Encoding encoding) {
3052 if (FLAG_debug_code) {
3053 // Check that destination is word aligned.
3054 __ tst(dest, Operand(kPointerAlignmentMask));
3055 __ Check(eq, kDestinationOfCopyNotAligned);
3058 // Assumes word reads and writes are little endian.
3059 // Nothing to do for zero characters.
3061 if (encoding == String::TWO_BYTE_ENCODING) {
3062 __ add(count, count, Operand(count), SetCC);
3065 Register limit = count; // Read until dest equals this.
3066 __ add(limit, dest, Operand(count));
3068 Label loop_entry, loop;
3069 // Copy bytes from src to dest until dest hits limit.
3072 __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt);
3073 __ strb(scratch, MemOperand(dest, 1, PostIndex));
3074 __ bind(&loop_entry);
3075 __ cmp(dest, Operand(limit));
3082 void SubStringStub::Generate(MacroAssembler* masm) {
3085 // Stack frame on entry.
3086 // lr: return address
3091 // This stub is called from the native-call %_SubString(...), so
3092 // nothing can be assumed about the arguments. It is tested that:
3093 // "string" is a sequential string,
3094 // both "from" and "to" are smis, and
3095 // 0 <= from <= to <= string.length.
3096 // If any of these assumptions fail, we call the runtime system.
3098 const int kToOffset = 0 * kPointerSize;
3099 const int kFromOffset = 1 * kPointerSize;
3100 const int kStringOffset = 2 * kPointerSize;
3102 __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
3103 STATIC_ASSERT(kFromOffset == kToOffset + 4);
3104 STATIC_ASSERT(kSmiTag == 0);
3105 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3107 // Arithmetic shift right by one un-smi-tags. In this case we rotate right
3108 // instead because we bail out on non-smi values: ROR and ASR are equivalent
3109 // for smis but they set the flags in a way that's easier to optimize.
3110 __ mov(r2, Operand(r2, ROR, 1), SetCC);
3111 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
3112 // If either to or from had the smi tag bit set, then C is set now, and N
3113 // has the same value: we rotated by 1, so the bottom bit is now the top bit.
3114 // We want to bailout to runtime here if From is negative. In that case, the
3115 // next instruction is not executed and we fall through to bailing out to
3117 // Executed if both r2 and r3 are untagged integers.
3118 __ sub(r2, r2, Operand(r3), SetCC, cc);
3119 // One of the above un-smis or the above SUB could have set N==1.
3120 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
3122 // Make sure first argument is a string.
3123 __ ldr(r0, MemOperand(sp, kStringOffset));
3124 __ JumpIfSmi(r0, &runtime);
3125 Condition is_string = masm->IsObjectStringType(r0, r1);
3126 __ b(NegateCondition(is_string), &runtime);
3129 __ cmp(r2, Operand(1));
3130 __ b(eq, &single_char);
3132 // Short-cut for the case of trivial substring.
3134 // r0: original string
3135 // r2: result string length
3136 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
3137 __ cmp(r2, Operand(r4, ASR, 1));
3138 // Return original string.
3139 __ b(eq, &return_r0);
3140 // Longer than original string's length or negative: unsafe arguments.
3142 // Shorter than original string's length: an actual substring.
3144 // Deal with different string types: update the index if necessary
3145 // and put the underlying string into r5.
3146 // r0: original string
3147 // r1: instance type
3149 // r3: from index (untagged)
3150 Label underlying_unpacked, sliced_string, seq_or_external_string;
3151 // If the string is not indirect, it can only be sequential or external.
3152 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3153 STATIC_ASSERT(kIsIndirectStringMask != 0);
3154 __ tst(r1, Operand(kIsIndirectStringMask));
3155 __ b(eq, &seq_or_external_string);
3157 __ tst(r1, Operand(kSlicedNotConsMask));
3158 __ b(ne, &sliced_string);
3159 // Cons string. Check whether it is flat, then fetch first part.
3160 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
3161 __ CompareRoot(r5, Heap::kempty_stringRootIndex);
3163 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
3164 // Update instance type.
3165 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
3166 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
3167 __ jmp(&underlying_unpacked);
3169 __ bind(&sliced_string);
3170 // Sliced string. Fetch parent and correct start index by offset.
3171 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
3172 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
3173 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
3174 // Update instance type.
3175 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
3176 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
3177 __ jmp(&underlying_unpacked);
3179 __ bind(&seq_or_external_string);
3180 // Sequential or external string. Just move string to the expected register.
3183 __ bind(&underlying_unpacked);
3185 if (FLAG_string_slices) {
3187 // r5: underlying subject string
3188 // r1: instance type of underlying subject string
3190 // r3: adjusted start index (untagged)
3191 __ cmp(r2, Operand(SlicedString::kMinLength));
3192 // Short slice. Copy instead of slicing.
3193 __ b(lt, ©_routine);
3194 // Allocate new sliced string. At this point we do not reload the instance
3195 // type including the string encoding because we simply rely on the info
3196 // provided by the original string. It does not matter if the original
3197 // string's encoding is wrong because we always have to recheck encoding of
3198 // the newly created string's parent anyways due to externalized strings.
3199 Label two_byte_slice, set_slice_header;
3200 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3201 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3202 __ tst(r1, Operand(kStringEncodingMask));
3203 __ b(eq, &two_byte_slice);
3204 __ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime);
3205 __ jmp(&set_slice_header);
3206 __ bind(&two_byte_slice);
3207 __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
3208 __ bind(&set_slice_header);
3209 __ mov(r3, Operand(r3, LSL, 1));
3210 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
3211 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
3214 __ bind(©_routine);
3217 // r5: underlying subject string
3218 // r1: instance type of underlying subject string
3220 // r3: adjusted start index (untagged)
3221 Label two_byte_sequential, sequential_string, allocate_result;
3222 STATIC_ASSERT(kExternalStringTag != 0);
3223 STATIC_ASSERT(kSeqStringTag == 0);
3224 __ tst(r1, Operand(kExternalStringTag));
3225 __ b(eq, &sequential_string);
3227 // Handle external string.
3228 // Rule out short external strings.
3229 STATIC_ASSERT(kShortExternalStringTag != 0);
3230 __ tst(r1, Operand(kShortExternalStringTag));
3232 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
3233 // r5 already points to the first character of underlying string.
3234 __ jmp(&allocate_result);
3236 __ bind(&sequential_string);
3237 // Locate first character of underlying subject string.
3238 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3239 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3241 __ bind(&allocate_result);
3242 // Sequential acii string. Allocate the result.
3243 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3244 __ tst(r1, Operand(kStringEncodingMask));
3245 __ b(eq, &two_byte_sequential);
3247 // Allocate and copy the resulting one-byte string.
3248 __ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime);
3250 // Locate first character of substring to copy.
3252 // Locate first character of result.
3253 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3255 // r0: result string
3256 // r1: first character of result string
3257 // r2: result string length
3258 // r5: first character of substring to copy
3259 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3260 StringHelper::GenerateCopyCharacters(
3261 masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING);
3264 // Allocate and copy the resulting two-byte string.
3265 __ bind(&two_byte_sequential);
3266 __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
3268 // Locate first character of substring to copy.
3269 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3270 __ add(r5, r5, Operand(r3, LSL, 1));
3271 // Locate first character of result.
3272 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3274 // r0: result string.
3275 // r1: first character of result.
3276 // r2: result length.
3277 // r5: first character of substring to copy.
3278 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3279 StringHelper::GenerateCopyCharacters(
3280 masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING);
3282 __ bind(&return_r0);
3283 Counters* counters = isolate()->counters();
3284 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
3288 // Just jump to runtime to create the sub string.
