[V8] Add support for MinGW-w64
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / x64 / macro-assembler-x64.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_X64)
31
32 #include "bootstrapper.h"
33 #include "codegen.h"
34 #include "assembler-x64.h"
35 #include "macro-assembler-x64.h"
36 #include "serialize.h"
37 #include "debug.h"
38 #include "heap.h"
39
40 namespace v8 {
41 namespace internal {
42
43 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
44     : Assembler(arg_isolate, buffer, size),
45       generating_stub_(false),
46       allow_stub_calls_(true),
47       has_frame_(false),
48       root_array_available_(true) {
49   if (isolate() != NULL) {
50     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
51                                   isolate());
52   }
53 }
54
55
56 static intptr_t RootRegisterDelta(ExternalReference other, Isolate* isolate) {
57   Address roots_register_value = kRootRegisterBias +
58       reinterpret_cast<Address>(isolate->heap()->roots_array_start());
59   intptr_t delta = other.address() - roots_register_value;
60   return delta;
61 }
62
63
64 Operand MacroAssembler::ExternalOperand(ExternalReference target,
65                                         Register scratch) {
66   if (root_array_available_ && !Serializer::enabled()) {
67     intptr_t delta = RootRegisterDelta(target, isolate());
68     if (is_int32(delta)) {
69       Serializer::TooLateToEnableNow();
70       return Operand(kRootRegister, static_cast<int32_t>(delta));
71     }
72   }
73   movq(scratch, target);
74   return Operand(scratch, 0);
75 }
76
77
78 void MacroAssembler::Load(Register destination, ExternalReference source) {
79   if (root_array_available_ && !Serializer::enabled()) {
80     intptr_t delta = RootRegisterDelta(source, isolate());
81     if (is_int32(delta)) {
82       Serializer::TooLateToEnableNow();
83       movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
84       return;
85     }
86   }
87   // Safe code.
88   if (destination.is(rax)) {
89     load_rax(source);
90   } else {
91     movq(kScratchRegister, source);
92     movq(destination, Operand(kScratchRegister, 0));
93   }
94 }
95
96
97 void MacroAssembler::Store(ExternalReference destination, Register source) {
98   if (root_array_available_ && !Serializer::enabled()) {
99     intptr_t delta = RootRegisterDelta(destination, isolate());
100     if (is_int32(delta)) {
101       Serializer::TooLateToEnableNow();
102       movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
103       return;
104     }
105   }
106   // Safe code.
107   if (source.is(rax)) {
108     store_rax(destination);
109   } else {
110     movq(kScratchRegister, destination);
111     movq(Operand(kScratchRegister, 0), source);
112   }
113 }
114
115
116 void MacroAssembler::LoadAddress(Register destination,
117                                  ExternalReference source) {
118   if (root_array_available_ && !Serializer::enabled()) {
119     intptr_t delta = RootRegisterDelta(source, isolate());
120     if (is_int32(delta)) {
121       Serializer::TooLateToEnableNow();
122       lea(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
123       return;
124     }
125   }
126   // Safe code.
127   movq(destination, source);
128 }
129
130
131 int MacroAssembler::LoadAddressSize(ExternalReference source) {
132   if (root_array_available_ && !Serializer::enabled()) {
133     // This calculation depends on the internals of LoadAddress.
134     // It's correctness is ensured by the asserts in the Call
135     // instruction below.
136     intptr_t delta = RootRegisterDelta(source, isolate());
137     if (is_int32(delta)) {
138       Serializer::TooLateToEnableNow();
139       // Operand is lea(scratch, Operand(kRootRegister, delta));
140       // Opcodes : REX.W 8D ModRM Disp8/Disp32  - 4 or 7.
141       int size = 4;
142       if (!is_int8(static_cast<int32_t>(delta))) {
143         size += 3;  // Need full four-byte displacement in lea.
144       }
145       return size;
146     }
147   }
148   // Size of movq(destination, src);
149   return 10;
150 }
151
152
153 void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
154   ASSERT(root_array_available_);
155   movq(destination, Operand(kRootRegister,
156                             (index << kPointerSizeLog2) - kRootRegisterBias));
157 }
158
159
160 void MacroAssembler::LoadRootIndexed(Register destination,
161                                      Register variable_offset,
162                                      int fixed_offset) {
163   ASSERT(root_array_available_);
164   movq(destination,
165        Operand(kRootRegister,
166                variable_offset, times_pointer_size,
167                (fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
168 }
169
170
171 void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
172   ASSERT(root_array_available_);
173   movq(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
174        source);
175 }
176
177
178 void MacroAssembler::PushRoot(Heap::RootListIndex index) {
179   ASSERT(root_array_available_);
180   push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
181 }
182
183
184 void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
185   ASSERT(root_array_available_);
186   cmpq(with, Operand(kRootRegister,
187                      (index << kPointerSizeLog2) - kRootRegisterBias));
188 }
189
190
191 void MacroAssembler::CompareRoot(const Operand& with,
192                                  Heap::RootListIndex index) {
193   ASSERT(root_array_available_);
194   ASSERT(!with.AddressUsesRegister(kScratchRegister));
195   LoadRoot(kScratchRegister, index);
196   cmpq(with, kScratchRegister);
197 }
198
199
200 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
201                                          Register addr,
202                                          Register scratch,
203                                          SaveFPRegsMode save_fp,
204                                          RememberedSetFinalAction and_then) {
205   if (FLAG_debug_code) {
206     Label ok;
207     JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
208     int3();
209     bind(&ok);
210   }
211   // Load store buffer top.
212   LoadRoot(scratch, Heap::kStoreBufferTopRootIndex);
213   // Store pointer to buffer.
214   movq(Operand(scratch, 0), addr);
215   // Increment buffer top.
216   addq(scratch, Immediate(kPointerSize));
217   // Write back new top of buffer.
218   StoreRoot(scratch, Heap::kStoreBufferTopRootIndex);
219   // Call stub on end of buffer.
220   Label done;
221   // Check for end of buffer.
222   testq(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
223   if (and_then == kReturnAtEnd) {
224     Label buffer_overflowed;
225     j(not_equal, &buffer_overflowed, Label::kNear);
226     ret(0);
227     bind(&buffer_overflowed);
228   } else {
229     ASSERT(and_then == kFallThroughAtEnd);
230     j(equal, &done, Label::kNear);
231   }
232   StoreBufferOverflowStub store_buffer_overflow =
233       StoreBufferOverflowStub(save_fp);
234   CallStub(&store_buffer_overflow);
235   if (and_then == kReturnAtEnd) {
236     ret(0);
237   } else {
238     ASSERT(and_then == kFallThroughAtEnd);
239     bind(&done);
240   }
241 }
242
243
244 void MacroAssembler::InNewSpace(Register object,
245                                 Register scratch,
246                                 Condition cc,
247                                 Label* branch,
248                                 Label::Distance distance) {
249   if (Serializer::enabled()) {
250     // Can't do arithmetic on external references if it might get serialized.
251     // The mask isn't really an address.  We load it as an external reference in
252     // case the size of the new space is different between the snapshot maker
253     // and the running system.
254     if (scratch.is(object)) {
255       movq(kScratchRegister, ExternalReference::new_space_mask(isolate()));
256       and_(scratch, kScratchRegister);
257     } else {
258       movq(scratch, ExternalReference::new_space_mask(isolate()));
259       and_(scratch, object);
260     }
261     movq(kScratchRegister, ExternalReference::new_space_start(isolate()));
262     cmpq(scratch, kScratchRegister);
263     j(cc, branch, distance);
264   } else {
265     ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask())));
266     intptr_t new_space_start =
267         reinterpret_cast<intptr_t>(HEAP->NewSpaceStart());
268     movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
269     if (scratch.is(object)) {
270       addq(scratch, kScratchRegister);
271     } else {
272       lea(scratch, Operand(object, kScratchRegister, times_1, 0));
273     }
274     and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask())));
275     j(cc, branch, distance);
276   }
277 }
278
279
280 void MacroAssembler::RecordWriteField(
281     Register object,
282     int offset,
283     Register value,
284     Register dst,
285     SaveFPRegsMode save_fp,
286     RememberedSetAction remembered_set_action,
287     SmiCheck smi_check) {
288   // The compiled code assumes that record write doesn't change the
289   // context register, so we check that none of the clobbered
290   // registers are rsi.
291   ASSERT(!value.is(rsi) && !dst.is(rsi));
292
293   // First, check if a write barrier is even needed. The tests below
294   // catch stores of Smis.
295   Label done;
296
297   // Skip barrier if writing a smi.
298   if (smi_check == INLINE_SMI_CHECK) {
299     JumpIfSmi(value, &done);
300   }
301
302   // Although the object register is tagged, the offset is relative to the start
303   // of the object, so so offset must be a multiple of kPointerSize.
304   ASSERT(IsAligned(offset, kPointerSize));
305
306   lea(dst, FieldOperand(object, offset));
307   if (emit_debug_code()) {
308     Label ok;
309     testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
310     j(zero, &ok, Label::kNear);
311     int3();
312     bind(&ok);
313   }
314
315   RecordWrite(
316       object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
317
318   bind(&done);
319
320   // Clobber clobbered input registers when running with the debug-code flag
321   // turned on to provoke errors.
322   if (emit_debug_code()) {
323     movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
324     movq(dst, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
325   }
326 }
327
328
329 void MacroAssembler::RecordWriteArray(Register object,
330                                       Register value,
331                                       Register index,
332                                       SaveFPRegsMode save_fp,
333                                       RememberedSetAction remembered_set_action,
334                                       SmiCheck smi_check) {
335   // First, check if a write barrier is even needed. The tests below
336   // catch stores of Smis.
337   Label done;
338
339   // Skip barrier if writing a smi.
340   if (smi_check == INLINE_SMI_CHECK) {
341     JumpIfSmi(value, &done);
342   }
343
344   // Array access: calculate the destination address. Index is not a smi.
345   Register dst = index;
346   lea(dst, Operand(object, index, times_pointer_size,
347                    FixedArray::kHeaderSize - kHeapObjectTag));
348
349   RecordWrite(
350       object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
351
352   bind(&done);
353
354   // Clobber clobbered input registers when running with the debug-code flag
355   // turned on to provoke errors.
356   if (emit_debug_code()) {
357     movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
358     movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
359   }
360 }
361
362
363 void MacroAssembler::RecordWrite(Register object,
364                                  Register address,
365                                  Register value,
366                                  SaveFPRegsMode fp_mode,
367                                  RememberedSetAction remembered_set_action,
368                                  SmiCheck smi_check) {
369   // The compiled code assumes that record write doesn't change the
370   // context register, so we check that none of the clobbered
371   // registers are rsi.
372   ASSERT(!value.is(rsi) && !address.is(rsi));
373
374   ASSERT(!object.is(value));
375   ASSERT(!object.is(address));
376   ASSERT(!value.is(address));
377   if (emit_debug_code()) {
378     AbortIfSmi(object);
379   }
380
381   if (remembered_set_action == OMIT_REMEMBERED_SET &&
382       !FLAG_incremental_marking) {
383     return;
384   }
385
386   if (FLAG_debug_code) {
387     Label ok;
388     cmpq(value, Operand(address, 0));
389     j(equal, &ok, Label::kNear);
390     int3();
391     bind(&ok);
392   }
393
394   // First, check if a write barrier is even needed. The tests below
395   // catch stores of smis and stores into the young generation.
396   Label done;
397
398   if (smi_check == INLINE_SMI_CHECK) {
399     // Skip barrier if writing a smi.
400     JumpIfSmi(value, &done);
401   }
402
403   CheckPageFlag(value,
404                 value,  // Used as scratch.
405                 MemoryChunk::kPointersToHereAreInterestingMask,
406                 zero,
407                 &done,
408                 Label::kNear);
409
410   CheckPageFlag(object,
411                 value,  // Used as scratch.
412                 MemoryChunk::kPointersFromHereAreInterestingMask,
413                 zero,
414                 &done,
415                 Label::kNear);
416
417   RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
418   CallStub(&stub);
419
420   bind(&done);
421
422   // Clobber clobbered registers when running with the debug-code flag
423   // turned on to provoke errors.
424   if (emit_debug_code()) {
425     movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
426     movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
427   }
428 }
429
430
431 void MacroAssembler::Assert(Condition cc, const char* msg) {
432   if (emit_debug_code()) Check(cc, msg);
433 }
434
435
436 void MacroAssembler::AssertFastElements(Register elements) {
437   if (emit_debug_code()) {
438     Label ok;
439     CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
440                 Heap::kFixedArrayMapRootIndex);
441     j(equal, &ok, Label::kNear);
442     CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
443                 Heap::kFixedDoubleArrayMapRootIndex);
444     j(equal, &ok, Label::kNear);
445     CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
446                 Heap::kFixedCOWArrayMapRootIndex);
447     j(equal, &ok, Label::kNear);
448     Abort("JSObject with fast elements map has slow elements");
449     bind(&ok);
450   }
451 }
452
453
454 void MacroAssembler::Check(Condition cc, const char* msg) {
455   Label L;
456   j(cc, &L, Label::kNear);
457   Abort(msg);
458   // Control will not return here.
459   bind(&L);
460 }
461
462
463 void MacroAssembler::CheckStackAlignment() {
464   int frame_alignment = OS::ActivationFrameAlignment();
465   int frame_alignment_mask = frame_alignment - 1;
466   if (frame_alignment > kPointerSize) {
467     ASSERT(IsPowerOf2(frame_alignment));
468     Label alignment_as_expected;
469     testq(rsp, Immediate(frame_alignment_mask));
470     j(zero, &alignment_as_expected, Label::kNear);
471     // Abort if stack is not aligned.
472     int3();
473     bind(&alignment_as_expected);
474   }
475 }
476
477
478 void MacroAssembler::NegativeZeroTest(Register result,
479                                       Register op,
480                                       Label* then_label) {
481   Label ok;
482   testl(result, result);
483   j(not_zero, &ok, Label::kNear);
484   testl(op, op);
485   j(sign, then_label);
486   bind(&ok);
487 }
488
489
490 void MacroAssembler::Abort(const char* msg) {
491   // We want to pass the msg string like a smi to avoid GC
492   // problems, however msg is not guaranteed to be aligned
493   // properly. Instead, we pass an aligned pointer that is
494   // a proper v8 smi, but also pass the alignment difference
495   // from the real pointer as a smi.
496   intptr_t p1 = reinterpret_cast<intptr_t>(msg);
497   intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
498   // Note: p0 might not be a valid Smi _value_, but it has a valid Smi tag.
499   ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
500 #ifdef DEBUG
501   if (msg != NULL) {
502     RecordComment("Abort message: ");
503     RecordComment(msg);
504   }
505 #endif
506   push(rax);
507   movq(kScratchRegister, p0, RelocInfo::NONE);
508   push(kScratchRegister);
509   movq(kScratchRegister,
510        reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))),
511        RelocInfo::NONE);
512   push(kScratchRegister);
513
514   if (!has_frame_) {
515     // We don't actually want to generate a pile of code for this, so just
516     // claim there is a stack frame, without generating one.
517     FrameScope scope(this, StackFrame::NONE);
518     CallRuntime(Runtime::kAbort, 2);
519   } else {
520     CallRuntime(Runtime::kAbort, 2);
521   }
522   // Control will not return here.
523   int3();
524 }
525
526
527 void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) {
528   ASSERT(AllowThisStubCall(stub));  // Calls are not allowed in some stubs
529   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
530 }
531
532
533 void MacroAssembler::TailCallStub(CodeStub* stub) {
534   ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
535   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
536 }
537
538
539 void MacroAssembler::StubReturn(int argc) {
540   ASSERT(argc >= 1 && generating_stub());
541   ret((argc - 1) * kPointerSize);
542 }
543
544
545 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
546   if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
547   return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
548 }
549
550
551 void MacroAssembler::IllegalOperation(int num_arguments) {
552   if (num_arguments > 0) {
553     addq(rsp, Immediate(num_arguments * kPointerSize));
554   }
555   LoadRoot(rax, Heap::kUndefinedValueRootIndex);
556 }
557
558
559 void MacroAssembler::IndexFromHash(Register hash, Register index) {
560   // The assert checks that the constants for the maximum number of digits
561   // for an array index cached in the hash field and the number of bits
562   // reserved for it does not conflict.
563   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
564          (1 << String::kArrayIndexValueBits));
565   // We want the smi-tagged index in key. Even if we subsequently go to
566   // the slow case, converting the key to a smi is always valid.
567   // key: string key
568   // hash: key's hash field, including its array index value.
569   and_(hash, Immediate(String::kArrayIndexValueMask));
570   shr(hash, Immediate(String::kHashShift));
571   // Here we actually clobber the key which will be used if calling into
572   // runtime later. However as the new key is the numeric value of a string key
573   // there is no difference in using either key.
574   Integer32ToSmi(index, hash);
575 }
576
577
578 void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
579   CallRuntime(Runtime::FunctionForId(id), num_arguments);
580 }
581
582
583 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
584   const Runtime::Function* function = Runtime::FunctionForId(id);
585   Set(rax, function->nargs);
586   LoadAddress(rbx, ExternalReference(function, isolate()));
587   CEntryStub ces(1, kSaveFPRegs);
588   CallStub(&ces);
589 }
590
591
592 void MacroAssembler::CallRuntime(const Runtime::Function* f,
593                                  int num_arguments) {
594   // If the expected number of arguments of the runtime function is
595   // constant, we check that the actual number of arguments match the
596   // expectation.
597   if (f->nargs >= 0 && f->nargs != num_arguments) {
598     IllegalOperation(num_arguments);
599     return;
600   }
601
602   // TODO(1236192): Most runtime routines don't need the number of
603   // arguments passed in because it is constant. At some point we
604   // should remove this need and make the runtime routine entry code
605   // smarter.
