[V8] Introduce a QML compilation mode
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / zone.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <string.h>
29
30 #include "v8.h"
31 #include "zone-inl.h"
32
33 namespace v8 {
34 namespace internal {
35
36
37 // Segments represent chunks of memory: They have starting address
38 // (encoded in the this pointer) and a size in bytes. Segments are
39 // chained together forming a LIFO structure with the newest segment
40 // available as segment_head_. Segments are allocated using malloc()
41 // and de-allocated using free().
42
43 class Segment {
44  public:
45   void Initialize(Segment* next, int size) {
46     next_ = next;
47     size_ = size;
48   }
49
50   Segment* next() const { return next_; }
51   void clear_next() { next_ = NULL; }
52
53   int size() const { return size_; }
54   int capacity() const { return size_ - sizeof(Segment); }
55
56   Address start() const { return address(sizeof(Segment)); }
57   Address end() const { return address(size_); }
58
59  private:
60   // Computes the address of the nth byte in this segment.
61   Address address(int n) const {
62     return Address(this) + n;
63   }
64
65   Segment* next_;
66   int size_;
67 };
68
69
70 Zone::Zone()
71     : zone_excess_limit_(256 * MB),
72       segment_bytes_allocated_(0),
73       position_(0),
74       limit_(0),
75       scope_nesting_(0),
76       segment_head_(NULL) {
77 }
78 unsigned Zone::allocation_size_ = 0;
79
80 ZoneScope::~ZoneScope() {
81   ASSERT_EQ(Isolate::Current(), isolate_);
82   if (ShouldDeleteOnExit()) isolate_->zone()->DeleteAll();
83   isolate_->zone()->scope_nesting_--;
84 }
85
86
87 // Creates a new segment, sets it size, and pushes it to the front
88 // of the segment chain. Returns the new segment.
89 Segment* Zone::NewSegment(int size) {
90   Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
91   adjust_segment_bytes_allocated(size);
92   if (result != NULL) {
93     result->Initialize(segment_head_, size);
94     segment_head_ = result;
95   }
96   return result;
97 }
98
99
100 // Deletes the given segment. Does not touch the segment chain.
101 void Zone::DeleteSegment(Segment* segment, int size) {
102   adjust_segment_bytes_allocated(-size);
103   Malloced::Delete(segment);
104 }
105
106
107 void Zone::DeleteAll() {
108 #ifdef DEBUG
109   // Constant byte value used for zapping dead memory in debug mode.
110   static const unsigned char kZapDeadByte = 0xcd;
111 #endif
112
113   // Find a segment with a suitable size to keep around.
114   Segment* keep = segment_head_;
115   while (keep != NULL && keep->size() > kMaximumKeptSegmentSize) {
116     keep = keep->next();
117   }
118
119   // Traverse the chained list of segments, zapping (in debug mode)
120   // and freeing every segment except the one we wish to keep.
121   Segment* current = segment_head_;
122   while (current != NULL) {
123     Segment* next = current->next();
124     if (current == keep) {
125       // Unlink the segment we wish to keep from the list.
126       current->clear_next();
127     } else {
128       int size = current->size();
129 #ifdef DEBUG
130       // Zap the entire current segment (including the header).
131       memset(current, kZapDeadByte, size);
132 #endif
133       DeleteSegment(current, size);
134     }
135     current = next;
136   }
137
138   // If we have found a segment we want to keep, we must recompute the
139   // variables 'position' and 'limit' to prepare for future allocate
140   // attempts. Otherwise, we must clear the position and limit to
141   // force a new segment to be allocated on demand.
142   if (keep != NULL) {
143     Address start = keep->start();
144     position_ = RoundUp(start, kAlignment);
145     limit_ = keep->end();
146 #ifdef DEBUG
147     // Zap the contents of the kept segment (but not the header).
148     memset(start, kZapDeadByte, keep->capacity());
149 #endif
150   } else {
151     position_ = limit_ = 0;
152   }
153
154   // Update the head segment to be the kept segment (if any).
155   segment_head_ = keep;
156 }
157
158
159 void Zone::DeleteKeptSegment() {
160   if (segment_head_ != NULL) {
161     DeleteSegment(segment_head_, segment_head_->size());
162     segment_head_ = NULL;
163   }
164 }
165
166
167 Address Zone::NewExpand(int size) {
168   // Make sure the requested size is already properly aligned and that
169   // there isn't enough room in the Zone to satisfy the request.
170   ASSERT(size == RoundDown(size, kAlignment));
171   ASSERT(size > limit_ - position_);
172
173   // Compute the new segment size. We use a 'high water mark'
174   // strategy, where we increase the segment size every time we expand
175   // except that we employ a maximum segment size when we delete. This
176   // is to avoid excessive malloc() and free() overhead.
177   Segment* head = segment_head_;
178   int old_size = (head == NULL) ? 0 : head->size();
179   static const int kSegmentOverhead = sizeof(Segment) + kAlignment;
180   int new_size_no_overhead = size + (old_size << 1);
181   int new_size = kSegmentOverhead + new_size_no_overhead;
182   // Guard against integer overflow.
183   if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
184     V8::FatalProcessOutOfMemory("Zone");
185     return NULL;
186   }
187   if (new_size < kMinimumSegmentSize) {
188     new_size = kMinimumSegmentSize;
189   } else if (new_size > kMaximumSegmentSize) {
190     // Limit the size of new segments to avoid growing the segment size
191     // exponentially, thus putting pressure on contiguous virtual address space.
192     // All the while making sure to allocate a segment large enough to hold the
193     // requested size.
194     new_size = Max(kSegmentOverhead + size, kMaximumSegmentSize);
195   }
196   Segment* segment = NewSegment(new_size);
197   if (segment == NULL) {
198     V8::FatalProcessOutOfMemory("Zone");
199     return NULL;
200   }
201
202   // Recompute 'top' and 'limit' based on the new segment.
203   Address result = RoundUp(segment->start(), kAlignment);
204   position_ = result + size;
205   // Check for address overflow.
206   if (position_ < result) {
207     V8::FatalProcessOutOfMemory("Zone");
208     return NULL;
209   }
210   limit_ = segment->end();
211   ASSERT(position_ <= limit_);
212   return result;
213 }
214
215
216 } }  // namespace v8::internal