3290 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3292 __ bind(&single_char);
3293 // r0: original string
3294 // r1: instance type
3296 // r3: from index (untagged)
3298 StringCharAtGenerator generator(r0, r3, r2, r0, &runtime, &runtime, &runtime,
3299 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
3300 generator.GenerateFast(masm);
3303 generator.SkipSlow(masm, &runtime);
3307 void ToNumberStub::Generate(MacroAssembler* masm) {
3308 // The ToNumber stub takes one argument in r0.
3310 __ JumpIfNotSmi(r0, ¬_smi);
3314 Label not_heap_number;
3315 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3316 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
3318 // r1: instance type.
3319 __ cmp(r1, Operand(HEAP_NUMBER_TYPE));
3320 __ b(ne, ¬_heap_number);
3322 __ bind(¬_heap_number);
3324 Label not_string, slow_string;
3325 __ cmp(r1, Operand(FIRST_NONSTRING_TYPE));
3326 __ b(hs, ¬_string);
3327 // Check if string has a cached array index.
3328 __ ldr(r2, FieldMemOperand(r0, String::kHashFieldOffset));
3329 __ tst(r2, Operand(String::kContainsCachedArrayIndexMask));
3330 __ b(ne, &slow_string);
3331 __ IndexFromHash(r2, r0);
3333 __ bind(&slow_string);
3334 __ push(r0); // Push argument.
3335 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3336 __ bind(¬_string);
3339 __ cmp(r1, Operand(ODDBALL_TYPE));
3340 __ b(ne, ¬_oddball);
3341 __ ldr(r0, FieldMemOperand(r0, Oddball::kToNumberOffset));
3343 __ bind(¬_oddball);
3345 __ push(r0); // Push argument.
3346 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3350 void StringHelper::GenerateFlatOneByteStringEquals(
3351 MacroAssembler* masm, Register left, Register right, Register scratch1,
3352 Register scratch2, Register scratch3) {
3353 Register length = scratch1;
3356 Label strings_not_equal, check_zero_length;
3357 __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
3358 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3359 __ cmp(length, scratch2);
3360 __ b(eq, &check_zero_length);
3361 __ bind(&strings_not_equal);
3362 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
3365 // Check if the length is zero.
3366 Label compare_chars;
3367 __ bind(&check_zero_length);
3368 STATIC_ASSERT(kSmiTag == 0);
3369 __ cmp(length, Operand::Zero());
3370 __ b(ne, &compare_chars);
3371 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3374 // Compare characters.
3375 __ bind(&compare_chars);
3376 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3377 &strings_not_equal);
3379 // Characters are equal.
3380 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3385 void StringHelper::GenerateCompareFlatOneByteStrings(
3386 MacroAssembler* masm, Register left, Register right, Register scratch1,
3387 Register scratch2, Register scratch3, Register scratch4) {
3388 Label result_not_equal, compare_lengths;
3389 // Find minimum length and length difference.
3390 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3391 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3392 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
3393 Register length_delta = scratch3;
3394 __ mov(scratch1, scratch2, LeaveCC, gt);
3395 Register min_length = scratch1;
3396 STATIC_ASSERT(kSmiTag == 0);
3397 __ cmp(min_length, Operand::Zero());
3398 __ b(eq, &compare_lengths);
3401 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3402 scratch4, &result_not_equal);
3404 // Compare lengths - strings up to min-length are equal.
3405 __ bind(&compare_lengths);
3406 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3407 // Use length_delta as result if it's zero.
3408 __ mov(r0, Operand(length_delta), SetCC);
3409 __ bind(&result_not_equal);
3410 // Conditionally update the result based either on length_delta or
3411 // the last comparion performed in the loop above.
3412 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
3413 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
3418 void StringHelper::GenerateOneByteCharsCompareLoop(
3419 MacroAssembler* masm, Register left, Register right, Register length,
3420 Register scratch1, Register scratch2, Label* chars_not_equal) {
3421 // Change index to run from -length to -1 by adding length to string
3422 // start. This means that loop ends when index reaches zero, which
3423 // doesn't need an additional compare.
3424 __ SmiUntag(length);
3425 __ add(scratch1, length,
3426 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3427 __ add(left, left, Operand(scratch1));
3428 __ add(right, right, Operand(scratch1));
3429 __ rsb(length, length, Operand::Zero());
3430 Register index = length; // index = -length;
3435 __ ldrb(scratch1, MemOperand(left, index));
3436 __ ldrb(scratch2, MemOperand(right, index));
3437 __ cmp(scratch1, scratch2);
3438 __ b(ne, chars_not_equal);
3439 __ add(index, index, Operand(1), SetCC);
3444 void StringCompareStub::Generate(MacroAssembler* masm) {
3447 Counters* counters = isolate()->counters();
3449 // Stack frame on entry.
3450 // sp[0]: right string
3451 // sp[4]: left string
3452 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
3456 __ b(ne, ¬_same);
3457 STATIC_ASSERT(EQUAL == 0);
3458 STATIC_ASSERT(kSmiTag == 0);
3459 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
3460 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
3461 __ add(sp, sp, Operand(2 * kPointerSize));
3466 // Check that both objects are sequential one-byte strings.
3467 __ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime);
3469 // Compare flat one-byte strings natively. Remove arguments from stack first.
3470 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
3471 __ add(sp, sp, Operand(2 * kPointerSize));
3472 StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5);
3474 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3475 // tagged as a small integer.
3477 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3481 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3482 // ----------- S t a t e -------------
3485 // -- lr : return address
3486 // -----------------------------------
3488 // Load r2 with the allocation site. We stick an undefined dummy value here
3489 // and replace it with the real allocation site later when we instantiate this
3490 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3491 __ Move(r2, handle(isolate()->heap()->undefined_value()));
3493 // Make sure that we actually patched the allocation site.
3494 if (FLAG_debug_code) {
3495 __ tst(r2, Operand(kSmiTagMask));
3496 __ Assert(ne, kExpectedAllocationSite);
3498 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3499 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
3502 __ Assert(eq, kExpectedAllocationSite);
3505 // Tail call into the stub that handles binary operations with allocation
3507 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3508 __ TailCallStub(&stub);
3512 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3513 DCHECK(state() == CompareICState::SMI);
3516 __ JumpIfNotSmi(r2, &miss);
3518 if (GetCondition() == eq) {
3519 // For equality we do not care about the sign of the result.
3520 __ sub(r0, r0, r1, SetCC);
3522 // Untag before subtracting to avoid handling overflow.
3524 __ sub(r0, r1, Operand::SmiUntag(r0));
3533 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3534 DCHECK(state() == CompareICState::NUMBER);
3537 Label unordered, maybe_undefined1, maybe_undefined2;
3540 if (left() == CompareICState::SMI) {
3541 __ JumpIfNotSmi(r1, &miss);
3543 if (right() == CompareICState::SMI) {
3544 __ JumpIfNotSmi(r0, &miss);
3547 // Inlining the double comparison and falling back to the general compare
3548 // stub if NaN is involved.
3549 // Load left and right operand.
3550 Label done, left, left_smi, right_smi;
3551 __ JumpIfSmi(r0, &right_smi);
3552 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3554 __ sub(r2, r0, Operand(kHeapObjectTag));
3555 __ vldr(d1, r2, HeapNumber::kValueOffset);
3557 __ bind(&right_smi);
3558 __ SmiToDouble(d1, r0);
3561 __ JumpIfSmi(r1, &left_smi);
3562 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3564 __ sub(r2, r1, Operand(kHeapObjectTag));
3565 __ vldr(d0, r2, HeapNumber::kValueOffset);
3568 __ SmiToDouble(d0, r1);
3571 // Compare operands.