606   Set(rax, num_arguments);
607   LoadAddress(rbx, ExternalReference(f, isolate()));
608   CEntryStub ces(f->result_size);
609   CallStub(&ces);
610 }
611
612
613 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
614                                            int num_arguments) {
615   Set(rax, num_arguments);
616   LoadAddress(rbx, ext);
617
618   CEntryStub stub(1);
619   CallStub(&stub);
620 }
621
622
623 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
624                                                int num_arguments,
625                                                int result_size) {
626   // ----------- S t a t e -------------
627   //  -- rsp[0] : return address
628   //  -- rsp[8] : argument num_arguments - 1
629   //  ...
630   //  -- rsp[8 * num_arguments] : argument 0 (receiver)
631   // -----------------------------------
632
633   // TODO(1236192): Most runtime routines don't need the number of
634   // arguments passed in because it is constant. At some point we
635   // should remove this need and make the runtime routine entry code
636   // smarter.
637   Set(rax, num_arguments);
638   JumpToExternalReference(ext, result_size);
639 }
640
641
642 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
643                                      int num_arguments,
644                                      int result_size) {
645   TailCallExternalReference(ExternalReference(fid, isolate()),
646                             num_arguments,
647                             result_size);
648 }
649
650
651 static int Offset(ExternalReference ref0, ExternalReference ref1) {
652   int64_t offset = (ref0.address() - ref1.address());
653   // Check that fits into int.
654   ASSERT(static_cast<int>(offset) == offset);
655   return static_cast<int>(offset);
656 }
657
658
659 void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) {
660 #if defined(_WIN64) && !defined(__MINGW64__)
661   // We need to prepare a slot for result handle on stack and put
662   // a pointer to it into 1st arg register.
663   EnterApiExitFrame(arg_stack_space + 1);
664
665   // rcx must be used to pass the pointer to the return value slot.
666   lea(rcx, StackSpaceOperand(arg_stack_space));
667 #else
668   EnterApiExitFrame(arg_stack_space);
669 #endif
670 }
671
672
673 void MacroAssembler::CallApiFunctionAndReturn(Address function_address,
674                                               int stack_space) {
675   Label empty_result;
676   Label prologue;
677   Label promote_scheduled_exception;
678   Label delete_allocated_handles;
679   Label leave_exit_frame;
680   Label write_back;
681
682   Factory* factory = isolate()->factory();
683   ExternalReference next_address =
684       ExternalReference::handle_scope_next_address();
685   const int kNextOffset = 0;
686   const int kLimitOffset = Offset(
687       ExternalReference::handle_scope_limit_address(),
688       next_address);
689   const int kLevelOffset = Offset(
690       ExternalReference::handle_scope_level_address(),
691       next_address);
692   ExternalReference scheduled_exception_address =
693       ExternalReference::scheduled_exception_address(isolate());
694
695   // Allocate HandleScope in callee-save registers.
696   Register prev_next_address_reg = r14;
697   Register prev_limit_reg = rbx;
698   Register base_reg = r15;
699   movq(base_reg, next_address);
700   movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
701   movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
702   addl(Operand(base_reg, kLevelOffset), Immediate(1));
703   // Call the api function!
704   movq(rax, reinterpret_cast<int64_t>(function_address),
705        RelocInfo::RUNTIME_ENTRY);
706   call(rax);
707
708 #if defined(_WIN64) && !defined(__MINGW64__)
709   // rax keeps a pointer to v8::Handle, unpack it.
710   movq(rax, Operand(rax, 0));
711 #endif
712   // Check if the result handle holds 0.
713   testq(rax, rax);
714   j(zero, &empty_result);
715   // It was non-zero.  Dereference to get the result value.
716   movq(rax, Operand(rax, 0));
717   bind(&prologue);
718
719   // No more valid handles (the result handle was the last one). Restore
720   // previous handle scope.
721   subl(Operand(base_reg, kLevelOffset), Immediate(1));
722   movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
723   cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
724   j(not_equal, &delete_allocated_handles);
725   bind(&leave_exit_frame);
726
727   // Check if the function scheduled an exception.
728   movq(rsi, scheduled_exception_address);
729   Cmp(Operand(rsi, 0), factory->the_hole_value());
730   j(not_equal, &promote_scheduled_exception);
731
732   LeaveApiExitFrame();
733   ret(stack_space * kPointerSize);
734
735   bind(&promote_scheduled_exception);
736   TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
737
738   bind(&empty_result);
739   // It was zero; the result is undefined.
740   Move(rax, factory->undefined_value());
741   jmp(&prologue);
742
743   // HandleScope limit has changed. Delete allocated extensions.
744   bind(&delete_allocated_handles);
745   movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
746   movq(prev_limit_reg, rax);
747 #ifdef _WIN64
748   LoadAddress(rcx, ExternalReference::isolate_address());
749 #else
750   LoadAddress(rdi, ExternalReference::isolate_address());
751 #endif
752   LoadAddress(rax,
753               ExternalReference::delete_handle_scope_extensions(isolate()));
754   call(rax);
755   movq(rax, prev_limit_reg);
756   jmp(&leave_exit_frame);
757 }
758
759
760 void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
761                                              int result_size) {
762   // Set the entry point and jump to the C entry runtime stub.
763   LoadAddress(rbx, ext);
764   CEntryStub ces(result_size);
765   jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
766 }
767
768
769 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
770                                    InvokeFlag flag,
771                                    const CallWrapper& call_wrapper) {
772   // You can't call a builtin without a valid frame.
773   ASSERT(flag == JUMP_FUNCTION || has_frame());
774
775   // Rely on the assertion to check that the number of provided
776   // arguments match the expected number of arguments. Fake a
777   // parameter count to avoid emitting code to do the check.
778   ParameterCount expected(0);
779   GetBuiltinEntry(rdx, id);
780   InvokeCode(rdx, expected, expected, flag, call_wrapper, CALL_AS_METHOD);
781 }
782
783
784 void MacroAssembler::GetBuiltinFunction(Register target,
785                                         Builtins::JavaScript id) {
786   // Load the builtins object into target register.
787   movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
788   movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
789   movq(target, FieldOperand(target,
790                             JSBuiltinsObject::OffsetOfFunctionWithId(id)));
791 }
792
793
794 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
795   ASSERT(!target.is(rdi));
796   // Load the JavaScript builtin function from the builtins object.
797   GetBuiltinFunction(rdi, id);
798   movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
799 }
800
801
802 #define REG(Name) { kRegister_ ## Name ## _Code }
803
804 static const Register saved_regs[] = {
805   REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
806   REG(r9), REG(r10), REG(r11)
807 };
808
809 #undef REG
810
811 static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
812
813
814 void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
815                                      Register exclusion1,
816                                      Register exclusion2,
817                                      Register exclusion3) {
818   // We don't allow a GC during a store buffer overflow so there is no need to
819   // store the registers in any particular way, but we do have to store and
820   // restore them.
821   for (int i = 0; i < kNumberOfSavedRegs; i++) {
822     Register reg = saved_regs[i];
823     if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
824       push(reg);
825     }
826   }
827   // R12 to r15 are callee save on all platforms.
828   if (fp_mode == kSaveFPRegs) {
829     CpuFeatures::Scope scope(SSE2);
830     subq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
831     for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
832       XMMRegister reg = XMMRegister::from_code(i);
833       movsd(Operand(rsp, i * kDoubleSize), reg);
834     }
835   }
836 }
837
838
839 void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
840                                     Register exclusion1,
841                                     Register exclusion2,
842                                     Register exclusion3) {
843   if (fp_mode == kSaveFPRegs) {
844     CpuFeatures::Scope scope(SSE2);
845     for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
846       XMMRegister reg = XMMRegister::from_code(i);
847       movsd(reg, Operand(rsp, i * kDoubleSize));
848     }
849     addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters));
850   }
851   for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
852     Register reg = saved_regs[i];
853     if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
854       pop(reg);
855     }
856   }
857 }
858
859
860 void MacroAssembler::Set(Register dst, int64_t x) {
861   if (x == 0) {
862     xorl(dst, dst);
863   } else if (is_uint32(x)) {
864     movl(dst, Immediate(static_cast<uint32_t>(x)));
865   } else if (is_int32(x)) {
866     movq(dst, Immediate(static_cast<int32_t>(x)));
867   } else {
868     movq(dst, x, RelocInfo::NONE);
869   }
870 }
871
872 void MacroAssembler::Set(const Operand& dst, int64_t x) {
873   if (is_int32(x)) {
874     movq(dst, Immediate(static_cast<int32_t>(x)));
875   } else {
876     Set(kScratchRegister, x);
877     movq(dst, kScratchRegister);
878   }
879 }
880
881 // ----------------------------------------------------------------------------
882 // Smi tagging, untagging and tag detection.
883
884 Register MacroAssembler::GetSmiConstant(Smi* source) {
885   int value = source->value();
886   if (value == 0) {
887     xorl(kScratchRegister, kScratchRegister);
888     return kScratchRegister;
889   }
890   if (value == 1) {
891     return kSmiConstantRegister;
892   }
893   LoadSmiConstant(kScratchRegister, source);
894   return kScratchRegister;
895 }
896
897 void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
898   if (emit_debug_code()) {
899     movq(dst,
900          reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
901          RelocInfo::NONE);
902     cmpq(dst, kSmiConstantRegister);
903     if (allow_stub_calls()) {
904       Assert(equal, "Uninitialized kSmiConstantRegister");
905     } else {
906       Label ok;
907       j(equal, &ok, Label::kNear);
908       int3();
909       bind(&ok);
910     }
911   }
912   int value = source->value();
913   if (value == 0) {
914     xorl(dst, dst);
915     return;
916   }
917   bool negative = value < 0;
918   unsigned int uvalue = negative ? -value : value;
919
920   switch (uvalue) {
921     case 9:
922       lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0));
923       break;
924     case 8:
925       xorl(dst, dst);
926       lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0));
927       break;
928     case 4:
929       xorl(dst, dst);
930       lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0));
931       break;
932     case 5:
933       lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0));
934       break;
935     case 3:
936       lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0));
937       break;
938     case 2:
939       lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0));
940       break;
941     case 1:
942       movq(dst, kSmiConstantRegister);
943       break;
944     case 0:
945       UNREACHABLE();
946       return;
947     default:
948       movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE);
949       return;
950   }
951   if (negative) {
952     neg(dst);
953   }
954 }
955
956
957 void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
958   STATIC_ASSERT(kSmiTag == 0);
959   if (!dst.is(src)) {
960     movl(dst, src);
961   }
962   shl(dst, Immediate(kSmiShift));
963 }
964
965
966 void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
967   if (emit_debug_code()) {
968     testb(dst, Immediate(0x01));
969     Label ok;
970     j(zero, &ok, Label::kNear);
971     if (allow_stub_calls()) {
972       Abort("Integer32ToSmiField writing to non-smi location");
973     } else {
974       int3();
975     }
976     bind(&ok);
977   }
978   ASSERT(kSmiShift % kBitsPerByte == 0);
979   movl(Operand(dst, kSmiShift / kBitsPerByte), src);
980 }
981
982
983 void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
984                                                 Register src,
985                                                 int constant) {
986   if (dst.is(src)) {
987     addl(dst, Immediate(constant));
988   } else {
989     leal(dst, Operand(src, constant));
990   }
991   shl(dst, Immediate(kSmiShift));
992 }
993
994
995 void MacroAssembler::SmiToInteger32(Register dst, Register src) {
996   STATIC_ASSERT(kSmiTag == 0);
997   if (!dst.is(src)) {
998     movq(dst, src);
999   }
1000   shr(dst, Immediate(kSmiShift));
1001 }
1002
1003
1004 void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
1005   movl(dst, Operand(src, kSmiShift / kBitsPerByte));
1006 }
1007
1008
1009 void MacroAssembler::SmiToInteger64(Register dst, Register src) {
1010   STATIC_ASSERT(kSmiTag == 0);
1011   if (!dst.is(src)) {
1012     movq(dst, src);
1013   }
1014   sar(dst, Immediate(kSmiShift));
1015 }
1016
1017
1018 void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
1019   movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
1020 }
1021
1022
1023 void MacroAssembler::SmiTest(Register src) {
1024   testq(src, src);
1025 }
1026
1027
1028 void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
1029   if (emit_debug_code()) {
1030     AbortIfNotSmi(smi1);
1031     AbortIfNotSmi(smi2);
1032   }
1033   cmpq(smi1, smi2);
1034 }
1035
1036
1037 void MacroAssembler::SmiCompare(Register dst, Smi* src) {
1038   if (emit_debug_code()) {
1039     AbortIfNotSmi(dst);
1040   }
1041   Cmp(dst, src);
1042 }
1043
1044
1045 void MacroAssembler::Cmp(Register dst, Smi* src) {
1046   ASSERT(!dst.is(kScratchRegister));
1047   if (src->value() == 0) {
1048     testq(dst, dst);
1049   } else {
1050     Register constant_reg = GetSmiConstant(src);
1051     cmpq(dst, constant_reg);
1052   }
1053 }
1054
1055
1056 void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
1057   if (emit_debug_code()) {
1058     AbortIfNotSmi(dst);
1059     AbortIfNotSmi(src);
1060   }
1061   cmpq(dst, src);
1062 }
1063
1064
1065 void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
1066   if (emit_debug_code()) {
1067     AbortIfNotSmi(dst);
1068     AbortIfNotSmi(src);
1069   }
1070   cmpq(dst, src);
1071 }
1072
1073
1074 void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
1075   if (emit_debug_code()) {
1076     AbortIfNotSmi(dst);
1077   }
1078   cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
1079 }
1080
1081
1082 void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
1083   // The Operand cannot use the smi register.
1084   Register smi_reg = GetSmiConstant(src);
1085   ASSERT(!dst.AddressUsesRegister(smi_reg));
1086   cmpq(dst, smi_reg);
1087 }
1088
1089
1090 void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
1091   cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
1092 }
1093
1094
1095 void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
1096                                                            Register src,
1097                                                            int power) {
1098   ASSERT(power >= 0);
1099   ASSERT(power < 64);
1100   if (power == 0) {
1101     SmiToInteger64(dst, src);
1102     return;
1103   }
1104   if (!dst.is(src)) {
1105     movq(dst, src);
1106   }
1107   if (power < kSmiShift) {
1108     sar(dst, Immediate(kSmiShift - power));
1109   } else if (power > kSmiShift) {
1110     shl(dst, Immediate(power - kSmiShift));
1111   }
1112 }
1113
1114
1115 void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
1116                                                          Register src,
1117                                                          int power) {
1118   ASSERT((0 <= power) && (power < 32));
1119   if (dst.is(src)) {
1120     shr(dst, Immediate(power + kSmiShift));
1121   } else {
1122     UNIMPLEMENTED();  // Not used.
1123   }
1124 }
1125
1126
1127 void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
1128                                  Label* on_not_smis,
1129                                  Label::Distance near_jump) {
1130   if (dst.is(src1) || dst.is(src2)) {
1131     ASSERT(!src1.is(kScratchRegister));
1132     ASSERT(!src2.is(kScratchRegister));
1133     movq(kScratchRegister, src1);
1134     or_(kScratchRegister, src2);
1135     JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
1136     movq(dst, kScratchRegister);
1137   } else {
1138     movq(dst, src1);
1139     or_(dst, src2);
1140     JumpIfNotSmi(dst, on_not_smis, near_jump);
1141   }
1142 }
1143
1144
1145 Condition MacroAssembler::CheckSmi(Register src) {
1146   STATIC_ASSERT(kSmiTag == 0);
1147   testb(src, Immediate(kSmiTagMask));
1148   return zero;
1149 }
1150
1151
1152 Condition MacroAssembler::CheckSmi(const Operand& src) {
1153   STATIC_ASSERT(kSmiTag == 0);
1154   testb(src, Immediate(kSmiTagMask));
1155   return zero;
1156 }
1157
1158
1159 Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
1160   STATIC_ASSERT(kSmiTag == 0);
1161   // Test that both bits of the mask 0x8000000000000001 are zero.
1162   movq(kScratchRegister, src);
1163   rol(kScratchRegister, Immediate(1));
1164   testb(kScratchRegister, Immediate(3));
1165   return zero;
1166 }
1167
1168
1169 Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
1170   if (first.is(second)) {
1171     return CheckSmi(first);
1172   }
1173   STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
1174   leal(kScratchRegister, Operand(first, second, times_1, 0));
1175   testb(kScratchRegister, Immediate(0x03));
1176   return zero;
1177 }
1178
1179
1180 Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
1181                                                   Register second) {
1182   if (first.is(second)) {
1183     return CheckNonNegativeSmi(first);
1184   }
1185   movq(kScratchRegister, first);
1186   or_(kScratchRegister, second);
1187   rol(kScratchRegister, Immediate(1));
1188   testl(kScratchRegister, Immediate(3));
1189   return zero;
1190 }
1191
1192
1193 Condition MacroAssembler::CheckEitherSmi(Register first,
1194                                          Register second,
1195                                          Register scratch) {
1196   if (first.is(second)) {
1197     return CheckSmi(first);
1198   }
1199   if (scratch.is(second)) {
1200     andl(scratch, first);
1201   } else {
1202     if (!scratch.is(first)) {
1203       movl(scratch, first);
1204     }
1205     andl(scratch, second);
1206   }
1207   testb(scratch, Immediate(kSmiTagMask));
1208   return zero;
1209 }
1210
1211
1212 Condition MacroAssembler::CheckIsMinSmi(Register src) {
1213   ASSERT(!src.is(kScratchRegister));
1214   // If we overflow by subtracting one, it's the minimal smi value.
1215   cmpq(src, kSmiConstantRegister);
1216   return overflow;
1217 }
1218
1219
1220 Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
1221   // A 32-bit integer value can always be converted to a smi.
1222   return always;
1223 }
1224
1225
1226 Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
1227   // An unsigned 32-bit integer value is valid as long as the high bit
1228   // is not set.
1229   testl(src, src);
1230   return positive;
1231 }
1232
1233
1234 void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
1235   if (dst.is(src)) {
1236     andl(dst, Immediate(kSmiTagMask));
1237   } else {
1238     movl(dst, Immediate(kSmiTagMask));
1239     andl(dst, src);
1240   }
1241 }
1242
1243
1244 void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
1245   if (!(src.AddressUsesRegister(dst))) {
1246     movl(dst, Immediate(kSmiTagMask));
1247     andl(dst, src);
1248   } else {
1249     movl(dst, src);
1250     andl(dst, Immediate(kSmiTagMask));
1251   }
1252 }
1253
1254
1255 void MacroAssembler::JumpIfNotValidSmiValue(Register src,
1256                                             Label* on_invalid,
1257                                             Label::Distance near_jump) {
1258   Condition is_valid = CheckInteger32ValidSmiValue(src);
1259   j(NegateCondition(is_valid), on_invalid, near_jump);
1260 }
1261
1262
1263 void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
1264                                                 Label* on_invalid,
1265                                                 Label::Distance near_jump) {
1266   Condition is_valid = CheckUInteger32ValidSmiValue(src);
1267   j(NegateCondition(is_valid), on_invalid, near_jump);
1268 }
1269
1270
1271 void MacroAssembler::JumpIfSmi(Register src,
1272                                Label* on_smi,
1273                                Label::Distance near_jump) {
1274   Condition smi = CheckSmi(src);
1275   j(smi, on_smi, near_jump);
1276 }
1277
1278
1279 void MacroAssembler::JumpIfNotSmi(Register src,
1280                                   Label* on_not_smi,
1281                                   Label::Distance near_jump) {
1282   Condition smi = CheckSmi(src);
1283   j(NegateCondition(smi), on_not_smi, near_jump);
1284 }
1285
1286
1287 void MacroAssembler::JumpUnlessNonNegativeSmi(
1288     Register src, Label* on_not_smi_or_negative,
1289     Label::Distance near_jump) {
1290   Condition non_negative_smi = CheckNonNegativeSmi(src);
1291   j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
1292 }
1293
1294
1295 void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
1296                                              Smi* constant,
1297                                              Label* on_equals,
1298                                              Label::Distance near_jump) {
1299   SmiCompare(src, constant);
1300   j(equal, on_equals, near_jump);
1301 }
1302
1303
1304 void MacroAssembler::JumpIfNotBothSmi(Register src1,
1305                                       Register src2,
1306                                       Label* on_not_both_smi,
1307                                       Label::Distance near_jump) {
1308   Condition both_smi = CheckBothSmi(src1, src2);
1309   j(NegateCondition(both_smi), on_not_both_smi, near_jump);
1310 }
1311
1312
1313 void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
1314                                                   Register src2,
1315                                                   Label* on_not_both_smi,
1316                                                   Label::Distance near_jump) {
1317   Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
1318   j(NegateCondition(both_smi), on_not_both_smi, near_jump);
1319 }
1320
1321
1322 void MacroAssembler::SmiTryAddConstant(Register dst,
1323                                        Register src,
1324                                        Smi* constant,
1325                                        Label* on_not_smi_result,
1326                                        Label::Distance near_jump) {
1327   // Does not assume that src is a smi.
1328   ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
1329   STATIC_ASSERT(kSmiTag == 0);
1330   ASSERT(!dst.is(kScratchRegister));
1331   ASSERT(!src.is(kScratchRegister));
1332
1333   JumpIfNotSmi(src, on_not_smi_result, near_jump);
1334   Register tmp = (dst.is(src) ? kScratchRegister : dst);
1335   LoadSmiConstant(tmp, constant);
1336   addq(tmp, src);
1337   j(overflow, on_not_smi_result, near_jump);
1338   if (dst.is(src)) {
1339     movq(dst, tmp);
1340   }
1341 }
1342
1343
1344 void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
1345   if (constant->value() == 0) {
1346     if (!dst.is(src)) {
1347       movq(dst, src);
1348     }
1349     return;
1350   } else if (dst.is(src)) {
1351     ASSERT(!dst.is(kScratchRegister));
1352     switch (constant->value()) {
1353       case 1:
1354         addq(dst, kSmiConstantRegister);
1355         return;
1356       case 2:
1357         lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
1358         return;
1359       case 4:
1360         lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
1361         return;
1362       case 8:
1363         lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
1364         return;
1365       default:
1366         Register constant_reg = GetSmiConstant(constant);
1367         addq(dst, constant_reg);
1368         return;
1369     }
1370   } else {
1371     switch (constant->value()) {
1372       case 1:
1373         lea(dst, Operand(src, kSmiConstantRegister, times_1, 0));
1374         return;
1375       case 2:
1376         lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
1377         return;
1378       case 4:
1379         lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
1380         return;
1381       case 8:
1382         lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
1383         return;
1384       default:
1385         LoadSmiConstant(dst, constant);
1386         addq(dst, src);
1387         return;
1388     }
1389   }
1390 }
1391
1392
1393 void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
1394   if (constant->value() != 0) {
1395     addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value()));
1396   }
1397 }
1398
1399
1400 void MacroAssembler::SmiAddConstant(Register dst,
1401                                     Register src,
1402                                     Smi* constant,
1403                                     Label* on_not_smi_result,
1404                                     Label::Distance near_jump) {
1405   if (constant->value() == 0) {
1406     if (!dst.is(src)) {
1407       movq(dst, src);
1408     }
1409   } else if (dst.is(src)) {
1410     ASSERT(!dst.is(kScratchRegister));
1411
1412     LoadSmiConstant(kScratchRegister, constant);
1413     addq(kScratchRegister, src);
1414     j(overflow, on_not_smi_result, near_jump);
1415     movq(dst, kScratchRegister);
1416   } else {
1417     LoadSmiConstant(dst, constant);
1418     addq(dst, src);
1419     j(overflow, on_not_smi_result, near_jump);
1420   }
1421 }
1422
1423
1424 void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
1425   if (constant->value() == 0) {
1426     if (!dst.is(src)) {
1427       movq(dst, src);
1428     }
1429   } else if (dst.is(src)) {
1430     ASSERT(!dst.is(kScratchRegister));
1431     Register constant_reg = GetSmiConstant(constant);
1432     subq(dst, constant_reg);
1433   } else {
1434     if (constant->value() == Smi::kMinValue) {
1435       LoadSmiConstant(dst, constant);
1436       // Adding and subtracting the min-value gives the same result, it only
1437       // differs on the overflow bit, which we don't check here.
1438       addq(dst, src);
1439     } else {
1440       // Subtract by adding the negation.
1441       LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
1442       addq(dst, src);
1443     }
1444   }
1445 }
1446
1447
1448 void MacroAssembler::SmiSubConstant(Register dst,
1449                                     Register src,
1450                                     Smi* constant,
1451                                     Label* on_not_smi_result,
1452                                     Label::Distance near_jump) {
1453   if (constant->value() == 0) {
1454     if (!dst.is(src)) {
1455       movq(dst, src);
1456     }
1457   } else if (dst.is(src)) {
1458     ASSERT(!dst.is(kScratchRegister));
1459     if (constant->value() == Smi::kMinValue) {
1460       // Subtracting min-value from any non-negative value will overflow.
1461       // We test the non-negativeness before doing the subtraction.
1462       testq(src, src);
1463       j(not_sign, on_not_smi_result, near_jump);
1464       LoadSmiConstant(kScratchRegister, constant);
1465       subq(dst, kScratchRegister);
1466     } else {
1467       // Subtract by adding the negation.
1468       LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
1469       addq(kScratchRegister, dst);
1470       j(overflow, on_not_smi_result, near_jump);
1471       movq(dst, kScratchRegister);
1472     }
1473   } else {
1474     if (constant->value() == Smi::kMinValue) {
1475       // Subtracting min-value from any non-negative value will overflow.
1476       // We test the non-negativeness before doing the subtraction.
1477       testq(src, src);
1478       j(not_sign, on_not_smi_result, near_jump);
1479       LoadSmiConstant(dst, constant);
1480       // Adding and subtracting the min-value gives the same result, it only
1481       // differs on the overflow bit, which we don't check here.
1482       addq(dst, src);
1483     } else {
1484       // Subtract by adding the negation.
1485       LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
1486       addq(dst, src);
1487       j(overflow, on_not_smi_result, near_jump);
1488     }
1489   }
1490 }
1491
1492
1493 void MacroAssembler::SmiNeg(Register dst,
1494                             Register src,
1495                             Label* on_smi_result,
1496                             Label::Distance near_jump) {
1497   if (dst.is(src)) {
1498     ASSERT(!dst.is(kScratchRegister));
1499     movq(kScratchRegister, src);
1500     neg(dst);  // Low 32 bits are retained as zero by negation.
1501     // Test if result is zero or Smi::kMinValue.
1502     cmpq(dst, kScratchRegister);
1503     j(not_equal, on_smi_result, near_jump);
1504     movq(src, kScratchRegister);
1505   } else {
1506     movq(dst, src);
1507     neg(dst);
1508     cmpq(dst, src);
1509     // If the result is zero or Smi::kMinValue, negation failed to create a smi.
1510     j(not_equal, on_smi_result, near_jump);
1511   }
1512 }
1513
1514
1515 void MacroAssembler::SmiAdd(Register dst,
1516                             Register src1,
1517                             Register src2,
1518                             Label* on_not_smi_result,
1519                             Label::Distance near_jump) {
1520   ASSERT_NOT_NULL(on_not_smi_result);
1521   ASSERT(!dst.is(src2));
1522   if (dst.is(src1)) {
1523     movq(kScratchRegister, src1);
1524     addq(kScratchRegister, src2);
1525     j(overflow, on_not_smi_result, near_jump);
1526     movq(dst, kScratchRegister);
1527   } else {
1528     movq(dst, src1);
1529     addq(dst, src2);
1530     j(overflow, on_not_smi_result, near_jump);
1531   }
1532 }
1533
1534
1535 void MacroAssembler::SmiAdd(Register dst,
1536                             Register src1,
1537                             const Operand& src2,
1538                             Label* on_not_smi_result,
1539                             Label::Distance near_jump) {
1540   ASSERT_NOT_NULL(on_not_smi_result);
1541   if (dst.is(src1)) {
1542     movq(kScratchRegister, src1);
1543     addq(kScratchRegister, src2);
1544     j(overflow, on_not_smi_result, near_jump);
1545     movq(dst, kScratchRegister);
1546   } else {
1547     ASSERT(!src2.AddressUsesRegister(dst));
1548     movq(dst, src1);
1549     addq(dst, src2);
1550     j(overflow, on_not_smi_result, near_jump);
1551   }
1552 }
1553
1554
1555 void MacroAssembler::SmiAdd(Register dst,
1556                             Register src1,
1557                             Register src2) {
1558   // No overflow checking. Use only when it's known that
1559   // overflowing is impossible.
1560   if (!dst.is(src1)) {
1561     if (emit_debug_code()) {
1562       movq(kScratchRegister, src1);
1563       addq(kScratchRegister, src2);
1564       Check(no_overflow, "Smi addition overflow");
1565     }
1566     lea(dst, Operand(src1, src2, times_1, 0));
1567   } else {
1568     addq(dst, src2);
1569     Assert(no_overflow, "Smi addition overflow");
1570   }
1571 }
1572
1573
1574 void MacroAssembler::SmiSub(Register dst,
1575                             Register src1,
1576                             Register src2,
1577                             Label* on_not_smi_result,
1578                             Label::Distance near_jump) {
1579   ASSERT_NOT_NULL(on_not_smi_result);
1580   ASSERT(!dst.is(src2));
1581   if (dst.is(src1)) {
1582     cmpq(dst, src2);
1583     j(overflow, on_not_smi_result, near_jump);
1584     subq(dst, src2);
1585   } else {
1586     movq(dst, src1);
1587     subq(dst, src2);
1588     j(overflow, on_not_smi_result, near_jump);
1589   }
1590 }
1591
1592
1593 void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
1594   // No overflow checking. Use only when it's known that
1595   // overflowing is impossible (e.g., subtracting two positive smis).
1596   ASSERT(!dst.is(src2));
1597   if (!dst.is(src1)) {
1598     movq(dst, src1);
1599   }
1600   subq(dst, src2);
1601   Assert(no_overflow, "Smi subtraction overflow");
1602 }
1603
1604
1605 void MacroAssembler::SmiSub(Register dst,
1606                             Register src1,
1607                             const Operand& src2,
1608                             Label* on_not_smi_result,
1609                             Label::Distance near_jump) {
1610   ASSERT_NOT_NULL(on_not_smi_result);
1611   if (dst.is(src1)) {
1612     movq(kScratchRegister, src2);
1613     cmpq(src1, kScratchRegister);
1614     j(overflow, on_not_smi_result, near_jump);
1615     subq(src1, kScratchRegister);
1616   } else {
1617     movq(dst, src1);
1618     subq(dst, src2);
1619     j(overflow, on_not_smi_result, near_jump);
1620   }
1621 }
1622
1623
1624 void MacroAssembler::SmiSub(Register dst,
1625                             Register src1,
1626                             const Operand& src2) {
1627   // No overflow checking. Use only when it's known that
1628   // overflowing is impossible (e.g., subtracting two positive smis).
1629   if (!dst.is(src1)) {
1630     movq(dst, src1);
1631   }
1632   subq(dst, src2);
1633   Assert(no_overflow, "Smi subtraction overflow");
1634 }
1635
1636
1637 void MacroAssembler::SmiMul(Register dst,
1638                             Register src1,
1639                             Register src2,
1640                             Label* on_not_smi_result,
1641                             Label::Distance near_jump) {
1642   ASSERT(!dst.is(src2));
1643   ASSERT(!dst.is(kScratchRegister));
1644   ASSERT(!src1.is(kScratchRegister));
1645   ASSERT(!src2.is(kScratchRegister));
1646
1647   if (dst.is(src1)) {
1648     Label failure, zero_correct_result;
1649     movq(kScratchRegister, src1);  // Create backup for later testing.
1650     SmiToInteger64(dst, src1);
1651     imul(dst, src2);
1652     j(overflow, &failure, Label::kNear);
1653
1654     // Check for negative zero result.  If product is zero, and one
1655     // argument is negative, go to slow case.
1656     Label correct_result;
1657     testq(dst, dst);
1658     j(not_zero, &correct_result, Label::kNear);
1659
1660     movq(dst, kScratchRegister);
1661     xor_(dst, src2);
1662     // Result was positive zero.
1663     j(positive, &zero_correct_result, Label::kNear);
1664
1665     bind(&failure);  // Reused failure exit, restores src1.
1666     movq(src1, kScratchRegister);
1667     jmp(on_not_smi_result, near_jump);
1668
1669     bind(&zero_correct_result);
1670     Set(dst, 0);
1671
1672     bind(&correct_result);
1673   } else {
1674     SmiToInteger64(dst, src1);
1675     imul(dst, src2);
1676     j(overflow, on_not_smi_result, near_jump);
1677     // Check for negative zero result.  If product is zero, and one
1678     // argument is negative, go to slow case.
1679     Label correct_result;
1680     testq(dst, dst);
1681     j(not_zero, &correct_result, Label::kNear);
1682     // One of src1 and src2 is zero, the check whether the other is
1683     // negative.
1684     movq(kScratchRegister, src1);
1685     xor_(kScratchRegister, src2);
1686     j(negative, on_not_smi_result, near_jump);
1687     bind(&correct_result);
1688   }
1689 }
1690
1691
1692 void MacroAssembler::SmiDiv(Register dst,
1693                             Register src1,
1694                             Register src2,
1695                             Label* on_not_smi_result,
1696                             Label::Distance near_jump) {
1697   ASSERT(!src1.is(kScratchRegister));
1698   ASSERT(!src2.is(kScratchRegister));
1699   ASSERT(!dst.is(kScratchRegister));
1700   ASSERT(!src2.is(rax));
1701   ASSERT(!src2.is(rdx));
1702   ASSERT(!src1.is(rdx));
1703
1704   // Check for 0 divisor (result is +/-Infinity).
1705   testq(src2, src2);
1706   j(zero, on_not_smi_result, near_jump);
1707
1708   if (src1.is(rax)) {
1709     movq(kScratchRegister, src1);
1710   }
1711   SmiToInteger32(rax, src1);
1712   // We need to rule out dividing Smi::kMinValue by -1, since that would
1713   // overflow in idiv and raise an exception.
1714   // We combine this with negative zero test (negative zero only happens
1715   // when dividing zero by a negative number).
1716
1717   // We overshoot a little and go to slow case if we divide min-value
1718   // by any negative value, not just -1.
1719   Label safe_div;
1720   testl(rax, Immediate(0x7fffffff));
1721   j(not_zero, &safe_div, Label::kNear);
1722   testq(src2, src2);
1723   if (src1.is(rax)) {
1724     j(positive, &safe_div, Label::kNear);
1725     movq(src1, kScratchRegister);
1726     jmp(on_not_smi_result, near_jump);
1727   } else {
1728     j(negative, on_not_smi_result, near_jump);
1729   }
1730   bind(&safe_div);
1731
1732   SmiToInteger32(src2, src2);
1733   // Sign extend src1 into edx:eax.
1734   cdq();
1735   idivl(src2);
1736   Integer32ToSmi(src2, src2);
1737   // Check that the remainder is zero.