3572 __ VFPCompareAndSetFlags(d0, d1);
3574 // Don't base result on status bits when a NaN is involved.
3575 __ b(vs, &unordered);
3577 // Return a result of -1, 0, or 1, based on status bits.
3578 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
3579 __ mov(r0, Operand(LESS), LeaveCC, lt);
3580 __ mov(r0, Operand(GREATER), LeaveCC, gt);
3583 __ bind(&unordered);
3584 __ bind(&generic_stub);
3585 CompareICStub stub(isolate(), op(), strong(), CompareICState::GENERIC,
3586 CompareICState::GENERIC, CompareICState::GENERIC);
3587 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3589 __ bind(&maybe_undefined1);
3590 if (Token::IsOrderedRelationalCompareOp(op())) {
3591 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
3593 __ JumpIfSmi(r1, &unordered);
3594 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
3595 __ b(ne, &maybe_undefined2);
3599 __ bind(&maybe_undefined2);
3600 if (Token::IsOrderedRelationalCompareOp(op())) {
3601 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
3602 __ b(eq, &unordered);
3610 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3611 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3614 // Registers containing left and right operands respectively.
3616 Register right = r0;
3620 // Check that both operands are heap objects.
3621 __ JumpIfEitherSmi(left, right, &miss);
3623 // Check that both operands are internalized strings.
3624 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3625 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3626 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3627 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3628 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3629 __ orr(tmp1, tmp1, Operand(tmp2));
3630 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3633 // Internalized strings are compared by identity.
3634 __ cmp(left, right);
3635 // Make sure r0 is non-zero. At this point input operands are
3636 // guaranteed to be non-zero.
3637 DCHECK(right.is(r0));
3638 STATIC_ASSERT(EQUAL == 0);
3639 STATIC_ASSERT(kSmiTag == 0);
3640 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3648 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3649 DCHECK(state() == CompareICState::UNIQUE_NAME);
3650 DCHECK(GetCondition() == eq);
3653 // Registers containing left and right operands respectively.
3655 Register right = r0;
3659 // Check that both operands are heap objects.
3660 __ JumpIfEitherSmi(left, right, &miss);
3662 // Check that both operands are unique names. This leaves the instance
3663 // types loaded in tmp1 and tmp2.
3664 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3665 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3666 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3667 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3669 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3670 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3672 // Unique names are compared by identity.
3673 __ cmp(left, right);
3674 // Make sure r0 is non-zero. At this point input operands are
3675 // guaranteed to be non-zero.
3676 DCHECK(right.is(r0));
3677 STATIC_ASSERT(EQUAL == 0);
3678 STATIC_ASSERT(kSmiTag == 0);
3679 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3687 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3688 DCHECK(state() == CompareICState::STRING);
3691 bool equality = Token::IsEqualityOp(op());
3693 // Registers containing left and right operands respectively.
3695 Register right = r0;
3701 // Check that both operands are heap objects.
3702 __ JumpIfEitherSmi(left, right, &miss);
3704 // Check that both operands are strings. This leaves the instance
3705 // types loaded in tmp1 and tmp2.
3706 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3707 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3708 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3709 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3710 STATIC_ASSERT(kNotStringTag != 0);
3711 __ orr(tmp3, tmp1, tmp2);
3712 __ tst(tmp3, Operand(kIsNotStringMask));
3715 // Fast check for identical strings.
3716 __ cmp(left, right);
3717 STATIC_ASSERT(EQUAL == 0);
3718 STATIC_ASSERT(kSmiTag == 0);
3719 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
3722 // Handle not identical strings.
3724 // Check that both strings are internalized strings. If they are, we're done
3725 // because we already know they are not identical. We know they are both
3728 DCHECK(GetCondition() == eq);
3729 STATIC_ASSERT(kInternalizedTag == 0);
3730 __ orr(tmp3, tmp1, Operand(tmp2));
3731 __ tst(tmp3, Operand(kIsNotInternalizedMask));
3732 // Make sure r0 is non-zero. At this point input operands are
3733 // guaranteed to be non-zero.
3734 DCHECK(right.is(r0));
3738 // Check that both strings are sequential one-byte.
3740 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3743 // Compare flat one-byte strings. Returns when done.
3745 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3748 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3752 // Handle more complex cases in runtime.
3754 __ Push(left, right);
3756 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3758 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3766 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3767 DCHECK(state() == CompareICState::OBJECT);
3769 __ and_(r2, r1, Operand(r0));
3770 __ JumpIfSmi(r2, &miss);
3772 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
3774 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
3777 DCHECK(GetCondition() == eq);
3778 __ sub(r0, r0, Operand(r1));
3786 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3788 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3789 __ and_(r2, r1, Operand(r0));
3790 __ JumpIfSmi(r2, &miss);
3791 __ GetWeakValue(r4, cell);
3792 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3793 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
3799 __ sub(r0, r0, Operand(r1));
3807 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3809 // Call the runtime system in a fresh internal frame.
3810 ExternalReference miss =
3811 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3813 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3815 __ Push(lr, r1, r0);
3816 __ mov(ip, Operand(Smi::FromInt(op())));
3818 __ CallExternalReference(miss, 3);
3819 // Compute the entry point of the rewritten stub.
3820 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
3821 // Restore registers.
3830 void DirectCEntryStub::Generate(MacroAssembler* masm) {
3831 // Place the return address on the stack, making the call
3832 // GC safe. The RegExp backend also relies on this.
3833 __ str(lr, MemOperand(sp, 0));
3834 __ blx(ip); // Call the C++ function.
3835 __ VFPEnsureFPSCRState(r2);
3836 __ ldr(pc, MemOperand(sp, 0));
3840 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3843 reinterpret_cast<intptr_t>(GetCode().location());
3844 __ Move(ip, target);
3845 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
3846 __ blx(lr); // Call the stub.
3850 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3854 Register properties,
3856 Register scratch0) {
3857 DCHECK(name->IsUniqueName());
3858 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3859 // not equal to the name and kProbes-th slot is not used (its name is the
3860 // undefined value), it guarantees the hash table doesn't contain the
3861 // property. It's true even if some slots represent deleted properties
3862 // (their names are the hole value).
3863 for (int i = 0; i < kInlinedProbes; i++) {
3864 // scratch0 points to properties hash.
3865 // Compute the masked index: (hash + i + i * i) & mask.
3866 Register index = scratch0;
3867 // Capacity is smi 2^n.
3868 __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
3869 __ sub(index, index, Operand(1));
3870 __ and_(index, index, Operand(
3871 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
3873 // Scale the index by multiplying by the entry size.
3874 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3875 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
3877 Register entity_name = scratch0;
3878 // Having undefined at this place means the name is not contained.
3879 DCHECK_EQ(kSmiTagSize, 1);
3880 Register tmp = properties;
3881 __ add(tmp, properties, Operand(index, LSL, 1));
3882 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3884 DCHECK(!tmp.is(entity_name));
3885 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3886 __ cmp(entity_name, tmp);
3889 // Load the hole ready for use below:
3890 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3892 // Stop if found the property.
3893 __ cmp(entity_name, Operand(Handle<Name>(name)));
3897 __ cmp(entity_name, tmp);
3900 // Check if the entry name is not a unique name.
3901 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3902 __ ldrb(entity_name,
3903 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3904 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3907 // Restore the properties.
3909 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3912 const int spill_mask =
3913 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
3914 r2.bit() | r1.bit() | r0.bit());
3916 __ stm(db_w, sp, spill_mask);
3917 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3918 __ mov(r1, Operand(Handle<Name>(name)));
3919 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3921 __ cmp(r0, Operand::Zero());
3922 __ ldm(ia_w, sp, spill_mask);
3929 // Probe the name dictionary in the |elements| register. Jump to the
3930 // |done| label if a property with the given name is found. Jump to
3931 // the |miss| label otherwise.
3932 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
3933 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3939 Register scratch2) {
3940 DCHECK(!elements.is(scratch1));
3941 DCHECK(!elements.is(scratch2));
3942 DCHECK(!name.is(scratch1));
3943 DCHECK(!name.is(scratch2));
3945 __ AssertName(name);
3947 // Compute the capacity mask.
3948 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
3949 __ SmiUntag(scratch1);
3950 __ sub(scratch1, scratch1, Operand(1));
3952 // Generate an unrolled loop that performs a few probes before
3953 // giving up. Measurements done on Gmail indicate that 2 probes
3954 // cover ~93% of loads from dictionaries.
3955 for (int i = 0; i < kInlinedProbes; i++) {
3956 // Compute the masked index: (hash + i + i * i) & mask.
3957 __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3959 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3960 // the hash in a separate instruction. The value hash + i + i * i is right
3961 // shifted in the following and instruction.
3962 DCHECK(NameDictionary::GetProbeOffset(i) <
3963 1 << (32 - Name::kHashFieldOffset));
3964 __ add(scratch2, scratch2, Operand(
3965 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3967 __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
3969 // Scale the index by multiplying by the element size.
3970 DCHECK(NameDictionary::kEntrySize == 3);
3971 // scratch2 = scratch2 * 3.
3972 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
3974 // Check if the key is identical to the name.
3975 __ add(scratch2, elements, Operand(scratch2, LSL, 2));
3976 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3977 __ cmp(name, Operand(ip));
3981 const int spill_mask =
3982 (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
3983 r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
3984 ~(scratch1.bit() | scratch2.bit());
3986 __ stm(db_w, sp, spill_mask);
3988 DCHECK(!elements.is(r1));
3990 __ Move(r0, elements);
3992 __ Move(r0, elements);
3995 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3997 __ cmp(r0, Operand::Zero());
3998 __ mov(scratch2, Operand(r2));
3999 __ ldm(ia_w, sp, spill_mask);
4006 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4007 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4008 // we cannot call anything that could cause a GC from this stub.
4010 // result: NameDictionary to probe
4012 // dictionary: NameDictionary to probe.
4013 // index: will hold an index of entry if lookup is successful.
4014 // might alias with result_.
4016 // result_ is zero if lookup failed, non zero otherwise.
4018 Register result = r0;
4019 Register dictionary = r0;
4021 Register index = r2;
4024 Register undefined = r5;
4025 Register entry_key = r6;
4027 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4029 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
4031 __ sub(mask, mask, Operand(1));
4033 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4035 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4037 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4038 // Compute the masked index: (hash + i + i * i) & mask.
4039 // Capacity is smi 2^n.
4041 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4042 // the hash in a separate instruction. The value hash + i + i * i is right
4043 // shifted in the following and instruction.
4044 DCHECK(NameDictionary::GetProbeOffset(i) <
4045 1 << (32 - Name::kHashFieldOffset));
4046 __ add(index, hash, Operand(
4047 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4049 __ mov(index, Operand(hash));
4051 __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
4053 // Scale the index by multiplying by the entry size.
4054 DCHECK(NameDictionary::kEntrySize == 3);
4055 __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
4057 DCHECK_EQ(kSmiTagSize, 1);
4058 __ add(index, dictionary, Operand(index, LSL, 2));
4059 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
4061 // Having undefined at this place means the name is not contained.
4062 __ cmp(entry_key, Operand(undefined));
4063 __ b(eq, ¬_in_dictionary);
4065 // Stop if found the property.
4066 __ cmp(entry_key, Operand(key));
4067 __ b(eq, &in_dictionary);
4069 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4070 // Check if the entry name is not a unique name.
4071 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4073 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4074 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4078 __ bind(&maybe_in_dictionary);
4079 // If we are doing negative lookup then probing failure should be
4080 // treated as a lookup success. For positive lookup probing failure
4081 // should be treated as lookup failure.
4082 if (mode() == POSITIVE_LOOKUP) {
4083 __ mov(result, Operand::Zero());
4087 __ bind(&in_dictionary);
4088 __ mov(result, Operand(1));
4091 __ bind(¬_in_dictionary);
4092 __ mov(result, Operand::Zero());
4097 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4099 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4101 // Hydrogen code stubs need stub2 at snapshot time.
4102 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4107 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
4108 // the value has just been written into the object, now this stub makes sure
4109 // we keep the GC informed. The word in the object where the value has been
4110 // written is in the address register.
4111 void RecordWriteStub::Generate(MacroAssembler* masm) {
4112 Label skip_to_incremental_noncompacting;
4113 Label skip_to_incremental_compacting;
4115 // The first two instructions are generated with labels so as to get the
4116 // offset fixed up correctly by the bind(Label*) call. We patch it back and
4117 // forth between a compare instructions (a nop in this position) and the
4118 // real branch when we start and stop incremental heap marking.
4119 // See RecordWriteStub::Patch for details.
4121 // Block literal pool emission, as the position of these two instructions
4122 // is assumed by the patching code.
4123 Assembler::BlockConstPoolScope block_const_pool(masm);
4124 __ b(&skip_to_incremental_noncompacting);
4125 __ b(&skip_to_incremental_compacting);
4128 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4129 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4130 MacroAssembler::kReturnAtEnd);
4134 __ bind(&skip_to_incremental_noncompacting);
4135 GenerateIncremental(masm, INCREMENTAL);
4137 __ bind(&skip_to_incremental_compacting);
4138 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4140 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4141 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4142 DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
4143 DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
4144 PatchBranchIntoNop(masm, 0);
4145 PatchBranchIntoNop(masm, Assembler::kInstrSize);
4149 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4152 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4153 Label dont_need_remembered_set;
4155 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
4156 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4158 &dont_need_remembered_set);
4160 __ CheckPageFlag(regs_.object(),
4162 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4164 &dont_need_remembered_set);
4166 // First notify the incremental marker if necessary, then update the
4168 CheckNeedsToInformIncrementalMarker(
4169 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4170 InformIncrementalMarker(masm);
4171 regs_.Restore(masm);
4172 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4173 MacroAssembler::kReturnAtEnd);
4175 __ bind(&dont_need_remembered_set);
4178 CheckNeedsToInformIncrementalMarker(
4179 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4180 InformIncrementalMarker(masm);
4181 regs_.Restore(masm);
4186 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4187 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4188 int argument_count = 3;
4189 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4191 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4192 DCHECK(!address.is(regs_.object()));
4193 DCHECK(!address.is(r0));
4194 __ Move(address, regs_.address());
4195 __ Move(r0, regs_.object());
4196 __ Move(r1, address);
4197 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
4199 AllowExternalCallThatCantCauseGC scope(masm);
4201 ExternalReference::incremental_marking_record_write_function(isolate()),
4203 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4207 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4208 MacroAssembler* masm,
4209 OnNoNeedToInformIncrementalMarker on_no_need,
4212 Label need_incremental;
4213 Label need_incremental_pop_scratch;
4215 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4216 __ ldr(regs_.scratch1(),
4217 MemOperand(regs_.scratch0(),
4218 MemoryChunk::kWriteBarrierCounterOffset));
4219 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
4220 __ str(regs_.scratch1(),
4221 MemOperand(regs_.scratch0(),
4222 MemoryChunk::kWriteBarrierCounterOffset));
4223 __ b(mi, &need_incremental);
4225 // Let's look at the color of the object: If it is not black we don't have
4226 // to inform the incremental marker.