1738   testl(rdx, rdx);
1739   if (src1.is(rax)) {
1740     Label smi_result;
1741     j(zero, &smi_result, Label::kNear);
1742     movq(src1, kScratchRegister);
1743     jmp(on_not_smi_result, near_jump);
1744     bind(&smi_result);
1745   } else {
1746     j(not_zero, on_not_smi_result, near_jump);
1747   }
1748   if (!dst.is(src1) && src1.is(rax)) {
1749     movq(src1, kScratchRegister);
1750   }
1751   Integer32ToSmi(dst, rax);
1752 }
1753
1754
1755 void MacroAssembler::SmiMod(Register dst,
1756                             Register src1,
1757                             Register src2,
1758                             Label* on_not_smi_result,
1759                             Label::Distance near_jump) {
1760   ASSERT(!dst.is(kScratchRegister));
1761   ASSERT(!src1.is(kScratchRegister));
1762   ASSERT(!src2.is(kScratchRegister));
1763   ASSERT(!src2.is(rax));
1764   ASSERT(!src2.is(rdx));
1765   ASSERT(!src1.is(rdx));
1766   ASSERT(!src1.is(src2));
1767
1768   testq(src2, src2);
1769   j(zero, on_not_smi_result, near_jump);
1770
1771   if (src1.is(rax)) {
1772     movq(kScratchRegister, src1);
1773   }
1774   SmiToInteger32(rax, src1);
1775   SmiToInteger32(src2, src2);
1776
1777   // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
1778   Label safe_div;
1779   cmpl(rax, Immediate(Smi::kMinValue));
1780   j(not_equal, &safe_div, Label::kNear);
1781   cmpl(src2, Immediate(-1));
1782   j(not_equal, &safe_div, Label::kNear);
1783   // Retag inputs and go slow case.
1784   Integer32ToSmi(src2, src2);
1785   if (src1.is(rax)) {
1786     movq(src1, kScratchRegister);
1787   }
1788   jmp(on_not_smi_result, near_jump);
1789   bind(&safe_div);
1790
1791   // Sign extend eax into edx:eax.
1792   cdq();
1793   idivl(src2);
1794   // Restore smi tags on inputs.
1795   Integer32ToSmi(src2, src2);
1796   if (src1.is(rax)) {
1797     movq(src1, kScratchRegister);
1798   }
1799   // Check for a negative zero result.  If the result is zero, and the
1800   // dividend is negative, go slow to return a floating point negative zero.
1801   Label smi_result;
1802   testl(rdx, rdx);
1803   j(not_zero, &smi_result, Label::kNear);
1804   testq(src1, src1);
1805   j(negative, on_not_smi_result, near_jump);
1806   bind(&smi_result);
1807   Integer32ToSmi(dst, rdx);
1808 }
1809
1810
1811 void MacroAssembler::SmiNot(Register dst, Register src) {
1812   ASSERT(!dst.is(kScratchRegister));
1813   ASSERT(!src.is(kScratchRegister));
1814   // Set tag and padding bits before negating, so that they are zero afterwards.
1815   movl(kScratchRegister, Immediate(~0));
1816   if (dst.is(src)) {
1817     xor_(dst, kScratchRegister);
1818   } else {
1819     lea(dst, Operand(src, kScratchRegister, times_1, 0));
1820   }
1821   not_(dst);
1822 }
1823
1824
1825 void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
1826   ASSERT(!dst.is(src2));
1827   if (!dst.is(src1)) {
1828     movq(dst, src1);
1829   }
1830   and_(dst, src2);
1831 }
1832
1833
1834 void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
1835   if (constant->value() == 0) {
1836     Set(dst, 0);
1837   } else if (dst.is(src)) {
1838     ASSERT(!dst.is(kScratchRegister));
1839     Register constant_reg = GetSmiConstant(constant);
1840     and_(dst, constant_reg);
1841   } else {
1842     LoadSmiConstant(dst, constant);
1843     and_(dst, src);
1844   }
1845 }
1846
1847
1848 void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
1849   if (!dst.is(src1)) {
1850     ASSERT(!src1.is(src2));
1851     movq(dst, src1);
1852   }
1853   or_(dst, src2);
1854 }
1855
1856
1857 void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
1858   if (dst.is(src)) {
1859     ASSERT(!dst.is(kScratchRegister));
1860     Register constant_reg = GetSmiConstant(constant);
1861     or_(dst, constant_reg);
1862   } else {
1863     LoadSmiConstant(dst, constant);
1864     or_(dst, src);
1865   }
1866 }
1867
1868
1869 void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
1870   if (!dst.is(src1)) {
1871     ASSERT(!src1.is(src2));
1872     movq(dst, src1);
1873   }
1874   xor_(dst, src2);
1875 }
1876
1877
1878 void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
1879   if (dst.is(src)) {
1880     ASSERT(!dst.is(kScratchRegister));
1881     Register constant_reg = GetSmiConstant(constant);
1882     xor_(dst, constant_reg);
1883   } else {
1884     LoadSmiConstant(dst, constant);
1885     xor_(dst, src);
1886   }
1887 }
1888
1889
1890 void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
1891                                                      Register src,
1892                                                      int shift_value) {
1893   ASSERT(is_uint5(shift_value));
1894   if (shift_value > 0) {
1895     if (dst.is(src)) {
1896       sar(dst, Immediate(shift_value + kSmiShift));
1897       shl(dst, Immediate(kSmiShift));
1898     } else {
1899       UNIMPLEMENTED();  // Not used.
1900     }
1901   }
1902 }
1903
1904
1905 void MacroAssembler::SmiShiftLeftConstant(Register dst,
1906                                           Register src,
1907                                           int shift_value) {
1908   if (!dst.is(src)) {
1909     movq(dst, src);
1910   }
1911   if (shift_value > 0) {
1912     shl(dst, Immediate(shift_value));
1913   }
1914 }
1915
1916
1917 void MacroAssembler::SmiShiftLogicalRightConstant(
1918     Register dst, Register src, int shift_value,
1919     Label* on_not_smi_result, Label::Distance near_jump) {
1920   // Logic right shift interprets its result as an *unsigned* number.
1921   if (dst.is(src)) {
1922     UNIMPLEMENTED();  // Not used.
1923   } else {
1924     movq(dst, src);
1925     if (shift_value == 0) {
1926       testq(dst, dst);
1927       j(negative, on_not_smi_result, near_jump);
1928     }
1929     shr(dst, Immediate(shift_value + kSmiShift));
1930     shl(dst, Immediate(kSmiShift));
1931   }
1932 }
1933
1934
1935 void MacroAssembler::SmiShiftLeft(Register dst,
1936                                   Register src1,
1937                                   Register src2) {
1938   ASSERT(!dst.is(rcx));
1939   // Untag shift amount.
1940   if (!dst.is(src1)) {
1941     movq(dst, src1);
1942   }
1943   SmiToInteger32(rcx, src2);
1944   // Shift amount specified by lower 5 bits, not six as the shl opcode.
1945   and_(rcx, Immediate(0x1f));
1946   shl_cl(dst);
1947 }
1948
1949
1950 void MacroAssembler::SmiShiftLogicalRight(Register dst,
1951                                           Register src1,
1952                                           Register src2,
1953                                           Label* on_not_smi_result,
1954                                           Label::Distance near_jump) {
1955   ASSERT(!dst.is(kScratchRegister));
1956   ASSERT(!src1.is(kScratchRegister));
1957   ASSERT(!src2.is(kScratchRegister));
1958   ASSERT(!dst.is(rcx));
1959   // dst and src1 can be the same, because the one case that bails out
1960   // is a shift by 0, which leaves dst, and therefore src1, unchanged.
1961   if (src1.is(rcx) || src2.is(rcx)) {
1962     movq(kScratchRegister, rcx);
1963   }
1964   if (!dst.is(src1)) {
1965     movq(dst, src1);
1966   }
1967   SmiToInteger32(rcx, src2);
1968   orl(rcx, Immediate(kSmiShift));
1969   shr_cl(dst);  // Shift is rcx modulo 0x1f + 32.
1970   shl(dst, Immediate(kSmiShift));
1971   testq(dst, dst);
1972   if (src1.is(rcx) || src2.is(rcx)) {
1973     Label positive_result;
1974     j(positive, &positive_result, Label::kNear);
1975     if (src1.is(rcx)) {
1976       movq(src1, kScratchRegister);
1977     } else {
1978       movq(src2, kScratchRegister);
1979     }
1980     jmp(on_not_smi_result, near_jump);
1981     bind(&positive_result);
1982   } else {
1983     // src2 was zero and src1 negative.
1984     j(negative, on_not_smi_result, near_jump);
1985   }
1986 }
1987
1988
1989 void MacroAssembler::SmiShiftArithmeticRight(Register dst,
1990                                              Register src1,
1991                                              Register src2) {
1992   ASSERT(!dst.is(kScratchRegister));
1993   ASSERT(!src1.is(kScratchRegister));
1994   ASSERT(!src2.is(kScratchRegister));
1995   ASSERT(!dst.is(rcx));
1996   if (src1.is(rcx)) {
1997     movq(kScratchRegister, src1);
1998   } else if (src2.is(rcx)) {
1999     movq(kScratchRegister, src2);
2000   }
2001   if (!dst.is(src1)) {
2002     movq(dst, src1);
2003   }
2004   SmiToInteger32(rcx, src2);
2005   orl(rcx, Immediate(kSmiShift));
2006   sar_cl(dst);  // Shift 32 + original rcx & 0x1f.
2007   shl(dst, Immediate(kSmiShift));
2008   if (src1.is(rcx)) {
2009     movq(src1, kScratchRegister);
2010   } else if (src2.is(rcx)) {
2011     movq(src2, kScratchRegister);
2012   }
2013 }
2014
2015
2016 void MacroAssembler::SelectNonSmi(Register dst,
2017                                   Register src1,
2018                                   Register src2,
2019                                   Label* on_not_smis,
2020                                   Label::Distance near_jump) {
2021   ASSERT(!dst.is(kScratchRegister));
2022   ASSERT(!src1.is(kScratchRegister));
2023   ASSERT(!src2.is(kScratchRegister));
2024   ASSERT(!dst.is(src1));
2025   ASSERT(!dst.is(src2));
2026   // Both operands must not be smis.
2027 #ifdef DEBUG
2028   if (allow_stub_calls()) {  // Check contains a stub call.
2029     Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
2030     Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
2031   }
2032 #endif
2033   STATIC_ASSERT(kSmiTag == 0);
2034   ASSERT_EQ(0, Smi::FromInt(0));
2035   movl(kScratchRegister, Immediate(kSmiTagMask));
2036   and_(kScratchRegister, src1);
2037   testl(kScratchRegister, src2);
2038   // If non-zero then both are smis.
2039   j(not_zero, on_not_smis, near_jump);
2040
2041   // Exactly one operand is a smi.
2042   ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
2043   // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
2044   subq(kScratchRegister, Immediate(1));
2045   // If src1 is a smi, then scratch register all 1s, else it is all 0s.
2046   movq(dst, src1);
2047   xor_(dst, src2);
2048   and_(dst, kScratchRegister);
2049   // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
2050   xor_(dst, src1);
2051   // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
2052 }
2053
2054
2055 SmiIndex MacroAssembler::SmiToIndex(Register dst,
2056                                     Register src,
2057                                     int shift) {
2058   ASSERT(is_uint6(shift));
2059   // There is a possible optimization if shift is in the range 60-63, but that
2060   // will (and must) never happen.
2061   if (!dst.is(src)) {
2062     movq(dst, src);
2063   }
2064   if (shift < kSmiShift) {
2065     sar(dst, Immediate(kSmiShift - shift));
2066   } else {
2067     shl(dst, Immediate(shift - kSmiShift));
2068   }
2069   return SmiIndex(dst, times_1);
2070 }
2071
2072 SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
2073                                             Register src,
2074                                             int shift) {
2075   // Register src holds a positive smi.
2076   ASSERT(is_uint6(shift));
2077   if (!dst.is(src)) {
2078     movq(dst, src);
2079   }
2080   neg(dst);
2081   if (shift < kSmiShift) {
2082     sar(dst, Immediate(kSmiShift - shift));
2083   } else {
2084     shl(dst, Immediate(shift - kSmiShift));
2085   }
2086   return SmiIndex(dst, times_1);
2087 }
2088
2089
2090 void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
2091   ASSERT_EQ(0, kSmiShift % kBitsPerByte);
2092   addl(dst, Operand(src, kSmiShift / kBitsPerByte));
2093 }
2094
2095
2096 void MacroAssembler::JumpIfNotString(Register object,
2097                                      Register object_map,
2098                                      Label* not_string,
2099                                      Label::Distance near_jump) {
2100   Condition is_smi = CheckSmi(object);
2101   j(is_smi, not_string, near_jump);
2102   CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
2103   j(above_equal, not_string, near_jump);
2104 }
2105
2106
2107 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(
2108     Register first_object,
2109     Register second_object,
2110     Register scratch1,
2111     Register scratch2,
2112     Label* on_fail,
2113     Label::Distance near_jump) {
2114   // Check that both objects are not smis.
2115   Condition either_smi = CheckEitherSmi(first_object, second_object);
2116   j(either_smi, on_fail, near_jump);
2117
2118   // Load instance type for both strings.
2119   movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
2120   movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
2121   movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2122   movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2123
2124   // Check that both are flat ASCII strings.
2125   ASSERT(kNotStringTag != 0);
2126   const int kFlatAsciiStringMask =
2127       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2128   const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2129
2130   andl(scratch1, Immediate(kFlatAsciiStringMask));
2131   andl(scratch2, Immediate(kFlatAsciiStringMask));
2132   // Interleave the bits to check both scratch1 and scratch2 in one test.
2133   ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
2134   lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2135   cmpl(scratch1,
2136        Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
2137   j(not_equal, on_fail, near_jump);
2138 }
2139
2140
2141 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
2142     Register instance_type,
2143     Register scratch,
2144     Label* failure,
2145     Label::Distance near_jump) {
2146   if (!scratch.is(instance_type)) {
2147     movl(scratch, instance_type);
2148   }
2149
2150   const int kFlatAsciiStringMask =
2151       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2152
2153   andl(scratch, Immediate(kFlatAsciiStringMask));
2154   cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
2155   j(not_equal, failure, near_jump);
2156 }
2157
2158
2159 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2160     Register first_object_instance_type,
2161     Register second_object_instance_type,
2162     Register scratch1,
2163     Register scratch2,
2164     Label* on_fail,
2165     Label::Distance near_jump) {
2166   // Load instance type for both strings.
2167   movq(scratch1, first_object_instance_type);
2168   movq(scratch2, second_object_instance_type);
2169
2170   // Check that both are flat ASCII strings.
2171   ASSERT(kNotStringTag != 0);
2172   const int kFlatAsciiStringMask =
2173       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2174   const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2175
2176   andl(scratch1, Immediate(kFlatAsciiStringMask));
2177   andl(scratch2, Immediate(kFlatAsciiStringMask));
2178   // Interleave the bits to check both scratch1 and scratch2 in one test.
2179   ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
2180   lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2181   cmpl(scratch1,
2182        Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
2183   j(not_equal, on_fail, near_jump);
2184 }
2185
2186
2187
2188 void MacroAssembler::Move(Register dst, Register src) {
2189   if (!dst.is(src)) {
2190     movq(dst, src);
2191   }
2192 }
2193
2194
2195 void MacroAssembler::Move(Register dst, Handle<Object> source) {
2196   ASSERT(!source->IsFailure());
2197   if (source->IsSmi()) {
2198     Move(dst, Smi::cast(*source));
2199   } else {
2200     movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
2201   }
2202 }
2203
2204
2205 void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
2206   ASSERT(!source->IsFailure());
2207   if (source->IsSmi()) {
2208     Move(dst, Smi::cast(*source));
2209   } else {
2210     movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2211     movq(dst, kScratchRegister);
2212   }
2213 }
2214
2215
2216 void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
2217   if (source->IsSmi()) {
2218     Cmp(dst, Smi::cast(*source));
2219   } else {
2220     Move(kScratchRegister, source);
2221     cmpq(dst, kScratchRegister);
2222   }
2223 }
2224
2225
2226 void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
2227   if (source->IsSmi()) {
2228     Cmp(dst, Smi::cast(*source));
2229   } else {
2230     ASSERT(source->IsHeapObject());
2231     movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2232     cmpq(dst, kScratchRegister);
2233   }
2234 }
2235
2236
2237 void MacroAssembler::Push(Handle<Object> source) {
2238   if (source->IsSmi()) {
2239     Push(Smi::cast(*source));
2240   } else {
2241     ASSERT(source->IsHeapObject());
2242     movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
2243     push(kScratchRegister);
2244   }
2245 }
2246
2247
2248 void MacroAssembler::LoadHeapObject(Register result,
2249                                     Handle<HeapObject> object) {
2250   if (isolate()->heap()->InNewSpace(*object)) {
2251     Handle<JSGlobalPropertyCell> cell =
2252         isolate()->factory()->NewJSGlobalPropertyCell(object);
2253     movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2254     movq(result, Operand(result, 0));
2255   } else {
2256     Move(result, object);
2257   }
2258 }
2259
2260
2261 void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2262   if (isolate()->heap()->InNewSpace(*object)) {
2263     Handle<JSGlobalPropertyCell> cell =
2264         isolate()->factory()->NewJSGlobalPropertyCell(object);
2265     movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2266     movq(kScratchRegister, Operand(kScratchRegister, 0));
2267     push(kScratchRegister);
2268   } else {
2269     Push(object);
2270   }
2271 }
2272
2273
2274 void MacroAssembler::LoadGlobalCell(Register dst,
2275                                     Handle<JSGlobalPropertyCell> cell) {
2276   if (dst.is(rax)) {
2277     load_rax(cell.location(), RelocInfo::GLOBAL_PROPERTY_CELL);
2278   } else {
2279     movq(dst, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
2280     movq(dst, Operand(dst, 0));
2281   }
2282 }
2283
2284
2285 void MacroAssembler::Push(Smi* source) {
2286   intptr_t smi = reinterpret_cast<intptr_t>(source);
2287   if (is_int32(smi)) {
2288     push(Immediate(static_cast<int32_t>(smi)));
2289   } else {
2290     Register constant = GetSmiConstant(source);
2291     push(constant);
2292   }
2293 }
2294
2295
2296 void MacroAssembler::Drop(int stack_elements) {
2297   if (stack_elements > 0) {
2298     addq(rsp, Immediate(stack_elements * kPointerSize));
2299   }
2300 }
2301
2302
2303 void MacroAssembler::Test(const Operand& src, Smi* source) {
2304   testl(Operand(src, kIntSize), Immediate(source->value()));
2305 }
2306
2307
2308 void MacroAssembler::TestBit(const Operand& src, int bits) {
2309   int byte_offset = bits / kBitsPerByte;
2310   int bit_in_byte = bits & (kBitsPerByte - 1);
2311   testb(Operand(src, byte_offset), Immediate(1 << bit_in_byte));
2312 }
2313
2314
2315 void MacroAssembler::Jump(ExternalReference ext) {
2316   LoadAddress(kScratchRegister, ext);
2317   jmp(kScratchRegister);
2318 }
2319
2320
2321 void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
2322   movq(kScratchRegister, destination, rmode);
2323   jmp(kScratchRegister);
2324 }
2325
2326
2327 void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
2328   // TODO(X64): Inline this
2329   jmp(code_object, rmode);
2330 }
2331
2332
2333 int MacroAssembler::CallSize(ExternalReference ext) {
2334   // Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
2335   const int kCallInstructionSize = 3;
2336   return LoadAddressSize(ext) + kCallInstructionSize;
2337 }
2338
2339
2340 void MacroAssembler::Call(ExternalReference ext) {
2341 #ifdef DEBUG
2342   int end_position = pc_offset() + CallSize(ext);
2343 #endif
2344   LoadAddress(kScratchRegister, ext);
2345   call(kScratchRegister);
2346 #ifdef DEBUG
2347   CHECK_EQ(end_position, pc_offset());
2348 #endif
2349 }
2350
2351
2352 void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
2353 #ifdef DEBUG
2354   int end_position = pc_offset() + CallSize(destination, rmode);
2355 #endif
2356   movq(kScratchRegister, destination, rmode);
2357   call(kScratchRegister);
2358 #ifdef DEBUG
2359   CHECK_EQ(pc_offset(), end_position);
2360 #endif
2361 }
2362
2363
2364 void MacroAssembler::Call(Handle<Code> code_object,
2365                           RelocInfo::Mode rmode,
2366                           unsigned ast_id) {
2367 #ifdef DEBUG
2368   int end_position = pc_offset() + CallSize(code_object);
2369 #endif
2370   ASSERT(RelocInfo::IsCodeTarget(rmode));
2371   call(code_object, rmode, ast_id);
2372 #ifdef DEBUG
2373   CHECK_EQ(end_position, pc_offset());
2374 #endif
2375 }
2376
2377
2378 void MacroAssembler::Pushad() {
2379   push(rax);
2380   push(rcx);
2381   push(rdx);
2382   push(rbx);
2383   // Not pushing rsp or rbp.
2384   push(rsi);
2385   push(rdi);
2386   push(r8);
2387   push(r9);
2388   // r10 is kScratchRegister.
2389   push(r11);
2390   // r12 is kSmiConstantRegister.
2391   // r13 is kRootRegister.
2392   push(r14);
2393   push(r15);
2394   STATIC_ASSERT(11 == kNumSafepointSavedRegisters);
2395   // Use lea for symmetry with Popad.
2396   int sp_delta =
2397       (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
2398   lea(rsp, Operand(rsp, -sp_delta));
2399 }
2400
2401
2402 void MacroAssembler::Popad() {
2403   // Popad must not change the flags, so use lea instead of addq.
2404   int sp_delta =
2405       (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
2406   lea(rsp, Operand(rsp, sp_delta));
2407   pop(r15);
2408   pop(r14);
2409   pop(r11);
2410   pop(r9);
2411   pop(r8);
2412   pop(rdi);
2413   pop(rsi);
2414   pop(rbx);
2415   pop(rdx);
2416   pop(rcx);
2417   pop(rax);
2418 }
2419
2420
2421 void MacroAssembler::Dropad() {
2422   addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
2423 }
2424
2425
2426 // Order general registers are pushed by Pushad:
2427 // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
2428 const int
2429 MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
2430     0,
2431     1,
2432     2,
2433     3,
2434     -1,
2435     -1,
2436     4,
2437     5,
2438     6,
2439     7,
2440     -1,
2441     8,
2442     -1,
2443     -1,
2444     9,
2445     10
2446 };
2447
2448
2449 void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2450   movq(SafepointRegisterSlot(dst), src);
2451 }
2452
2453
2454 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2455   movq(dst, SafepointRegisterSlot(src));
2456 }
2457
2458
2459 Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2460   return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2461 }
2462
2463
2464 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
2465                                     int handler_index) {
2466   // Adjust this code if not the case.
2467   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2468   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2469   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2470   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2471   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2472   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2473
2474   // We will build up the handler from the bottom by pushing on the stack.
2475   // First push the frame pointer and context.
2476   if (kind == StackHandler::JS_ENTRY) {
2477     // The frame pointer does not point to a JS frame so we save NULL for
2478     // rbp. We expect the code throwing an exception to check rbp before
2479     // dereferencing it to restore the context.
2480     push(Immediate(0));  // NULL frame pointer.
2481     Push(Smi::FromInt(0));  // No context.
2482   } else {
2483     push(rbp);
2484     push(rsi);
2485   }
2486
2487   // Push the state and the code object.
2488   unsigned state =
2489       StackHandler::IndexField::encode(handler_index) |
2490       StackHandler::KindField::encode(kind);
2491   push(Immediate(state));
2492   Push(CodeObject());
2493
2494   // Link the current handler as the next handler.
2495   ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2496   push(ExternalOperand(handler_address));
2497   // Set this new handler as the current one.
2498   movq(ExternalOperand(handler_address), rsp);
2499 }
2500
2501
2502 void MacroAssembler::PopTryHandler() {
2503   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2504   ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2505   pop(ExternalOperand(handler_address));
2506   addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
2507 }
2508
2509
2510 void MacroAssembler::JumpToHandlerEntry() {
2511   // Compute the handler entry address and jump to it.  The handler table is
2512   // a fixed array of (smi-tagged) code offsets.
2513   // rax = exception, rdi = code object, rdx = state.
2514   movq(rbx, FieldOperand(rdi, Code::kHandlerTableOffset));
2515   shr(rdx, Immediate(StackHandler::kKindWidth));
2516   movq(rdx, FieldOperand(rbx, rdx, times_8, FixedArray::kHeaderSize));
2517   SmiToInteger64(rdx, rdx);
2518   lea(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
2519   jmp(rdi);
2520 }
2521
2522
2523 void MacroAssembler::Throw(Register value) {
2524   // Adjust this code if not the case.
2525   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2526   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2527   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2528   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2529   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2530   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2531
2532   // The exception is expected in rax.
2533   if (!value.is(rax)) {
2534     movq(rax, value);
2535   }
2536   // Drop the stack pointer to the top of the top handler.
2537   ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2538   movq(rsp, ExternalOperand(handler_address));
2539   // Restore the next handler.
2540   pop(ExternalOperand(handler_address));
2541
2542   // Remove the code object and state, compute the handler address in rdi.
2543   pop(rdi);  // Code object.
2544   pop(rdx);  // Offset and state.
2545
2546   // Restore the context and frame pointer.
2547   pop(rsi);  // Context.
2548   pop(rbp);  // Frame pointer.
2549
2550   // If the handler is a JS frame, restore the context to the frame.
2551   // (kind == ENTRY) == (rbp == 0) == (rsi == 0), so we could test either
2552   // rbp or rsi.
2553   Label skip;
2554   testq(rsi, rsi);
2555   j(zero, &skip, Label::kNear);
2556   movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
2557   bind(&skip);
2558
2559   JumpToHandlerEntry();
2560 }
2561
2562
2563 void MacroAssembler::ThrowUncatchable(Register value) {
2564   // Adjust this code if not the case.
2565   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
2566   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2567   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
2568   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
2569   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
2570   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
2571
2572   // The exception is expected in rax.
2573   if (!value.is(rax)) {
2574     movq(rax, value);
2575   }
2576   // Drop the stack pointer to the top of the top stack handler.
2577   ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
2578   Load(rsp, handler_address);
2579
2580   // Unwind the handlers until the top ENTRY handler is found.
2581   Label fetch_next, check_kind;
2582   jmp(&check_kind, Label::kNear);
2583   bind(&fetch_next);
2584   movq(rsp, Operand(rsp, StackHandlerConstants::kNextOffset));
2585
2586   bind(&check_kind);
2587   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
2588   testl(Operand(rsp, StackHandlerConstants::kStateOffset),
2589         Immediate(StackHandler::KindField::kMask));
2590   j(not_zero, &fetch_next);
2591
2592   // Set the top handler address to next handler past the top ENTRY handler.
2593   pop(ExternalOperand(handler_address));
2594
2595   // Remove the code object and state, compute the handler address in rdi.
2596   pop(rdi);  // Code object.
2597   pop(rdx);  // Offset and state.
2598
2599   // Clear the context pointer and frame pointer (0 was saved in the handler).
2600   pop(rsi);
2601   pop(rbp);
2602
2603   JumpToHandlerEntry();
2604 }
2605
2606
2607 void MacroAssembler::Ret() {
2608   ret(0);
2609 }
2610
2611
2612 void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2613   if (is_uint16(bytes_dropped)) {
2614     ret(bytes_dropped);
2615   } else {
2616     pop(scratch);
2617     addq(rsp, Immediate(bytes_dropped));
2618     push(scratch);
2619     ret(0);
2620   }
2621 }
2622
2623
2624 void MacroAssembler::FCmp() {
2625   fucomip();
2626   fstp(0);
2627 }
2628
2629
2630 void MacroAssembler::CmpObjectType(Register heap_object,
2631                                    InstanceType type,
2632                                    Register map) {
2633   movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
2634   CmpInstanceType(map, type);
2635 }
2636
2637
2638 void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
2639   cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
2640        Immediate(static_cast<int8_t>(type)));
2641 }
2642
2643
2644 void MacroAssembler::CheckFastElements(Register map,
2645                                        Label* fail,
2646                                        Label::Distance distance) {
2647   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2648   STATIC_ASSERT(FAST_ELEMENTS == 1);
2649   cmpb(FieldOperand(map, Map::kBitField2Offset),
2650        Immediate(Map::kMaximumBitField2FastElementValue));
2651   j(above, fail, distance);
2652 }
2653
2654
2655 void MacroAssembler::CheckFastObjectElements(Register map,
2656                                              Label* fail,
2657                                              Label::Distance distance) {
2658   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2659   STATIC_ASSERT(FAST_ELEMENTS == 1);
2660   cmpb(FieldOperand(map, Map::kBitField2Offset),
2661        Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue));
2662   j(below_equal, fail, distance);
2663   cmpb(FieldOperand(map, Map::kBitField2Offset),
2664        Immediate(Map::kMaximumBitField2FastElementValue));
2665   j(above, fail, distance);
2666 }
2667
2668
2669 void MacroAssembler::CheckFastSmiOnlyElements(Register map,
2670                                               Label* fail,
2671                                               Label::Distance distance) {
2672   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
2673   cmpb(FieldOperand(map, Map::kBitField2Offset),
2674        Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue));
2675   j(above, fail, distance);
2676 }
2677
2678
2679 void MacroAssembler::StoreNumberToDoubleElements(
2680     Register maybe_number,
2681     Register elements,
2682     Register index,
2683     XMMRegister xmm_scratch,
2684     Label* fail) {
2685   Label smi_value, is_nan, maybe_nan, not_nan, have_double_value, done;
2686
2687   JumpIfSmi(maybe_number, &smi_value, Label::kNear);
2688
2689   CheckMap(maybe_number,
2690            isolate()->factory()->heap_number_map(),
2691            fail,
2692            DONT_DO_SMI_CHECK);
2693
2694   // Double value, canonicalize NaN.
2695   uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
2696   cmpl(FieldOperand(maybe_number, offset),
2697        Immediate(kNaNOrInfinityLowerBoundUpper32));
2698   j(greater_equal, &maybe_nan, Label::kNear);
2699
2700   bind(&not_nan);
2701   movsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset));
2702   bind(&have_double_value);
2703   movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize),
2704         xmm_scratch);
2705   jmp(&done);
2706
2707   bind(&maybe_nan);
2708   // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
2709   // it's an Infinity, and the non-NaN code path applies.
2710   j(greater, &is_nan, Label::kNear);
2711   cmpl(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
2712   j(zero, &not_nan);
2713   bind(&is_nan);
2714   // Convert all NaNs to the same canonical NaN value when they are stored in
2715   // the double array.
2716   Set(kScratchRegister, BitCast<uint64_t>(
2717       FixedDoubleArray::canonical_not_the_hole_nan_as_double()));
2718   movq(xmm_scratch, kScratchRegister);
2719   jmp(&have_double_value, Label::kNear);
2720
2721   bind(&smi_value);
2722   // Value is a smi. convert to a double and store.
2723   // Preserve original value.
2724   SmiToInteger32(kScratchRegister, maybe_number);
2725   cvtlsi2sd(xmm_scratch, kScratchRegister);
2726   movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize),
2727         xmm_scratch);
2728   bind(&done);
2729 }
2730
2731
2732 void MacroAssembler::CompareMap(Register obj,
2733                                 Handle<Map> map,
2734                                 Label* early_success,
2735                                 CompareMapMode mode) {
2736   Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
2737   if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
2738     Map* transitioned_fast_element_map(
2739         map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL));
2740     ASSERT(transitioned_fast_element_map == NULL ||
2741            map->elements_kind() != FAST_ELEMENTS);
2742     if (transitioned_fast_element_map != NULL) {
2743       j(equal, early_success, Label::kNear);
2744       Cmp(FieldOperand(obj, HeapObject::kMapOffset),
2745           Handle<Map>(transitioned_fast_element_map));
2746     }
2747
2748     Map* transitioned_double_map(
2749         map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL));
2750     ASSERT(transitioned_double_map == NULL ||
2751            map->elements_kind() == FAST_SMI_ONLY_ELEMENTS);
2752     if (transitioned_double_map != NULL) {
2753       j(equal, early_success, Label::kNear);
2754       Cmp(FieldOperand(obj, HeapObject::kMapOffset),
2755           Handle<Map>(transitioned_double_map));
2756     }
2757   }
2758 }
2759
2760
2761 void MacroAssembler::CheckMap(Register obj,
2762                               Handle<Map> map,
2763                               Label* fail,
2764                               SmiCheckType smi_check_type,
2765                               CompareMapMode mode) {
2766   if (smi_check_type == DO_SMI_CHECK) {
2767     JumpIfSmi(obj, fail);
2768   }
2769
2770   Label success;
2771   CompareMap(obj, map, &success, mode);
2772   j(not_equal, fail);
2773   bind(&success);
2774 }
2775
2776
2777 void MacroAssembler::ClampUint8(Register reg) {
2778   Label done;
2779   testl(reg, Immediate(0xFFFFFF00));
2780   j(zero, &done, Label::kNear);
2781   setcc(negative, reg);  // 1 if negative, 0 if positive.
2782   decb(reg);  // 0 if negative, 255 if positive.
2783   bind(&done);
2784 }
2785
2786
2787 void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
2788                                         XMMRegister temp_xmm_reg,
2789                                         Register result_reg,
2790                                         Register temp_reg) {
2791   Label done;
2792   Set(result_reg, 0);
2793   xorps(temp_xmm_reg, temp_xmm_reg);
2794   ucomisd(input_reg, temp_xmm_reg);
2795   j(below, &done, Label::kNear);
2796   uint64_t one_half = BitCast<uint64_t, double>(0.5);
2797   Set(temp_reg, one_half);
2798   movq(temp_xmm_reg, temp_reg);
2799   addsd(temp_xmm_reg, input_reg);
2800   cvttsd2si(result_reg, temp_xmm_reg);
2801   testl(result_reg, Immediate(0xFFFFFF00));
2802   j(zero, &done, Label::kNear);
2803   Set(result_reg, 255);
2804   bind(&done);
2805 }
2806
2807
2808 void MacroAssembler::LoadInstanceDescriptors(Register map,
2809                                              Register descriptors) {
2810   movq(descriptors, FieldOperand(map,
2811                                  Map::kInstanceDescriptorsOrBitField3Offset));
2812   Label not_smi;
2813   JumpIfNotSmi(descriptors, &not_smi, Label::kNear);
2814   Move(descriptors, isolate()->factory()->empty_descriptor_array());
2815   bind(&not_smi);
2816 }
2817
2818
2819 void MacroAssembler::DispatchMap(Register obj,
2820                                  Handle<Map> map,
2821                                  Handle<Code> success,
2822                                  SmiCheckType smi_check_type) {
2823   Label fail;
2824   if (smi_check_type == DO_SMI_CHECK) {
2825     JumpIfSmi(obj, &fail);
2826   }
2827   Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
2828   j(equal, success, RelocInfo::CODE_TARGET);
2829
2830   bind(&fail);
2831 }
2832
2833
2834 void MacroAssembler::AbortIfNotNumber(Register object) {
2835   Label ok;
2836   Condition is_smi = CheckSmi(object);
2837   j(is_smi, &ok, Label::kNear);
2838   Cmp(FieldOperand(object, HeapObject::kMapOffset),
2839       isolate()->factory()->heap_number_map());
2840   Assert(equal, "Operand not a number");
2841   bind(&ok);
2842 }
2843
2844
2845 void MacroAssembler::AbortIfSmi(Register object) {
2846   Condition is_smi = CheckSmi(object);
2847   Assert(NegateCondition(is_smi), "Operand is a smi");
2848 }
2849
2850
2851 void MacroAssembler::AbortIfNotSmi(Register object) {
2852   Condition is_smi = CheckSmi(object);
2853   Assert(is_smi, "Operand is not a smi");
2854 }
2855
2856
2857 void MacroAssembler::AbortIfNotSmi(const Operand& object) {
2858   Condition is_smi = CheckSmi(object);
2859   Assert(is_smi, "Operand is not a smi");
2860 }
2861
2862
2863 void MacroAssembler::AbortIfNotZeroExtended(Register int32_register) {
2864   ASSERT(!int32_register.is(kScratchRegister));
2865   movq(kScratchRegister, 0x100000000l, RelocInfo::NONE);
2866   cmpq(kScratchRegister, int32_register);
2867   Assert(above_equal, "32 bit value in register is not zero-extended");
2868 }
2869
2870
2871 void MacroAssembler::AbortIfNotString(Register object) {
2872   testb(object, Immediate(kSmiTagMask));
2873   Assert(not_equal, "Operand is not a string");
2874   push(object);
2875   movq(object, FieldOperand(object, HeapObject::kMapOffset));
2876   CmpInstanceType(object, FIRST_NONSTRING_TYPE);
2877   pop(object);
2878   Assert(below, "Operand is not a string");
2879 }
2880
2881
2882 void MacroAssembler::AbortIfNotRootValue(Register src,
2883                                          Heap::RootListIndex root_value_index,
2884                                          const char* message) {
2885   ASSERT(!src.is(kScratchRegister));
2886   LoadRoot(kScratchRegister, root_value_index);
2887   cmpq(src, kScratchRegister);
2888   Check(equal, message);
2889 }
2890
2891
2892
2893 Condition MacroAssembler::IsObjectStringType(Register heap_object,
2894                                              Register map,
2895                                              Register instance_type) {
2896   movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
2897   movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
2898   STATIC_ASSERT(kNotStringTag != 0);
2899   testb(instance_type, Immediate(kIsNotStringMask));
2900   return zero;
2901 }
2902
2903
2904 void MacroAssembler::TryGetFunctionPrototype(Register function,
2905                                              Register result,
2906                                              Label* miss,
2907                                              bool miss_on_bound_function) {
2908   // Check that the receiver isn't a smi.