4227 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4229 regs_.Restore(masm);
4230 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4231 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4232 MacroAssembler::kReturnAtEnd);
4239 // Get the value from the slot.
4240 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
4242 if (mode == INCREMENTAL_COMPACTION) {
4243 Label ensure_not_white;
4245 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4246 regs_.scratch1(), // Scratch.
4247 MemoryChunk::kEvacuationCandidateMask,
4251 __ CheckPageFlag(regs_.object(),
4252 regs_.scratch1(), // Scratch.
4253 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4257 __ bind(&ensure_not_white);
4260 // We need extra registers for this, so we push the object and the address
4261 // register temporarily.
4262 __ Push(regs_.object(), regs_.address());
4263 __ EnsureNotWhite(regs_.scratch0(), // The value.
4264 regs_.scratch1(), // Scratch.
4265 regs_.object(), // Scratch.
4266 regs_.address(), // Scratch.
4267 &need_incremental_pop_scratch);
4268 __ Pop(regs_.object(), regs_.address());
4270 regs_.Restore(masm);
4271 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4272 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4273 MacroAssembler::kReturnAtEnd);
4278 __ bind(&need_incremental_pop_scratch);
4279 __ Pop(regs_.object(), regs_.address());
4281 __ bind(&need_incremental);
4283 // Fall through when we need to inform the incremental marker.
4287 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4288 // ----------- S t a t e -------------
4289 // -- r0 : element value to store
4290 // -- r3 : element index as smi
4291 // -- sp[0] : array literal index in function as smi
4292 // -- sp[4] : array literal
4293 // clobbers r1, r2, r4
4294 // -----------------------------------
4297 Label double_elements;
4299 Label slow_elements;
4300 Label fast_elements;
4302 // Get array literal index, array literal and its map.
4303 __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
4304 __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
4305 __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
4307 __ CheckFastElements(r2, r5, &double_elements);
4308 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4309 __ JumpIfSmi(r0, &smi_element);
4310 __ CheckFastSmiElements(r2, r5, &fast_elements);
4312 // Store into the array literal requires a elements transition. Call into
4314 __ bind(&slow_elements);
4316 __ Push(r1, r3, r0);
4317 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4318 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
4320 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4322 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4323 __ bind(&fast_elements);
4324 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4325 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
4326 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4327 __ str(r0, MemOperand(r6, 0));
4328 // Update the write barrier for the array store.
4329 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
4330 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4333 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4334 // and value is Smi.
4335 __ bind(&smi_element);
4336 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4337 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
4338 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
4341 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4342 __ bind(&double_elements);
4343 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
4344 __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
4349 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4350 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4351 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4352 int parameter_count_offset =
4353 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4354 __ ldr(r1, MemOperand(fp, parameter_count_offset));
4355 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4356 __ add(r1, r1, Operand(1));
4358 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4359 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
4365 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4366 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4367 LoadICStub stub(isolate(), state());
4368 stub.GenerateForTrampoline(masm);
4372 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4373 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4374 KeyedLoadICStub stub(isolate());
4375 stub.GenerateForTrampoline(masm);
4379 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4380 EmitLoadTypeFeedbackVector(masm, r2);
4381 CallICStub stub(isolate(), state());
4382 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4386 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4387 EmitLoadTypeFeedbackVector(masm, r2);
4388 CallIC_ArrayStub stub(isolate(), state());
4389 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4393 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4396 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4397 GenerateImpl(masm, true);
4401 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4402 Register key, Register vector, Register slot,
4403 Register feedback, Register receiver_map,
4404 Register scratch1, Register scratch2,
4405 bool is_polymorphic, Label* miss) {
4406 // feedback initially contains the feedback array
4407 Label next_loop, prepare_next;
4408 Label start_polymorphic;
4410 Register cached_map = scratch1;
4413 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4414 __ ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4415 __ cmp(receiver_map, cached_map);
4416 __ b(ne, &start_polymorphic);
4417 // found, now call handler.
4418 Register handler = feedback;
4419 __ ldr(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4420 __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4423 Register length = scratch2;
4424 __ bind(&start_polymorphic);
4425 __ ldr(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4426 if (!is_polymorphic) {
4427 // If the IC could be monomorphic we have to make sure we don't go past the
4428 // end of the feedback array.
4429 __ cmp(length, Operand(Smi::FromInt(2)));
4433 Register too_far = length;
4434 Register pointer_reg = feedback;
4436 // +-----+------+------+-----+-----+ ... ----+
4437 // | map | len | wm0 | h0 | wm1 | hN |
4438 // +-----+------+------+-----+-----+ ... ----+
4442 // pointer_reg too_far
4443 // aka feedback scratch2
4444 // also need receiver_map
4445 // use cached_map (scratch1) to look in the weak map values.
4446 __ add(too_far, feedback, Operand::PointerOffsetFromSmiKey(length));
4447 __ add(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4448 __ add(pointer_reg, feedback,
4449 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
4451 __ bind(&next_loop);
4452 __ ldr(cached_map, MemOperand(pointer_reg));
4453 __ ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4454 __ cmp(receiver_map, cached_map);
4455 __ b(ne, &prepare_next);
4456 __ ldr(handler, MemOperand(pointer_reg, kPointerSize));
4457 __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4459 __ bind(&prepare_next);
4460 __ add(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
4461 __ cmp(pointer_reg, too_far);
4462 __ b(lt, &next_loop);
4464 // We exhausted our array of map handler pairs.
4469 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4470 Register receiver_map, Register feedback,
4471 Register vector, Register slot,
4472 Register scratch, Label* compare_map,
4473 Label* load_smi_map, Label* try_array) {
4474 __ JumpIfSmi(receiver, load_smi_map);
4475 __ ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4476 __ bind(compare_map);
4477 Register cached_map = scratch;
4478 // Move the weak map into the weak_cell register.
4479 __ ldr(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4480 __ cmp(cached_map, receiver_map);
4481 __ b(ne, try_array);
4482 Register handler = feedback;
4483 __ add(handler, vector, Operand::PointerOffsetFromSmiKey(slot));
4485 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4486 __ add(pc, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
4490 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4491 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r1
4492 Register name = LoadWithVectorDescriptor::NameRegister(); // r2
4493 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r3
4494 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r0
4495 Register feedback = r4;
4496 Register receiver_map = r5;
4497 Register scratch1 = r8;
4499 __ add(feedback, vector, Operand::PointerOffsetFromSmiKey(slot));
4500 __ ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4502 // Try to quickly handle the monomorphic case without knowing for sure
4503 // if we have a weak cell in feedback. We do know it's safe to look
4504 // at WeakCell::kValueOffset.
4505 Label try_array, load_smi_map, compare_map;
4506 Label not_array, miss;
4507 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4508 scratch1, &compare_map, &load_smi_map, &try_array);
4510 // Is it a fixed array?