2909   testl(function, Immediate(kSmiTagMask));
2910   j(zero, miss);
2911
2912   // Check that the function really is a function.
2913   CmpObjectType(function, JS_FUNCTION_TYPE, result);
2914   j(not_equal, miss);
2915
2916   if (miss_on_bound_function) {
2917     movq(kScratchRegister,
2918          FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2919     // It's not smi-tagged (stored in the top half of a smi-tagged 8-byte
2920     // field).
2921     TestBit(FieldOperand(kScratchRegister,
2922                          SharedFunctionInfo::kCompilerHintsOffset),
2923             SharedFunctionInfo::kBoundFunction);
2924     j(not_zero, miss);
2925   }
2926
2927   // Make sure that the function has an instance prototype.
2928   Label non_instance;
2929   testb(FieldOperand(result, Map::kBitFieldOffset),
2930         Immediate(1 << Map::kHasNonInstancePrototype));
2931   j(not_zero, &non_instance, Label::kNear);
2932
2933   // Get the prototype or initial map from the function.
2934   movq(result,
2935        FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2936
2937   // If the prototype or initial map is the hole, don't return it and
2938   // simply miss the cache instead. This will allow us to allocate a
2939   // prototype object on-demand in the runtime system.
2940   CompareRoot(result, Heap::kTheHoleValueRootIndex);
2941   j(equal, miss);
2942
2943   // If the function does not have an initial map, we're done.
2944   Label done;
2945   CmpObjectType(result, MAP_TYPE, kScratchRegister);
2946   j(not_equal, &done, Label::kNear);
2947
2948   // Get the prototype from the initial map.
2949   movq(result, FieldOperand(result, Map::kPrototypeOffset));
2950   jmp(&done, Label::kNear);
2951
2952   // Non-instance prototype: Fetch prototype from constructor field
2953   // in initial map.
2954   bind(&non_instance);
2955   movq(result, FieldOperand(result, Map::kConstructorOffset));
2956
2957   // All done.
2958   bind(&done);
2959 }
2960
2961
2962 void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2963   if (FLAG_native_code_counters && counter->Enabled()) {
2964     Operand counter_operand = ExternalOperand(ExternalReference(counter));
2965     movl(counter_operand, Immediate(value));
2966   }
2967 }
2968
2969
2970 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2971   ASSERT(value > 0);
2972   if (FLAG_native_code_counters && counter->Enabled()) {
2973     Operand counter_operand = ExternalOperand(ExternalReference(counter));
2974     if (value == 1) {
2975       incl(counter_operand);
2976     } else {
2977       addl(counter_operand, Immediate(value));
2978     }
2979   }
2980 }
2981
2982
2983 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2984   ASSERT(value > 0);
2985   if (FLAG_native_code_counters && counter->Enabled()) {
2986     Operand counter_operand = ExternalOperand(ExternalReference(counter));
2987     if (value == 1) {
2988       decl(counter_operand);
2989     } else {
2990       subl(counter_operand, Immediate(value));
2991     }
2992   }
2993 }
2994
2995
2996 #ifdef ENABLE_DEBUGGER_SUPPORT
2997 void MacroAssembler::DebugBreak() {
2998   Set(rax, 0);  // No arguments.
2999   LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate()));
3000   CEntryStub ces(1);
3001   ASSERT(AllowThisStubCall(&ces));
3002   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3003 }
3004 #endif  // ENABLE_DEBUGGER_SUPPORT
3005
3006
3007 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
3008   // This macro takes the dst register to make the code more readable
3009   // at the call sites. However, the dst register has to be rcx to
3010   // follow the calling convention which requires the call type to be
3011   // in rcx.
3012   ASSERT(dst.is(rcx));
3013   if (call_kind == CALL_AS_FUNCTION) {
3014     LoadSmiConstant(dst, Smi::FromInt(1));
3015   } else {
3016     LoadSmiConstant(dst, Smi::FromInt(0));
3017   }
3018 }
3019
3020
3021 void MacroAssembler::InvokeCode(Register code,
3022                                 const ParameterCount& expected,
3023                                 const ParameterCount& actual,
3024                                 InvokeFlag flag,
3025                                 const CallWrapper& call_wrapper,
3026                                 CallKind call_kind) {
3027   // You can't call a function without a valid frame.
3028   ASSERT(flag == JUMP_FUNCTION || has_frame());
3029
3030   Label done;
3031   bool definitely_mismatches = false;
3032   InvokePrologue(expected,
3033                  actual,
3034                  Handle<Code>::null(),
3035                  code,
3036                  &done,
3037                  &definitely_mismatches,
3038                  flag,
3039                  Label::kNear,
3040                  call_wrapper,
3041                  call_kind);
3042   if (!definitely_mismatches) {
3043     if (flag == CALL_FUNCTION) {
3044       call_wrapper.BeforeCall(CallSize(code));
3045       SetCallKind(rcx, call_kind);
3046       call(code);
3047       call_wrapper.AfterCall();
3048     } else {
3049       ASSERT(flag == JUMP_FUNCTION);
3050       SetCallKind(rcx, call_kind);
3051       jmp(code);
3052     }
3053     bind(&done);
3054   }
3055 }
3056
3057
3058 void MacroAssembler::InvokeCode(Handle<Code> code,
3059                                 const ParameterCount& expected,
3060                                 const ParameterCount& actual,
3061                                 RelocInfo::Mode rmode,
3062                                 InvokeFlag flag,
3063                                 const CallWrapper& call_wrapper,
3064                                 CallKind call_kind) {
3065   // You can't call a function without a valid frame.
3066   ASSERT(flag == JUMP_FUNCTION || has_frame());
3067
3068   Label done;
3069   bool definitely_mismatches = false;
3070   Register dummy = rax;
3071   InvokePrologue(expected,
3072                  actual,
3073                  code,
3074                  dummy,
3075                  &done,
3076                  &definitely_mismatches,
3077                  flag,
3078                  Label::kNear,
3079                  call_wrapper,
3080                  call_kind);
3081   if (!definitely_mismatches) {
3082     if (flag == CALL_FUNCTION) {
3083       call_wrapper.BeforeCall(CallSize(code));
3084       SetCallKind(rcx, call_kind);
3085       Call(code, rmode);
3086       call_wrapper.AfterCall();
3087     } else {
3088       ASSERT(flag == JUMP_FUNCTION);
3089       SetCallKind(rcx, call_kind);
3090       Jump(code, rmode);
3091     }
3092     bind(&done);
3093   }
3094 }
3095
3096
3097 void MacroAssembler::InvokeFunction(Register function,
3098                                     const ParameterCount& actual,
3099                                     InvokeFlag flag,
3100                                     const CallWrapper& call_wrapper,
3101                                     CallKind call_kind) {
3102   // You can't call a function without a valid frame.
3103   ASSERT(flag == JUMP_FUNCTION || has_frame());
3104
3105   ASSERT(function.is(rdi));
3106   movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3107   movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
3108   movsxlq(rbx,
3109           FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
3110   // Advances rdx to the end of the Code object header, to the start of
3111   // the executable code.
3112   movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
3113
3114   ParameterCount expected(rbx);
3115   InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
3116 }
3117
3118
3119 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
3120                                     const ParameterCount& actual,
3121                                     InvokeFlag flag,
3122                                     const CallWrapper& call_wrapper,
3123                                     CallKind call_kind) {
3124   // You can't call a function without a valid frame.
3125   ASSERT(flag == JUMP_FUNCTION || has_frame());
3126
3127   // Get the function and setup the context.
3128   LoadHeapObject(rdi, function);
3129   movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
3130
3131   // We call indirectly through the code field in the function to
3132   // allow recompilation to take effect without changing any of the
3133   // call sites.
3134   movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
3135   ParameterCount expected(function->shared()->formal_parameter_count());
3136   InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
3137 }
3138
3139
3140 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
3141                                     const ParameterCount& actual,
3142                                     Handle<Code> code_constant,
3143                                     Register code_register,
3144                                     Label* done,
3145                                     bool* definitely_mismatches,
3146                                     InvokeFlag flag,
3147                                     Label::Distance near_jump,
3148                                     const CallWrapper& call_wrapper,
3149                                     CallKind call_kind) {
3150   bool definitely_matches = false;
3151   *definitely_mismatches = false;
3152   Label invoke;
3153   if (expected.is_immediate()) {
3154     ASSERT(actual.is_immediate());
3155     if (expected.immediate() == actual.immediate()) {
3156       definitely_matches = true;
3157     } else {
3158       Set(rax, actual.immediate());
3159       if (expected.immediate() ==
3160               SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
3161         // Don't worry about adapting arguments for built-ins that
3162         // don't want that done. Skip adaption code by making it look
3163         // like we have a match between expected and actual number of
3164         // arguments.
3165         definitely_matches = true;
3166       } else {
3167         *definitely_mismatches = true;
3168         Set(rbx, expected.immediate());
3169       }
3170     }
3171   } else {
3172     if (actual.is_immediate()) {
3173       // Expected is in register, actual is immediate. This is the
3174       // case when we invoke function values without going through the
3175       // IC mechanism.
3176       cmpq(expected.reg(), Immediate(actual.immediate()));
3177       j(equal, &invoke, Label::kNear);
3178       ASSERT(expected.reg().is(rbx));
3179       Set(rax, actual.immediate());
3180     } else if (!expected.reg().is(actual.reg())) {
3181       // Both expected and actual are in (different) registers. This
3182       // is the case when we invoke functions using call and apply.
3183       cmpq(expected.reg(), actual.reg());
3184       j(equal, &invoke, Label::kNear);
3185       ASSERT(actual.reg().is(rax));
3186       ASSERT(expected.reg().is(rbx));
3187     }
3188   }
3189
3190   if (!definitely_matches) {
3191     Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
3192     if (!code_constant.is_null()) {
3193       movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
3194       addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
3195     } else if (!code_register.is(rdx)) {
3196       movq(rdx, code_register);
3197     }
3198
3199     if (flag == CALL_FUNCTION) {
3200       call_wrapper.BeforeCall(CallSize(adaptor));
3201       SetCallKind(rcx, call_kind);
3202       Call(adaptor, RelocInfo::CODE_TARGET);
3203       call_wrapper.AfterCall();
3204       if (!*definitely_mismatches) {
3205         jmp(done, near_jump);
3206       }
3207     } else {
3208       SetCallKind(rcx, call_kind);
3209       Jump(adaptor, RelocInfo::CODE_TARGET);
3210     }
3211     bind(&invoke);
3212   }
3213 }
3214
3215
3216 void MacroAssembler::EnterFrame(StackFrame::Type type) {
3217   push(rbp);
3218   movq(rbp, rsp);
3219   push(rsi);  // Context.
3220   Push(Smi::FromInt(type));
3221   movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
3222   push(kScratchRegister);
3223   if (emit_debug_code()) {
3224     movq(kScratchRegister,
3225          isolate()->factory()->undefined_value(),
3226          RelocInfo::EMBEDDED_OBJECT);
3227     cmpq(Operand(rsp, 0), kScratchRegister);
3228     Check(not_equal, "code object not properly patched");
3229   }
3230 }
3231
3232
3233 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3234   if (emit_debug_code()) {
3235     Move(kScratchRegister, Smi::FromInt(type));
3236     cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
3237     Check(equal, "stack frame types must match");
3238   }
3239   movq(rsp, rbp);
3240   pop(rbp);
3241 }
3242
3243
3244 void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
3245   // Set up the frame structure on the stack.
3246   // All constants are relative to the frame pointer of the exit frame.
3247   ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
3248   ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
3249   ASSERT(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
3250   push(rbp);
3251   movq(rbp, rsp);
3252
3253   // Reserve room for entry stack pointer and push the code object.
3254   ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
3255   push(Immediate(0));  // Saved entry sp, patched before call.
3256   movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
3257   push(kScratchRegister);  // Accessed from EditFrame::code_slot.
3258
3259   // Save the frame pointer and the context in top.
3260   if (save_rax) {
3261     movq(r14, rax);  // Backup rax in callee-save register.
3262   }
3263
3264   Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
3265   Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
3266 }
3267
3268
3269 void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
3270                                             bool save_doubles) {
3271 #ifdef _WIN64
3272   const int kShadowSpace = 4;
3273   arg_stack_space += kShadowSpace;
3274 #endif
3275   // Optionally save all XMM registers.
3276   if (save_doubles) {
3277     int space = XMMRegister::kNumRegisters * kDoubleSize +
3278         arg_stack_space * kPointerSize;
3279     subq(rsp, Immediate(space));
3280     int offset = -2 * kPointerSize;
3281     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
3282       XMMRegister reg = XMMRegister::FromAllocationIndex(i);
3283       movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
3284     }
3285   } else if (arg_stack_space > 0) {
3286     subq(rsp, Immediate(arg_stack_space * kPointerSize));
3287   }
3288
3289   // Get the required frame alignment for the OS.
3290   const int kFrameAlignment = OS::ActivationFrameAlignment();
3291   if (kFrameAlignment > 0) {
3292     ASSERT(IsPowerOf2(kFrameAlignment));
3293     ASSERT(is_int8(kFrameAlignment));
3294     and_(rsp, Immediate(-kFrameAlignment));
3295   }
3296
3297   // Patch the saved entry sp.
3298   movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
3299 }
3300
3301
3302 void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
3303   EnterExitFramePrologue(true);
3304
3305   // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
3306   // so it must be retained across the C-call.
3307   int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
3308   lea(r15, Operand(rbp, r14, times_pointer_size, offset));
3309
3310   EnterExitFrameEpilogue(arg_stack_space, save_doubles);
3311 }
3312
3313
3314 void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
3315   EnterExitFramePrologue(false);
3316   EnterExitFrameEpilogue(arg_stack_space, false);
3317 }
3318
3319
3320 void MacroAssembler::LeaveExitFrame(bool save_doubles) {
3321   // Registers:
3322   // r15 : argv
3323   if (save_doubles) {
3324     int offset = -2 * kPointerSize;
3325     for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
3326       XMMRegister reg = XMMRegister::FromAllocationIndex(i);
3327       movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
3328     }
3329   }
3330   // Get the return address from the stack and restore the frame pointer.
3331   movq(rcx, Operand(rbp, 1 * kPointerSize));
3332   movq(rbp, Operand(rbp, 0 * kPointerSize));
3333
3334   // Drop everything up to and including the arguments and the receiver
3335   // from the caller stack.
3336   lea(rsp, Operand(r15, 1 * kPointerSize));
3337
3338   // Push the return address to get ready to return.
3339   push(rcx);
3340
3341   LeaveExitFrameEpilogue();
3342 }
3343
3344
3345 void MacroAssembler::LeaveApiExitFrame() {
3346   movq(rsp, rbp);
3347   pop(rbp);
3348
3349   LeaveExitFrameEpilogue();
3350 }
3351
3352
3353 void MacroAssembler::LeaveExitFrameEpilogue() {
3354   // Restore current context from top and clear it in debug mode.
3355   ExternalReference context_address(Isolate::kContextAddress, isolate());
3356   Operand context_operand = ExternalOperand(context_address);
3357   movq(rsi, context_operand);
3358 #ifdef DEBUG
3359   movq(context_operand, Immediate(0));
3360 #endif
3361
3362   // Clear the top frame.
3363   ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
3364                                        isolate());
3365   Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
3366   movq(c_entry_fp_operand, Immediate(0));
3367 }
3368
3369
3370 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3371                                             Register scratch,
3372                                             Label* miss) {
3373   Label same_contexts;
3374
3375   ASSERT(!holder_reg.is(scratch));
3376   ASSERT(!scratch.is(kScratchRegister));
3377   // Load current lexical context from the stack frame.
3378   movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
3379
3380   // When generating debug code, make sure the lexical context is set.
3381   if (emit_debug_code()) {
3382     cmpq(scratch, Immediate(0));
3383     Check(not_equal, "we should not have an empty lexical context");
3384   }
3385   // Load the global context of the current context.
3386   int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
3387   movq(scratch, FieldOperand(scratch, offset));
3388   movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
3389
3390   // Check the context is a global context.
3391   if (emit_debug_code()) {
3392     Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
3393         isolate()->factory()->global_context_map());
3394     Check(equal, "JSGlobalObject::global_context should be a global context.");
3395   }
3396
3397   // Check if both contexts are the same.
3398   cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3399   j(equal, &same_contexts);
3400
3401   // Compare security tokens.
3402   // Check that the security token in the calling global object is
3403   // compatible with the security token in the receiving global
3404   // object.
3405
3406   // Check the context is a global context.
3407   if (emit_debug_code()) {
3408     // Preserve original value of holder_reg.
3409     push(holder_reg);
3410     movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3411     CompareRoot(holder_reg, Heap::kNullValueRootIndex);
3412     Check(not_equal, "JSGlobalProxy::context() should not be null.");
3413
3414     // Read the first word and compare to global_context_map(),
3415     movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
3416     CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
3417     Check(equal, "JSGlobalObject::global_context should be a global context.");
3418     pop(holder_reg);
3419   }
3420
3421   movq(kScratchRegister,
3422        FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
3423   int token_offset =
3424       Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
3425   movq(scratch, FieldOperand(scratch, token_offset));
3426   cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
3427   j(not_equal, miss);
3428
3429   bind(&same_contexts);
3430 }
3431
3432
3433 void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
3434   // First of all we assign the hash seed to scratch.
3435   LoadRoot(scratch, Heap::kHashSeedRootIndex);
3436   SmiToInteger32(scratch, scratch);
3437
3438   // Xor original key with a seed.
3439   xorl(r0, scratch);
3440
3441   // Compute the hash code from the untagged key.  This must be kept in sync
3442   // with ComputeIntegerHash in utils.h.
3443   //
3444   // hash = ~hash + (hash << 15);
3445   movl(scratch, r0);
3446   notl(r0);
3447   shll(scratch, Immediate(15));
3448   addl(r0, scratch);
3449   // hash = hash ^ (hash >> 12);
3450   movl(scratch, r0);
3451   shrl(scratch, Immediate(12));
3452   xorl(r0, scratch);
3453   // hash = hash + (hash << 2);
3454   leal(r0, Operand(r0, r0, times_4, 0));
3455   // hash = hash ^ (hash >> 4);
3456   movl(scratch, r0);
3457   shrl(scratch, Immediate(4));
3458   xorl(r0, scratch);
3459   // hash = hash * 2057;
3460   imull(r0, r0, Immediate(2057));
3461   // hash = hash ^ (hash >> 16);
3462   movl(scratch, r0);
3463   shrl(scratch, Immediate(16));
3464   xorl(r0, scratch);
3465 }
3466
3467
3468
3469 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
3470                                               Register elements,
3471                                               Register key,
3472                                               Register r0,
3473                                               Register r1,
3474                                               Register r2,
3475                                               Register result) {
3476   // Register use:
3477   //
3478   // elements - holds the slow-case elements of the receiver on entry.
3479   //            Unchanged unless 'result' is the same register.
3480   //
3481   // key      - holds the smi key on entry.
3482   //            Unchanged unless 'result' is the same register.
3483   //
3484   // Scratch registers:
3485   //
3486   // r0 - holds the untagged key on entry and holds the hash once computed.
3487   //
3488   // r1 - used to hold the capacity mask of the dictionary
3489   //
3490   // r2 - used for the index into the dictionary.
3491   //
3492   // result - holds the result on exit if the load succeeded.
3493   //          Allowed to be the same as 'key' or 'result'.
3494   //          Unchanged on bailout so 'key' or 'result' can be used
3495   //          in further computation.
3496
3497   Label done;
3498
3499   GetNumberHash(r0, r1);
3500
3501   // Compute capacity mask.
3502   SmiToInteger32(r1, FieldOperand(elements,
3503                                   SeededNumberDictionary::kCapacityOffset));
3504   decl(r1);
3505
3506   // Generate an unrolled loop that performs a few probes before giving up.
3507   const int kProbes = 4;
3508   for (int i = 0; i < kProbes; i++) {
3509     // Use r2 for index calculations and keep the hash intact in r0.
3510     movq(r2, r0);
3511     // Compute the masked index: (hash + i + i * i) & mask.
3512     if (i > 0) {
3513       addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
3514     }
3515     and_(r2, r1);
3516
3517     // Scale the index by multiplying by the entry size.
3518     ASSERT(SeededNumberDictionary::kEntrySize == 3);
3519     lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
3520
3521     // Check if the key matches.
3522     cmpq(key, FieldOperand(elements,
3523                            r2,
3524                            times_pointer_size,
3525                            SeededNumberDictionary::kElementsStartOffset));
3526     if (i != (kProbes - 1)) {
3527       j(equal, &done);
3528     } else {
3529       j(not_equal, miss);
3530     }
3531   }
3532
3533   bind(&done);
3534   // Check that the value is a normal propety.
3535   const int kDetailsOffset =
3536       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
3537   ASSERT_EQ(NORMAL, 0);
3538   Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
3539        Smi::FromInt(PropertyDetails::TypeField::kMask));
3540   j(not_zero, miss);
3541
3542   // Get the value at the masked, scaled index.
3543   const int kValueOffset =
3544       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
3545   movq(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
3546 }
3547
3548
3549 void MacroAssembler::LoadAllocationTopHelper(Register result,
3550                                              Register scratch,
3551                                              AllocationFlags flags) {
3552   ExternalReference new_space_allocation_top =
3553       ExternalReference::new_space_allocation_top_address(isolate());
3554
3555   // Just return if allocation top is already known.
3556   if ((flags & RESULT_CONTAINS_TOP) != 0) {
3557     // No use of scratch if allocation top is provided.
3558     ASSERT(!scratch.is_valid());
3559 #ifdef DEBUG
3560     // Assert that result actually contains top on entry.
3561     Operand top_operand = ExternalOperand(new_space_allocation_top);
3562     cmpq(result, top_operand);
3563     Check(equal, "Unexpected allocation top");
3564 #endif
3565     return;
3566   }
3567
3568   // Move address of new object to result. Use scratch register if available,
3569   // and keep address in scratch until call to UpdateAllocationTopHelper.
3570   if (scratch.is_valid()) {
3571     LoadAddress(scratch, new_space_allocation_top);
3572     movq(result, Operand(scratch, 0));
3573   } else {
3574     Load(result, new_space_allocation_top);
3575   }
3576 }
3577
3578
3579 void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
3580                                                Register scratch) {
3581   if (emit_debug_code()) {
3582     testq(result_end, Immediate(kObjectAlignmentMask));
3583     Check(zero, "Unaligned allocation in new space");
3584   }
3585
3586   ExternalReference new_space_allocation_top =
3587       ExternalReference::new_space_allocation_top_address(isolate());
3588
3589   // Update new top.
3590   if (scratch.is_valid()) {
3591     // Scratch already contains address of allocation top.
3592     movq(Operand(scratch, 0), result_end);
3593   } else {
3594     Store(new_space_allocation_top, result_end);
3595   }
3596 }
3597
3598
3599 void MacroAssembler::AllocateInNewSpace(int object_size,
3600                                         Register result,
3601                                         Register result_end,
3602                                         Register scratch,
3603                                         Label* gc_required,
3604                                         AllocationFlags flags) {
3605   if (!FLAG_inline_new) {
3606     if (emit_debug_code()) {
3607       // Trash the registers to simulate an allocation failure.
3608       movl(result, Immediate(0x7091));
3609       if (result_end.is_valid()) {
3610         movl(result_end, Immediate(0x7191));
3611       }
3612       if (scratch.is_valid()) {
3613         movl(scratch, Immediate(0x7291));
3614       }
3615     }
3616     jmp(gc_required);
3617     return;
3618   }
3619   ASSERT(!result.is(result_end));
3620
3621   // Load address of new object into result.
3622   LoadAllocationTopHelper(result, scratch, flags);
3623
3624   // Calculate new top and bail out if new space is exhausted.
3625   ExternalReference new_space_allocation_limit =
3626       ExternalReference::new_space_allocation_limit_address(isolate());
3627
3628   Register top_reg = result_end.is_valid() ? result_end : result;
3629
3630   if (!top_reg.is(result)) {
3631     movq(top_reg, result);
3632   }
3633   addq(top_reg, Immediate(object_size));
3634   j(carry, gc_required);
3635   Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3636   cmpq(top_reg, limit_operand);
3637   j(above, gc_required);
3638
3639   // Update allocation top.
3640   UpdateAllocationTopHelper(top_reg, scratch);
3641
3642   if (top_reg.is(result)) {
3643     if ((flags & TAG_OBJECT) != 0) {
3644       subq(result, Immediate(object_size - kHeapObjectTag));
3645     } else {
3646       subq(result, Immediate(object_size));
3647     }
3648   } else if ((flags & TAG_OBJECT) != 0) {
3649     // Tag the result if requested.
3650     addq(result, Immediate(kHeapObjectTag));
3651   }
3652 }
3653
3654
3655 void MacroAssembler::AllocateInNewSpace(int header_size,
3656                                         ScaleFactor element_size,
3657                                         Register element_count,
3658                                         Register result,
3659                                         Register result_end,
3660                                         Register scratch,
3661                                         Label* gc_required,
3662                                         AllocationFlags flags) {
3663   if (!FLAG_inline_new) {
3664     if (emit_debug_code()) {
3665       // Trash the registers to simulate an allocation failure.
3666       movl(result, Immediate(0x7091));
3667       movl(result_end, Immediate(0x7191));
3668       if (scratch.is_valid()) {
3669         movl(scratch, Immediate(0x7291));
3670       }
3671       // Register element_count is not modified by the function.
3672     }
3673     jmp(gc_required);
3674     return;
3675   }
3676   ASSERT(!result.is(result_end));
3677
3678   // Load address of new object into result.
3679   LoadAllocationTopHelper(result, scratch, flags);
3680
3681   // Calculate new top and bail out if new space is exhausted.
3682   ExternalReference new_space_allocation_limit =
3683       ExternalReference::new_space_allocation_limit_address(isolate());
3684
3685   // We assume that element_count*element_size + header_size does not
3686   // overflow.
3687   lea(result_end, Operand(element_count, element_size, header_size));
3688   addq(result_end, result);
3689   j(carry, gc_required);
3690   Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3691   cmpq(result_end, limit_operand);
3692   j(above, gc_required);
3693
3694   // Update allocation top.
3695   UpdateAllocationTopHelper(result_end, scratch);
3696
3697   // Tag the result if requested.
3698   if ((flags & TAG_OBJECT) != 0) {
3699     addq(result, Immediate(kHeapObjectTag));
3700   }
3701 }
3702
3703
3704 void MacroAssembler::AllocateInNewSpace(Register object_size,
3705                                         Register result,
3706                                         Register result_end,
3707                                         Register scratch,
3708                                         Label* gc_required,
3709                                         AllocationFlags flags) {
3710   if (!FLAG_inline_new) {
3711     if (emit_debug_code()) {
3712       // Trash the registers to simulate an allocation failure.
3713       movl(result, Immediate(0x7091));
3714       movl(result_end, Immediate(0x7191));
3715       if (scratch.is_valid()) {
3716         movl(scratch, Immediate(0x7291));
3717       }
3718       // object_size is left unchanged by this function.
3719     }
3720     jmp(gc_required);
3721     return;
3722   }
3723   ASSERT(!result.is(result_end));
3724
3725   // Load address of new object into result.
3726   LoadAllocationTopHelper(result, scratch, flags);
3727
3728   // Calculate new top and bail out if new space is exhausted.
3729   ExternalReference new_space_allocation_limit =
3730       ExternalReference::new_space_allocation_limit_address(isolate());
3731   if (!object_size.is(result_end)) {
3732     movq(result_end, object_size);
3733   }
3734   addq(result_end, result);
3735   j(carry, gc_required);
3736   Operand limit_operand = ExternalOperand(new_space_allocation_limit);
3737   cmpq(result_end, limit_operand);
3738   j(above, gc_required);
3739
3740   // Update allocation top.
3741   UpdateAllocationTopHelper(result_end, scratch);
3742
3743   // Tag the result if requested.
3744   if ((flags & TAG_OBJECT) != 0) {
3745     addq(result, Immediate(kHeapObjectTag));
3746   }
3747 }
3748
3749
3750 void MacroAssembler::UndoAllocationInNewSpace(Register object) {
3751   ExternalReference new_space_allocation_top =
3752       ExternalReference::new_space_allocation_top_address(isolate());
3753
3754   // Make sure the object has no tag before resetting top.
3755   and_(object, Immediate(~kHeapObjectTagMask));
3756   Operand top_operand = ExternalOperand(new_space_allocation_top);
3757 #ifdef DEBUG
3758   cmpq(object, top_operand);
3759   Check(below, "Undo allocation of non allocated memory");
3760 #endif
3761   movq(top_operand, object);
3762 }
3763
3764
3765 void MacroAssembler::AllocateHeapNumber(Register result,
3766                                         Register scratch,
3767                                         Label* gc_required) {
3768   // Allocate heap number in new space.
3769   AllocateInNewSpace(HeapNumber::kSize,
3770                      result,
3771                      scratch,
3772                      no_reg,
3773                      gc_required,
3774                      TAG_OBJECT);
3775
3776   // Set the map.
3777   LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
3778   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3779 }
3780
3781
3782 void MacroAssembler::AllocateTwoByteString(Register result,
3783                                            Register length,
3784                                            Register scratch1,
3785                                            Register scratch2,
3786                                            Register scratch3,
3787                                            Label* gc_required) {
3788   // Calculate the number of bytes needed for the characters in the string while
3789   // observing object alignment.
3790   const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
3791                                kObjectAlignmentMask;
3792   ASSERT(kShortSize == 2);
3793   // scratch1 = length * 2 + kObjectAlignmentMask.
3794   lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
3795                 kHeaderAlignment));
3796   and_(scratch1, Immediate(~kObjectAlignmentMask));
3797   if (kHeaderAlignment > 0) {
3798     subq(scratch1, Immediate(kHeaderAlignment));
3799   }
3800
3801   // Allocate two byte string in new space.
3802   AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
3803                      times_1,
3804                      scratch1,
3805                      result,
3806                      scratch2,
3807                      scratch3,
3808                      gc_required,
3809                      TAG_OBJECT);
3810
3811   // Set the map, length and hash field.
3812   LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
3813   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3814   Integer32ToSmi(scratch1, length);
3815   movq(FieldOperand(result, String::kLengthOffset), scratch1);
3816   movq(FieldOperand(result, String::kHashFieldOffset),
3817        Immediate(String::kEmptyHashField));
3818 }
3819
3820
3821 void MacroAssembler::AllocateAsciiString(Register result,
3822                                          Register length,
3823                                          Register scratch1,
3824                                          Register scratch2,
3825                                          Register scratch3,
3826                                          Label* gc_required) {
3827   // Calculate the number of bytes needed for the characters in the string while
3828   // observing object alignment.
3829   const int kHeaderAlignment = SeqAsciiString::kHeaderSize &
3830                                kObjectAlignmentMask;
3831   movl(scratch1, length);
3832   ASSERT(kCharSize == 1);
3833   addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
3834   and_(scratch1, Immediate(~kObjectAlignmentMask));
3835   if (kHeaderAlignment > 0) {
3836     subq(scratch1, Immediate(kHeaderAlignment));
3837   }
3838
3839   // Allocate ASCII string in new space.
3840   AllocateInNewSpace(SeqAsciiString::kHeaderSize,
3841                      times_1,
3842                      scratch1,
3843                      result,
3844                      scratch2,
3845                      scratch3,
3846                      gc_required,
3847                      TAG_OBJECT);
3848
3849   // Set the map, length and hash field.
3850   LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex);
3851   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3852   Integer32ToSmi(scratch1, length);
3853   movq(FieldOperand(result, String::kLengthOffset), scratch1);
3854   movq(FieldOperand(result, String::kHashFieldOffset),
3855        Immediate(String::kEmptyHashField));
3856 }
3857
3858
3859 void MacroAssembler::AllocateTwoByteConsString(Register result,
3860                                         Register scratch1,
3861                                         Register scratch2,
3862                                         Label* gc_required) {
3863   // Allocate heap number in new space.
3864   AllocateInNewSpace(ConsString::kSize,
3865                      result,
3866                      scratch1,
3867                      scratch2,
3868                      gc_required,
3869                      TAG_OBJECT);
3870
3871   // Set the map. The other fields are left uninitialized.
3872   LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
3873   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3874 }
3875
3876
3877 void MacroAssembler::AllocateAsciiConsString(Register result,
3878                                              Register scratch1,
3879                                              Register scratch2,
3880                                              Label* gc_required) {
3881   // Allocate heap number in new space.
3882   AllocateInNewSpace(ConsString::kSize,
3883                      result,
3884                      scratch1,
3885                      scratch2,
3886                      gc_required,
3887                      TAG_OBJECT);
3888
3889   // Set the map. The other fields are left uninitialized.
3890   LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex);
3891   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3892 }
3893
3894
3895 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3896                                           Register scratch1,
3897                                           Register scratch2,
3898                                           Label* gc_required) {
3899   // Allocate heap number in new space.
3900   AllocateInNewSpace(SlicedString::kSize,
3901                      result,
3902                      scratch1,
3903                      scratch2,
3904                      gc_required,
3905                      TAG_OBJECT);
3906
3907   // Set the map. The other fields are left uninitialized.
3908   LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
3909   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3910 }
3911
3912
3913 void MacroAssembler::AllocateAsciiSlicedString(Register result,
3914                                                Register scratch1,
3915                                                Register scratch2,
3916                                                Label* gc_required) {
3917   // Allocate heap number in new space.
3918   AllocateInNewSpace(SlicedString::kSize,
3919                      result,
3920                      scratch1,
3921                      scratch2,
3922                      gc_required,
3923                      TAG_OBJECT);
3924
3925   // Set the map. The other fields are left uninitialized.