4511 __ bind(&try_array);
4512 __ ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4513 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4514 __ b(ne, ¬_array);
4515 HandleArrayCases(masm, receiver, name, vector, slot, feedback, receiver_map,
4516 scratch1, r9, true, &miss);
4518 __ bind(¬_array);
4519 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4521 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4522 Code::ComputeHandlerFlags(Code::LOAD_IC));
4523 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4524 false, receiver, name, feedback,
4525 receiver_map, scratch1, r9);
4528 LoadIC::GenerateMiss(masm);
4531 __ bind(&load_smi_map);
4532 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4533 __ jmp(&compare_map);
4537 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4538 GenerateImpl(masm, false);
4542 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4543 GenerateImpl(masm, true);
4547 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4548 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r1
4549 Register key = LoadWithVectorDescriptor::NameRegister(); // r2
4550 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r3
4551 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r0
4552 Register feedback = r4;
4553 Register receiver_map = r5;
4554 Register scratch1 = r8;
4556 __ add(feedback, vector, Operand::PointerOffsetFromSmiKey(slot));
4557 __ ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4559 // Try to quickly handle the monomorphic case without knowing for sure
4560 // if we have a weak cell in feedback. We do know it's safe to look
4561 // at WeakCell::kValueOffset.
4562 Label try_array, load_smi_map, compare_map;
4563 Label not_array, miss;
4564 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4565 scratch1, &compare_map, &load_smi_map, &try_array);
4567 __ bind(&try_array);
4568 // Is it a fixed array?
4569 __ ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4570 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4571 __ b(ne, ¬_array);
4573 // We have a polymorphic element handler.
4574 Label polymorphic, try_poly_name;
4575 __ bind(&polymorphic);
4576 HandleArrayCases(masm, receiver, key, vector, slot, feedback, receiver_map,
4577 scratch1, r9, true, &miss);
4579 __ bind(¬_array);
4581 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4582 __ b(ne, &try_poly_name);
4583 Handle<Code> megamorphic_stub =
4584 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate());
4585 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4587 __ bind(&try_poly_name);
4588 // We might have a name in feedback, and a fixed array in the next slot.
4589 __ cmp(key, feedback);
4591 // If the name comparison succeeded, we know we have a fixed array with
4592 // at least one map/handler pair.
4593 __ add(feedback, vector, Operand::PointerOffsetFromSmiKey(slot));
4595 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4596 HandleArrayCases(masm, receiver, key, vector, slot, feedback, receiver_map,
4597 scratch1, r9, false, &miss);
4600 KeyedLoadIC::GenerateMiss(masm);
4602 __ bind(&load_smi_map);
4603 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4604 __ jmp(&compare_map);
4608 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4609 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4610 VectorStoreICStub stub(isolate(), state());
4611 stub.GenerateForTrampoline(masm);
4615 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4616 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4617 VectorKeyedStoreICStub stub(isolate(), state());
4618 stub.GenerateForTrampoline(masm);
4622 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4623 GenerateImpl(masm, false);
4627 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4628 GenerateImpl(masm, true);
4632 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4635 // TODO(mvstanton): Implement.
4637 StoreIC::GenerateMiss(masm);
4641 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4642 GenerateImpl(masm, false);
4646 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4647 GenerateImpl(masm, true);
4651 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4654 // TODO(mvstanton): Implement.
4656 KeyedStoreIC::GenerateMiss(masm);
4660 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4661 if (masm->isolate()->function_entry_hook() != NULL) {
4662 ProfileEntryHookStub stub(masm->isolate());
4663 int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize;
4664 PredictableCodeSizeScope predictable(masm, code_size);
4672 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4673 // The entry hook is a "push lr" instruction, followed by a call.
4674 const int32_t kReturnAddressDistanceFromFunctionStart =
4675 3 * Assembler::kInstrSize;
4677 // This should contain all kCallerSaved registers.
4678 const RegList kSavedRegs =
4685 // We also save lr, so the count here is one higher than the mask indicates.
4686 const int32_t kNumSavedRegs = 7;
4688 DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
4690 // Save all caller-save registers as this may be called from anywhere.
4691 __ stm(db_w, sp, kSavedRegs | lr.bit());
4693 // Compute the function's address for the first argument.
4694 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
4696 // The caller's return address is above the saved temporaries.
4697 // Grab that for the second argument to the hook.
4698 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
4700 // Align the stack if necessary.
4701 int frame_alignment = masm->ActivationFrameAlignment();
4702 if (frame_alignment > kPointerSize) {
4704 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4705 __ and_(sp, sp, Operand(-frame_alignment));
4708 #if V8_HOST_ARCH_ARM
4709 int32_t entry_hook =
4710 reinterpret_cast<int32_t>(isolate()->function_entry_hook());
4711 __ mov(ip, Operand(entry_hook));
4713 // Under the simulator we need to indirect the entry hook through a
4714 // trampoline function at a known address.
4715 // It additionally takes an isolate as a third parameter
4716 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
4718 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4719 __ mov(ip, Operand(ExternalReference(&dispatcher,
4720 ExternalReference::BUILTIN_CALL,
4725 // Restore the stack pointer if needed.
4726 if (frame_alignment > kPointerSize) {
4730 // Also pop pc to get Ret(0).
4731 __ ldm(ia_w, sp, kSavedRegs | pc.bit());
4736 static void CreateArrayDispatch(MacroAssembler* masm,
4737 AllocationSiteOverrideMode mode) {
4738 if (mode == DISABLE_ALLOCATION_SITES) {
4739 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4740 __ TailCallStub(&stub);
4741 } else if (mode == DONT_OVERRIDE) {
4742 int last_index = GetSequenceIndexFromFastElementsKind(
4743 TERMINAL_FAST_ELEMENTS_KIND);
4744 for (int i = 0; i <= last_index; ++i) {
4745 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4746 __ cmp(r3, Operand(kind));
4747 T stub(masm->isolate(), kind);
4748 __ TailCallStub(&stub, eq);
4751 // If we reached this point there is a problem.
4752 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4759 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4760 AllocationSiteOverrideMode mode) {
4761 // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4762 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4763 // r0 - number of arguments
4764 // r1 - constructor?
4765 // sp[0] - last argument
4766 Label normal_sequence;
4767 if (mode == DONT_OVERRIDE) {
4768 DCHECK(FAST_SMI_ELEMENTS == 0);
4769 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4770 DCHECK(FAST_ELEMENTS == 2);
4771 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4772 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4773 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4775 // is the low bit set? If so, we are holey and that is good.
4776 __ tst(r3, Operand(1));
4777 __ b(ne, &normal_sequence);
4780 // look at the first argument
4781 __ ldr(r5, MemOperand(sp, 0));
4782 __ cmp(r5, Operand::Zero());
4783 __ b(eq, &normal_sequence);
4785 if (mode == DISABLE_ALLOCATION_SITES) {
4786 ElementsKind initial = GetInitialFastElementsKind();
4787 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4789 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4791 DISABLE_ALLOCATION_SITES);
4792 __ TailCallStub(&stub_holey);
4794 __ bind(&normal_sequence);
4795 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4797 DISABLE_ALLOCATION_SITES);
4798 __ TailCallStub(&stub);
4799 } else if (mode == DONT_OVERRIDE) {
4800 // We are going to create a holey array, but our kind is non-holey.
4801 // Fix kind and retry (only if we have an allocation site in the slot).
4802 __ add(r3, r3, Operand(1));
4804 if (FLAG_debug_code) {
4805 __ ldr(r5, FieldMemOperand(r2, 0));
4806 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
4807 __ Assert(eq, kExpectedAllocationSite);
4810 // Save the resulting elements kind in type info. We can't just store r3
4811 // in the AllocationSite::transition_info field because elements kind is
4812 // restricted to a portion of the field...upper bits need to be left alone.
4813 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4814 __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4815 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4816 __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4818 __ bind(&normal_sequence);
4819 int last_index = GetSequenceIndexFromFastElementsKind(
4820 TERMINAL_FAST_ELEMENTS_KIND);
4821 for (int i = 0; i <= last_index; ++i) {
4822 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4823 __ cmp(r3, Operand(kind));
4824 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4825 __ TailCallStub(&stub, eq);
4828 // If we reached this point there is a problem.
4829 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4837 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4838 int to_index = GetSequenceIndexFromFastElementsKind(
4839 TERMINAL_FAST_ELEMENTS_KIND);
4840 for (int i = 0; i <= to_index; ++i) {
4841 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4842 T stub(isolate, kind);
4844 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4845 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4852 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4853 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4855 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4857 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4862 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4864 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4865 for (int i = 0; i < 2; i++) {
4866 // For internal arrays we only need a few things
4867 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4869 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4871 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4877 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4878 MacroAssembler* masm,
4879 AllocationSiteOverrideMode mode) {
4880 if (argument_count() == ANY) {
4881 Label not_zero_case, not_one_case;
4883 __ b(ne, ¬_zero_case);
4884 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4886 __ bind(¬_zero_case);
4887 __ cmp(r0, Operand(1));
4888 __ b(gt, ¬_one_case);
4889 CreateArrayDispatchOneArgument(masm, mode);
4891 __ bind(¬_one_case);
4892 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4893 } else if (argument_count() == NONE) {
4894 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4895 } else if (argument_count() == ONE) {
4896 CreateArrayDispatchOneArgument(masm, mode);
4897 } else if (argument_count() == MORE_THAN_ONE) {
4898 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4905 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4906 // ----------- S t a t e -------------
4907 // -- r0 : argc (only if argument_count() == ANY)
4908 // -- r1 : constructor
4909 // -- r2 : AllocationSite or undefined
4910 // -- r3 : original constructor
4911 // -- sp[0] : return address
4912 // -- sp[4] : last argument
4913 // -----------------------------------
4915 if (FLAG_debug_code) {
4916 // The array construct code is only set for the global and natives
4917 // builtin Array functions which always have maps.
4919 // Initial map for the builtin Array function should be a map.
4920 __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
4921 // Will both indicate a NULL and a Smi.
4922 __ tst(r4, Operand(kSmiTagMask));
4923 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
4924 __ CompareObjectType(r4, r4, r5, MAP_TYPE);
4925 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4927 // We should either have undefined in r2 or a valid AllocationSite
4928 __ AssertUndefinedOrAllocationSite(r2, r4);
4933 __ b(ne, &subclassing);
4936 // Get the elements kind and case on that.
4937 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
4940 __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
4942 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4943 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
4944 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4947 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4949 __ bind(&subclassing);
4954 switch (argument_count()) {
4957 __ add(r0, r0, Operand(2));
4960 __ mov(r0, Operand(2));
4963 __ mov(r0, Operand(3));
4967 __ JumpToExternalReference(
4968 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
4972 void InternalArrayConstructorStub::GenerateCase(
4973 MacroAssembler* masm, ElementsKind kind) {
4974 __ cmp(r0, Operand(1));
4976 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4977 __ TailCallStub(&stub0, lo);
4979 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4980 __ TailCallStub(&stubN, hi);
4982 if (IsFastPackedElementsKind(kind)) {
4983 // We might need to create a holey array
4984 // look at the first argument
4985 __ ldr(r3, MemOperand(sp, 0));
4986 __ cmp(r3, Operand::Zero());
4988 InternalArraySingleArgumentConstructorStub
4989 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4990 __ TailCallStub(&stub1_holey, ne);
4993 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4994 __ TailCallStub(&stub1);
4998 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4999 // ----------- S t a t e -------------
5001 // -- r1 : constructor
5002 // -- sp[0] : return address
5003 // -- sp[4] : last argument
5004 // -----------------------------------
5006 if (FLAG_debug_code) {
5007 // The array construct code is only set for the global and natives
5008 // builtin Array functions which always have maps.
5010 // Initial map for the builtin Array function should be a map.
5011 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
5012 // Will both indicate a NULL and a Smi.
5013 __ tst(r3, Operand(kSmiTagMask));
5014 __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
5015 __ CompareObjectType(r3, r3, r4, MAP_TYPE);
5016 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
5019 // Figure out the right elements kind
5020 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
5021 // Load the map's "bit field 2" into |result|. We only need the first byte,
5022 // but the following bit field extraction takes care of that anyway.
5023 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
5024 // Retrieve elements_kind from bit field 2.
5025 __ DecodeField<Map::ElementsKindBits>(r3);
5027 if (FLAG_debug_code) {
5029 __ cmp(r3, Operand(FAST_ELEMENTS));
5031 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
5033 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5037 Label fast_elements_case;
5038 __ cmp(r3, Operand(FAST_ELEMENTS));
5039 __ b(eq, &fast_elements_case);
5040 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5042 __ bind(&fast_elements_case);
5043 GenerateCase(masm, FAST_ELEMENTS);
5047 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5048 return ref0.address() - ref1.address();
5052 // Calls an API function. Allocates HandleScope, extracts returned value
5053 // from handle and propagates exceptions. Restores context. stack_space
5054 // - space to be unwound on exit (includes the call JS arguments space and
5055 // the additional space allocated for the fast call).
5056 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5057 Register function_address,
5058 ExternalReference thunk_ref,
5060 MemOperand* stack_space_operand,
5061 MemOperand return_value_operand,
5062 MemOperand* context_restore_operand) {
5063 Isolate* isolate = masm->isolate();
5064 ExternalReference next_address =
5065 ExternalReference::handle_scope_next_address(isolate);
5066 const int kNextOffset = 0;
5067 const int kLimitOffset = AddressOffset(
5068 ExternalReference::handle_scope_limit_address(isolate), next_address);
5069 const int kLevelOffset = AddressOffset(
5070 ExternalReference::handle_scope_level_address(isolate), next_address);
5072 DCHECK(function_address.is(r1) || function_address.is(r2));
5074 Label profiler_disabled;
5075 Label end_profiler_check;
5076 __ mov(r9, Operand(ExternalReference::is_profiling_address(isolate)));
5077 __ ldrb(r9, MemOperand(r9, 0));
5078 __ cmp(r9, Operand(0));
5079 __ b(eq, &profiler_disabled);
5081 // Additional parameter is the address of the actual callback.
5082 __ mov(r3, Operand(thunk_ref));
5083 __ jmp(&end_profiler_check);
5085 __ bind(&profiler_disabled);
5086 __ Move(r3, function_address);
5087 __ bind(&end_profiler_check);
5089 // Allocate HandleScope in callee-save registers.
5090 __ mov(r9, Operand(next_address));
5091 __ ldr(r4, MemOperand(r9, kNextOffset));
5092 __ ldr(r5, MemOperand(r9, kLimitOffset));
5093 __ ldr(r6, MemOperand(r9, kLevelOffset));
5094 __ add(r6, r6, Operand(1));
5095 __ str(r6, MemOperand(r9, kLevelOffset));
5097 if (FLAG_log_timer_events) {
5098 FrameScope frame(masm, StackFrame::MANUAL);
5099 __ PushSafepointRegisters();
5100 __ PrepareCallCFunction(1, r0);
5101 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
5102 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5104 __ PopSafepointRegisters();
5107 // Native call returns to the DirectCEntry stub which redirects to the
5108 // return address pushed on stack (could have moved after GC).
5109 // DirectCEntry stub itself is generated early and never moves.
5110 DirectCEntryStub stub(isolate);
5111 stub.GenerateCall(masm, r3);
5113 if (FLAG_log_timer_events) {
5114 FrameScope frame(masm, StackFrame::MANUAL);
5115 __ PushSafepointRegisters();
5116 __ PrepareCallCFunction(1, r0);
5117 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
5118 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5120 __ PopSafepointRegisters();
5123 Label promote_scheduled_exception;
5124 Label delete_allocated_handles;
5125 Label leave_exit_frame;
5126 Label return_value_loaded;
5128 // load value from ReturnValue
5129 __ ldr(r0, return_value_operand);
5130 __ bind(&return_value_loaded);
5131 // No more valid handles (the result handle was the last one). Restore
5132 // previous handle scope.