3926   LoadRoot(kScratchRegister, Heap::kSlicedAsciiStringMapRootIndex);
3927   movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
3928 }
3929
3930
3931 // Copy memory, byte-by-byte, from source to destination.  Not optimized for
3932 // long or aligned copies.  The contents of scratch and length are destroyed.
3933 // Destination is incremented by length, source, length and scratch are
3934 // clobbered.
3935 // A simpler loop is faster on small copies, but slower on large ones.
3936 // The cld() instruction must have been emitted, to set the direction flag(),
3937 // before calling this function.
3938 void MacroAssembler::CopyBytes(Register destination,
3939                                Register source,
3940                                Register length,
3941                                int min_length,
3942                                Register scratch) {
3943   ASSERT(min_length >= 0);
3944   if (FLAG_debug_code) {
3945     cmpl(length, Immediate(min_length));
3946     Assert(greater_equal, "Invalid min_length");
3947   }
3948   Label loop, done, short_string, short_loop;
3949
3950   const int kLongStringLimit = 20;
3951   if (min_length <= kLongStringLimit) {
3952     cmpl(length, Immediate(kLongStringLimit));
3953     j(less_equal, &short_string);
3954   }
3955
3956   ASSERT(source.is(rsi));
3957   ASSERT(destination.is(rdi));
3958   ASSERT(length.is(rcx));
3959
3960   // Because source is 8-byte aligned in our uses of this function,
3961   // we keep source aligned for the rep movs operation by copying the odd bytes
3962   // at the end of the ranges.
3963   movq(scratch, length);
3964   shrl(length, Immediate(3));
3965   repmovsq();
3966   // Move remaining bytes of length.
3967   andl(scratch, Immediate(0x7));
3968   movq(length, Operand(source, scratch, times_1, -8));
3969   movq(Operand(destination, scratch, times_1, -8), length);
3970   addq(destination, scratch);
3971
3972   if (min_length <= kLongStringLimit) {
3973     jmp(&done);
3974
3975     bind(&short_string);
3976     if (min_length == 0) {
3977       testl(length, length);
3978       j(zero, &done);
3979     }
3980     lea(scratch, Operand(destination, length, times_1, 0));
3981
3982     bind(&short_loop);
3983     movb(length, Operand(source, 0));
3984     movb(Operand(destination, 0), length);
3985     incq(source);
3986     incq(destination);
3987     cmpq(destination, scratch);
3988     j(not_equal, &short_loop);
3989
3990     bind(&done);
3991   }
3992 }
3993
3994
3995 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3996                                                 Register end_offset,
3997                                                 Register filler) {
3998   Label loop, entry;
3999   jmp(&entry);
4000   bind(&loop);
4001   movq(Operand(start_offset, 0), filler);
4002   addq(start_offset, Immediate(kPointerSize));
4003   bind(&entry);
4004   cmpq(start_offset, end_offset);
4005   j(less, &loop);
4006 }
4007
4008
4009 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
4010   if (context_chain_length > 0) {
4011     // Move up the chain of contexts to the context containing the slot.
4012     movq(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4013     for (int i = 1; i < context_chain_length; i++) {
4014       movq(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
4015     }
4016   } else {
4017     // Slot is in the current function context.  Move it into the
4018     // destination register in case we store into it (the write barrier
4019     // cannot be allowed to destroy the context in rsi).
4020     movq(dst, rsi);
4021   }
4022
4023   // We should not have found a with context by walking the context
4024   // chain (i.e., the static scope chain and runtime context chain do
4025   // not agree).  A variable occurring in such a scope should have
4026   // slot type LOOKUP and not CONTEXT.
4027   if (emit_debug_code()) {
4028     CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
4029                 Heap::kWithContextMapRootIndex);
4030     Check(not_equal, "Variable resolved to with context.");
4031   }
4032 }
4033
4034
4035 void MacroAssembler::LoadTransitionedArrayMapConditional(
4036     ElementsKind expected_kind,
4037     ElementsKind transitioned_kind,
4038     Register map_in_out,
4039     Register scratch,
4040     Label* no_map_match) {
4041   // Load the global or builtins object from the current context.
4042   movq(scratch, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
4043   movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
4044
4045   // Check that the function's map is the same as the expected cached map.
4046   int expected_index =
4047       Context::GetContextMapIndexFromElementsKind(expected_kind);
4048   cmpq(map_in_out, Operand(scratch, Context::SlotOffset(expected_index)));
4049   j(not_equal, no_map_match);
4050
4051   // Use the transitioned cached map.
4052   int trans_index =
4053       Context::GetContextMapIndexFromElementsKind(transitioned_kind);
4054   movq(map_in_out, Operand(scratch, Context::SlotOffset(trans_index)));
4055 }
4056
4057
4058 void MacroAssembler::LoadInitialArrayMap(
4059     Register function_in, Register scratch, Register map_out) {
4060   ASSERT(!function_in.is(map_out));
4061   Label done;
4062   movq(map_out, FieldOperand(function_in,
4063                              JSFunction::kPrototypeOrInitialMapOffset));
4064   if (!FLAG_smi_only_arrays) {
4065     LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
4066                                         FAST_ELEMENTS,
4067                                         map_out,
4068                                         scratch,
4069                                         &done);
4070   }
4071   bind(&done);
4072 }
4073
4074 #ifdef _WIN64
4075 static const int kRegisterPassedArguments = 4;
4076 #else
4077 static const int kRegisterPassedArguments = 6;
4078 #endif
4079
4080 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4081   // Load the global or builtins object from the current context.
4082   movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
4083   // Load the global context from the global or builtins object.
4084   movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
4085   // Load the function from the global context.
4086   movq(function, Operand(function, Context::SlotOffset(index)));
4087 }
4088
4089
4090 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4091                                                   Register map) {
4092   // Load the initial map.  The global functions all have initial maps.
4093   movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4094   if (emit_debug_code()) {
4095     Label ok, fail;
4096     CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
4097     jmp(&ok);
4098     bind(&fail);
4099     Abort("Global functions must have initial map");
4100     bind(&ok);
4101   }
4102 }
4103
4104
4105 int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
4106   // On Windows 64 stack slots are reserved by the caller for all arguments
4107   // including the ones passed in registers, and space is always allocated for
4108   // the four register arguments even if the function takes fewer than four
4109   // arguments.
4110   // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
4111   // and the caller does not reserve stack slots for them.
4112   ASSERT(num_arguments >= 0);
4113 #ifdef _WIN64
4114   const int kMinimumStackSlots = kRegisterPassedArguments;
4115   if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
4116   return num_arguments;
4117 #else
4118   if (num_arguments < kRegisterPassedArguments) return 0;
4119   return num_arguments - kRegisterPassedArguments;
4120 #endif
4121 }
4122
4123
4124 void MacroAssembler::PrepareCallCFunction(int num_arguments) {
4125   int frame_alignment = OS::ActivationFrameAlignment();
4126   ASSERT(frame_alignment != 0);
4127   ASSERT(num_arguments >= 0);
4128
4129   // Make stack end at alignment and allocate space for arguments and old rsp.
4130   movq(kScratchRegister, rsp);
4131   ASSERT(IsPowerOf2(frame_alignment));
4132   int argument_slots_on_stack =
4133       ArgumentStackSlotsForCFunctionCall(num_arguments);
4134   subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize));
4135   and_(rsp, Immediate(-frame_alignment));
4136   movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister);
4137 }
4138
4139
4140 void MacroAssembler::CallCFunction(ExternalReference function,
4141                                    int num_arguments) {
4142   LoadAddress(rax, function);
4143   CallCFunction(rax, num_arguments);
4144 }
4145
4146
4147 void MacroAssembler::CallCFunction(Register function, int num_arguments) {
4148   ASSERT(has_frame());
4149   // Check stack alignment.
4150   if (emit_debug_code()) {
4151     CheckStackAlignment();
4152   }
4153
4154   call(function);
4155   ASSERT(OS::ActivationFrameAlignment() != 0);
4156   ASSERT(num_arguments >= 0);
4157   int argument_slots_on_stack =
4158       ArgumentStackSlotsForCFunctionCall(num_arguments);
4159   movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize));
4160 }
4161
4162
4163 bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
4164   if (r1.is(r2)) return true;
4165   if (r1.is(r3)) return true;
4166   if (r1.is(r4)) return true;
4167   if (r2.is(r3)) return true;
4168   if (r2.is(r4)) return true;
4169   if (r3.is(r4)) return true;
4170   return false;
4171 }
4172
4173
4174 CodePatcher::CodePatcher(byte* address, int size)
4175     : address_(address),
4176       size_(size),
4177       masm_(Isolate::Current(), address, size + Assembler::kGap) {
4178   // Create a new macro assembler pointing to the address of the code to patch.
4179   // The size is adjusted with kGap on order for the assembler to generate size
4180   // bytes of instructions without failing with buffer size constraints.
4181   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4182 }
4183
4184
4185 CodePatcher::~CodePatcher() {
4186   // Indicate that code has changed.
4187   CPU::FlushICache(address_, size_);
4188
4189   // Check that the code was patched as expected.
4190   ASSERT(masm_.pc_ == address_ + size_);
4191   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4192 }
4193
4194
4195 void MacroAssembler::CheckPageFlag(
4196     Register object,
4197     Register scratch,
4198     int mask,
4199     Condition cc,
4200     Label* condition_met,
4201     Label::Distance condition_met_distance) {
4202   ASSERT(cc == zero || cc == not_zero);
4203   if (scratch.is(object)) {
4204     and_(scratch, Immediate(~Page::kPageAlignmentMask));
4205   } else {
4206     movq(scratch, Immediate(~Page::kPageAlignmentMask));
4207     and_(scratch, object);
4208   }
4209   if (mask < (1 << kBitsPerByte)) {
4210     testb(Operand(scratch, MemoryChunk::kFlagsOffset),
4211           Immediate(static_cast<uint8_t>(mask)));
4212   } else {
4213     testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
4214   }
4215   j(cc, condition_met, condition_met_distance);
4216 }
4217
4218
4219 void MacroAssembler::JumpIfBlack(Register object,
4220                                  Register bitmap_scratch,
4221                                  Register mask_scratch,
4222                                  Label* on_black,
4223                                  Label::Distance on_black_distance) {
4224   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, rcx));
4225   GetMarkBits(object, bitmap_scratch, mask_scratch);
4226
4227   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4228   // The mask_scratch register contains a 1 at the position of the first bit
4229   // and a 0 at all other positions, including the position of the second bit.
4230   movq(rcx, mask_scratch);
4231   // Make rcx into a mask that covers both marking bits using the operation
4232   // rcx = mask | (mask << 1).
4233   lea(rcx, Operand(mask_scratch, mask_scratch, times_2, 0));
4234   // Note that we are using a 4-byte aligned 8-byte load.
4235   and_(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
4236   cmpq(mask_scratch, rcx);
4237   j(equal, on_black, on_black_distance);
4238 }
4239
4240
4241 // Detect some, but not all, common pointer-free objects.  This is used by the
4242 // incremental write barrier which doesn't care about oddballs (they are always
4243 // marked black immediately so this code is not hit).
4244 void MacroAssembler::JumpIfDataObject(
4245     Register value,
4246     Register scratch,
4247     Label* not_data_object,
4248     Label::Distance not_data_object_distance) {
4249   Label is_data_object;
4250   movq(scratch, FieldOperand(value, HeapObject::kMapOffset));
4251   CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
4252   j(equal, &is_data_object, Label::kNear);
4253   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4254   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4255   // If it's a string and it's not a cons string then it's an object containing
4256   // no GC pointers.
4257   testb(FieldOperand(scratch, Map::kInstanceTypeOffset),
4258         Immediate(kIsIndirectStringMask | kIsNotStringMask));
4259   j(not_zero, not_data_object, not_data_object_distance);
4260   bind(&is_data_object);
4261 }
4262
4263
4264 void MacroAssembler::GetMarkBits(Register addr_reg,
4265                                  Register bitmap_reg,
4266                                  Register mask_reg) {
4267   ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx));
4268   movq(bitmap_reg, addr_reg);
4269   // Sign extended 32 bit immediate.
4270   and_(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
4271   movq(rcx, addr_reg);
4272   int shift =
4273       Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
4274   shrl(rcx, Immediate(shift));
4275   and_(rcx,
4276        Immediate((Page::kPageAlignmentMask >> shift) &
4277                  ~(Bitmap::kBytesPerCell - 1)));
4278
4279   addq(bitmap_reg, rcx);
4280   movq(rcx, addr_reg);
4281   shrl(rcx, Immediate(kPointerSizeLog2));
4282   and_(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1));
4283   movl(mask_reg, Immediate(1));
4284   shl_cl(mask_reg);
4285 }
4286
4287
4288 void MacroAssembler::EnsureNotWhite(
4289     Register value,
4290     Register bitmap_scratch,
4291     Register mask_scratch,
4292     Label* value_is_white_and_not_data,
4293     Label::Distance distance) {
4294   ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, rcx));
4295   GetMarkBits(value, bitmap_scratch, mask_scratch);
4296
4297   // If the value is black or grey we don't need to do anything.
4298   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4299   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4300   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4301   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4302
4303   Label done;
4304
4305   // Since both black and grey have a 1 in the first position and white does
4306   // not have a 1 there we only need to check one bit.
4307   testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4308   j(not_zero, &done, Label::kNear);
4309
4310   if (FLAG_debug_code) {
4311     // Check for impossible bit pattern.
4312     Label ok;
4313     push(mask_scratch);
4314     // shl.  May overflow making the check conservative.
4315     addq(mask_scratch, mask_scratch);
4316     testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4317     j(zero, &ok, Label::kNear);
4318     int3();
4319     bind(&ok);
4320     pop(mask_scratch);
4321   }
4322
4323   // Value is white.  We check whether it is data that doesn't need scanning.
4324   // Currently only checks for HeapNumber and non-cons strings.
4325   Register map = rcx;  // Holds map while checking type.
4326   Register length = rcx;  // Holds length of object after checking type.
4327   Label not_heap_number;
4328   Label is_data_object;
4329
4330   // Check for heap-number
4331   movq(map, FieldOperand(value, HeapObject::kMapOffset));
4332   CompareRoot(map, Heap::kHeapNumberMapRootIndex);
4333   j(not_equal, &not_heap_number, Label::kNear);
4334   movq(length, Immediate(HeapNumber::kSize));
4335   jmp(&is_data_object, Label::kNear);
4336
4337   bind(&not_heap_number);
4338   // Check for strings.
4339   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4340   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4341   // If it's a string and it's not a cons string then it's an object containing
4342   // no GC pointers.
4343   Register instance_type = rcx;
4344   movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
4345   testb(instance_type, Immediate(kIsIndirectStringMask | kIsNotStringMask));
4346   j(not_zero, value_is_white_and_not_data);
4347   // It's a non-indirect (non-cons and non-slice) string.
4348   // If it's external, the length is just ExternalString::kSize.
4349   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4350   Label not_external;
4351   // External strings are the only ones with the kExternalStringTag bit
4352   // set.
4353   ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
4354   ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
4355   testb(instance_type, Immediate(kExternalStringTag));
4356   j(zero, &not_external, Label::kNear);
4357   movq(length, Immediate(ExternalString::kSize));
4358   jmp(&is_data_object, Label::kNear);
4359
4360   bind(&not_external);
4361   // Sequential string, either ASCII or UC16.
4362   ASSERT(kAsciiStringTag == 0x04);
4363   and_(length, Immediate(kStringEncodingMask));
4364   xor_(length, Immediate(kStringEncodingMask));
4365   addq(length, Immediate(0x04));
4366   // Value now either 4 (if ASCII) or 8 (if UC16), i.e. char-size shifted by 2.
4367   imul(length, FieldOperand(value, String::kLengthOffset));
4368   shr(length, Immediate(2 + kSmiTagSize + kSmiShiftSize));
4369   addq(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
4370   and_(length, Immediate(~kObjectAlignmentMask));
4371
4372   bind(&is_data_object);
4373   // Value is a data object, and it is white.  Mark it black.  Since we know
4374   // that the object is white we can make it black by flipping one bit.
4375   or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
4376
4377   and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
4378   addl(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), length);
4379
4380   bind(&done);
4381 }
4382
4383
4384 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
4385   Label next;
4386   Register empty_fixed_array_value = r8;
4387   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
4388   Register empty_descriptor_array_value = r9;
4389   LoadRoot(empty_descriptor_array_value,
4390               Heap::kEmptyDescriptorArrayRootIndex);
4391   movq(rcx, rax);
4392   bind(&next);
4393
4394   // Check that there are no elements.  Register rcx contains the
4395   // current JS object we've reached through the prototype chain.
4396   cmpq(empty_fixed_array_value,
4397        FieldOperand(rcx, JSObject::kElementsOffset));
4398   j(not_equal, call_runtime);
4399
4400   // Check that instance descriptors are not empty so that we can
4401   // check for an enum cache.  Leave the map in rbx for the subsequent
4402   // prototype load.
4403   movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
4404   movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOrBitField3Offset));
4405   JumpIfSmi(rdx, call_runtime);
4406
4407   // Check that there is an enum cache in the non-empty instance
4408   // descriptors (rdx).  This is the case if the next enumeration
4409   // index field does not contain a smi.
4410   movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
4411   JumpIfSmi(rdx, call_runtime);
4412
4413   // For all objects but the receiver, check that the cache is empty.
4414   Label check_prototype;
4415   cmpq(rcx, rax);
4416   j(equal, &check_prototype, Label::kNear);
4417   movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
4418   cmpq(rdx, empty_fixed_array_value);
4419   j(not_equal, call_runtime);
4420
4421   // Load the prototype from the map and loop if non-null.
4422   bind(&check_prototype);
4423   movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
4424   cmpq(rcx, null_value);
4425   j(not_equal, &next);
4426 }
4427
4428
4429 } }  // namespace v8::internal
4430
4431 #endif  // V8_TARGET_ARCH_X64