5133 __ str(r4, MemOperand(r9, kNextOffset));
5134 if (__ emit_debug_code()) {
5135 __ ldr(r1, MemOperand(r9, kLevelOffset));
5137 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5139 __ sub(r6, r6, Operand(1));
5140 __ str(r6, MemOperand(r9, kLevelOffset));
5141 __ ldr(ip, MemOperand(r9, kLimitOffset));
5143 __ b(ne, &delete_allocated_handles);
5145 // Leave the API exit frame.
5146 __ bind(&leave_exit_frame);
5147 bool restore_context = context_restore_operand != NULL;
5148 if (restore_context) {
5149 __ ldr(cp, *context_restore_operand);
5151 // LeaveExitFrame expects unwind space to be in a register.
5152 if (stack_space_operand != NULL) {
5153 __ ldr(r4, *stack_space_operand);
5155 __ mov(r4, Operand(stack_space));
5157 __ LeaveExitFrame(false, r4, !restore_context, stack_space_operand != NULL);
5159 // Check if the function scheduled an exception.
5160 __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
5161 __ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate)));
5162 __ ldr(r5, MemOperand(ip));
5164 __ b(ne, &promote_scheduled_exception);
5168 // Re-throw by promoting a scheduled exception.
5169 __ bind(&promote_scheduled_exception);
5170 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
5172 // HandleScope limit has changed. Delete allocated extensions.
5173 __ bind(&delete_allocated_handles);
5174 __ str(r5, MemOperand(r9, kLimitOffset));
5176 __ PrepareCallCFunction(1, r5);
5177 __ mov(r0, Operand(ExternalReference::isolate_address(isolate)));
5178 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5181 __ jmp(&leave_exit_frame);
5185 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5186 const ParameterCount& argc,
5187 bool return_first_arg,
5188 bool call_data_undefined) {
5189 // ----------- S t a t e -------------
5191 // -- r4 : call_data
5193 // -- r1 : api_function_address
5194 // -- r3 : number of arguments if argc is a register
5197 // -- sp[0] : last argument
5199 // -- sp[(argc - 1)* 4] : first argument
5200 // -- sp[argc * 4] : receiver
5201 // -----------------------------------
5203 Register callee = r0;
5204 Register call_data = r4;
5205 Register holder = r2;
5206 Register api_function_address = r1;
5207 Register context = cp;
5209 typedef FunctionCallbackArguments FCA;
5211 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5212 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5213 STATIC_ASSERT(FCA::kDataIndex == 4);
5214 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5215 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5216 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5217 STATIC_ASSERT(FCA::kHolderIndex == 0);
5218 STATIC_ASSERT(FCA::kArgsLength == 7);
5220 DCHECK(argc.is_immediate() || r3.is(argc.reg()));
5224 // load context from callee
5225 __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5233 Register scratch = call_data;
5234 if (!call_data_undefined) {
5235 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5239 // return value default
5242 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
5247 // Prepare arguments.
5248 __ mov(scratch, sp);
5250 // Allocate the v8::Arguments structure in the arguments' space since
5251 // it's not controlled by GC.
5252 const int kApiStackSpace = 4;
5254 FrameScope frame_scope(masm, StackFrame::MANUAL);
5255 __ EnterExitFrame(false, kApiStackSpace);
5257 DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
5258 // r0 = FunctionCallbackInfo&
5259 // Arguments is after the return address.
5260 __ add(r0, sp, Operand(1 * kPointerSize));
5261 // FunctionCallbackInfo::implicit_args_
5262 __ str(scratch, MemOperand(r0, 0 * kPointerSize));
5263 if (argc.is_immediate()) {
5264 // FunctionCallbackInfo::values_
5266 Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
5267 __ str(ip, MemOperand(r0, 1 * kPointerSize));
5268 // FunctionCallbackInfo::length_ = argc
5269 __ mov(ip, Operand(argc.immediate()));
5270 __ str(ip, MemOperand(r0, 2 * kPointerSize));
5271 // FunctionCallbackInfo::is_construct_call_ = 0
5272 __ mov(ip, Operand::Zero());
5273 __ str(ip, MemOperand(r0, 3 * kPointerSize));
5275 // FunctionCallbackInfo::values_
5276 __ add(ip, scratch, Operand(argc.reg(), LSL, kPointerSizeLog2));
5277 __ add(ip, ip, Operand((FCA::kArgsLength - 1) * kPointerSize));
5278 __ str(ip, MemOperand(r0, 1 * kPointerSize));
5279 // FunctionCallbackInfo::length_ = argc
5280 __ str(argc.reg(), MemOperand(r0, 2 * kPointerSize));
5281 // FunctionCallbackInfo::is_construct_call_
5282 __ add(argc.reg(), argc.reg(), Operand(FCA::kArgsLength + 1));
5283 __ mov(ip, Operand(argc.reg(), LSL, kPointerSizeLog2));
5284 __ str(ip, MemOperand(r0, 3 * kPointerSize));
5287 ExternalReference thunk_ref =
5288 ExternalReference::invoke_function_callback(masm->isolate());
5290 AllowExternalCallThatCantCauseGC scope(masm);
5291 MemOperand context_restore_operand(
5292 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5293 // Stores return the first js argument
5294 int return_value_offset = 0;
5295 if (return_first_arg) {
5296 return_value_offset = 2 + FCA::kArgsLength;
5298 return_value_offset = 2 + FCA::kReturnValueOffset;
5300 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5301 int stack_space = 0;
5302 MemOperand is_construct_call_operand = MemOperand(sp, 4 * kPointerSize);
5303 MemOperand* stack_space_operand = &is_construct_call_operand;
5304 if (argc.is_immediate()) {
5305 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5306 stack_space_operand = NULL;
5308 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5309 stack_space_operand, return_value_operand,
5310 &context_restore_operand);
5314 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5315 bool call_data_undefined = this->call_data_undefined();
5316 CallApiFunctionStubHelper(masm, ParameterCount(r3), false,
5317 call_data_undefined);
5321 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5322 bool is_store = this->is_store();
5323 int argc = this->argc();
5324 bool call_data_undefined = this->call_data_undefined();
5325 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5326 call_data_undefined);
5330 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5331 // ----------- S t a t e -------------
5333 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
5335 // -- r2 : api_function_address
5336 // -----------------------------------
5338 Register api_function_address = ApiGetterDescriptor::function_address();
5339 DCHECK(api_function_address.is(r2));
5341 __ mov(r0, sp); // r0 = Handle<Name>
5342 __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA
5344 const int kApiStackSpace = 1;
5345 FrameScope frame_scope(masm, StackFrame::MANUAL);
5346 __ EnterExitFrame(false, kApiStackSpace);
5348 // Create PropertyAccessorInfo instance on the stack above the exit frame with
5349 // r1 (internal::Object** args_) as the data.
5350 __ str(r1, MemOperand(sp, 1 * kPointerSize));
5351 __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo&
5353 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5355 ExternalReference thunk_ref =
5356 ExternalReference::invoke_accessor_getter_callback(isolate());
5357 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5358 kStackUnwindSpace, NULL,
5359 MemOperand(fp, 6 * kPointerSize), NULL);
5365 } // namespace internal
5368 #endif // V8_TARGET_ARCH_ARM