[V8] Introduce a QML compilation mode
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / store-buffer.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "store-buffer.h"
31 #include "store-buffer-inl.h"
32 #include "v8-counters.h"
33
34 namespace v8 {
35 namespace internal {
36
37 StoreBuffer::StoreBuffer(Heap* heap)
38     : heap_(heap),
39       start_(NULL),
40       limit_(NULL),
41       old_start_(NULL),
42       old_limit_(NULL),
43       old_top_(NULL),
44       old_reserved_limit_(NULL),
45       old_buffer_is_sorted_(false),
46       old_buffer_is_filtered_(false),
47       during_gc_(false),
48       store_buffer_rebuilding_enabled_(false),
49       callback_(NULL),
50       may_move_store_buffer_entries_(true),
51       virtual_memory_(NULL),
52       hash_set_1_(NULL),
53       hash_set_2_(NULL),
54       hash_sets_are_empty_(true) {
55 }
56
57
58 void StoreBuffer::SetUp() {
59   virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
60   uintptr_t start_as_int =
61       reinterpret_cast<uintptr_t>(virtual_memory_->address());
62   start_ =
63       reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
64   limit_ = start_ + (kStoreBufferSize / kPointerSize);
65
66   old_virtual_memory_ =
67       new VirtualMemory(kOldStoreBufferLength * kPointerSize);
68   old_top_ = old_start_ =
69       reinterpret_cast<Address*>(old_virtual_memory_->address());
70   // Don't know the alignment requirements of the OS, but it is certainly not
71   // less than 0xfff.
72   ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
73   int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
74   ASSERT(initial_length > 0);
75   ASSERT(initial_length <= kOldStoreBufferLength);
76   old_limit_ = old_start_ + initial_length;
77   old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
78
79   CHECK(old_virtual_memory_->Commit(
80             reinterpret_cast<void*>(old_start_),
81             (old_limit_ - old_start_) * kPointerSize,
82             false));
83
84   ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
85   ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
86   Address* vm_limit = reinterpret_cast<Address*>(
87       reinterpret_cast<char*>(virtual_memory_->address()) +
88           virtual_memory_->size());
89   ASSERT(start_ <= vm_limit);
90   ASSERT(limit_ <= vm_limit);
91   USE(vm_limit);
92   ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
93   ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
94          0);
95
96   CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
97                                 kStoreBufferSize,
98                                 false));  // Not executable.
99   heap_->public_set_store_buffer_top(start_);
100
101   hash_set_1_ = new uintptr_t[kHashSetLength];
102   hash_set_2_ = new uintptr_t[kHashSetLength];
103   hash_sets_are_empty_ = false;
104
105   ClearFilteringHashSets();
106 }
107
108
109 void StoreBuffer::TearDown() {
110   delete virtual_memory_;
111   delete old_virtual_memory_;
112   delete[] hash_set_1_;
113   delete[] hash_set_2_;
114   old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
115   start_ = limit_ = NULL;
116   heap_->public_set_store_buffer_top(start_);
117 }
118
119
120 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
121   isolate->heap()->store_buffer()->Compact();
122 }
123
124
125 #if V8_TARGET_ARCH_X64
126 static int CompareAddresses(const void* void_a, const void* void_b) {
127   intptr_t a =
128       reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
129   intptr_t b =
130       reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
131   // Unfortunately if int is smaller than intptr_t there is no branch-free
132   // way to return a number with the same sign as the difference between the
133   // pointers.
134   if (a == b) return 0;
135   if (a < b) return -1;
136   ASSERT(a > b);
137   return 1;
138 }
139 #else
140 static int CompareAddresses(const void* void_a, const void* void_b) {
141   intptr_t a =
142       reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_a));
143   intptr_t b =
144       reinterpret_cast<intptr_t>(*reinterpret_cast<const Address*>(void_b));
145   ASSERT(sizeof(1) == sizeof(a));
146   // Shift down to avoid wraparound.
147   return (a >> kPointerSizeLog2) - (b >> kPointerSizeLog2);
148 }
149 #endif
150
151
152 void StoreBuffer::Uniq() {
153   // Remove adjacent duplicates and cells that do not point at new space.
154   Address previous = NULL;
155   Address* write = old_start_;
156   ASSERT(may_move_store_buffer_entries_);
157   for (Address* read = old_start_; read < old_top_; read++) {
158     Address current = *read;
159     if (current != previous) {
160       if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
161         *write++ = current;
162       }
163     }
164     previous = current;
165   }
166   old_top_ = write;
167 }
168
169
170 void StoreBuffer::EnsureSpace(intptr_t space_needed) {
171   while (old_limit_ - old_top_ < space_needed &&
172          old_limit_ < old_reserved_limit_) {
173     size_t grow = old_limit_ - old_start_;  // Double size.
174     CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
175                                       grow * kPointerSize,
176                                       false));
177     old_limit_ += grow;
178   }
179
180   if (old_limit_ - old_top_ >= space_needed) return;
181
182   if (old_buffer_is_filtered_) return;
183   ASSERT(may_move_store_buffer_entries_);
184   Compact();
185
186   old_buffer_is_filtered_ = true;
187   bool page_has_scan_on_scavenge_flag = false;
188
189   PointerChunkIterator it(heap_);
190   MemoryChunk* chunk;
191   while ((chunk = it.next()) != NULL) {
192     if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
193   }
194
195   if (page_has_scan_on_scavenge_flag) {
196     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
197   }
198
199   // If filtering out the entries from scan_on_scavenge pages got us down to
200   // less than half full, then we are satisfied with that.
201   if (old_limit_ - old_top_ > old_top_ - old_start_) return;
202
203   // Sample 1 entry in 97 and filter out the pages where we estimate that more
204   // than 1 in 8 pointers are to new space.
205   static const int kSampleFinenesses = 5;
206   static const struct Samples {
207     int prime_sample_step;
208     int threshold;
209   } samples[kSampleFinenesses] =  {
210     { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
211     { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
212     { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
213     { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
214     { 1, 0}
215   };
216   for (int i = kSampleFinenesses - 1; i >= 0; i--) {
217     ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
218     // As a last resort we mark all pages as being exempt from the store buffer.
219     ASSERT(i != 0 || old_top_ == old_start_);
220     if (old_limit_ - old_top_ > old_top_ - old_start_) return;
221   }
222   UNREACHABLE();
223 }
224
225
226 // Sample the store buffer to see if some pages are taking up a lot of space
227 // in the store buffer.
228 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
229   PointerChunkIterator it(heap_);
230   MemoryChunk* chunk;
231   while ((chunk = it.next()) != NULL) {
232     chunk->set_store_buffer_counter(0);
233   }
234   bool created_new_scan_on_scavenge_pages = false;
235   MemoryChunk* previous_chunk = NULL;
236   for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
237     Address addr = *p;
238     MemoryChunk* containing_chunk = NULL;
239     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
240       containing_chunk = previous_chunk;
241     } else {
242       containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
243     }
244     int old_counter = containing_chunk->store_buffer_counter();
245     if (old_counter == threshold) {
246       containing_chunk->set_scan_on_scavenge(true);
247       created_new_scan_on_scavenge_pages = true;
248     }
249     containing_chunk->set_store_buffer_counter(old_counter + 1);
250     previous_chunk = containing_chunk;
251   }
252   if (created_new_scan_on_scavenge_pages) {
253     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
254   }
255   old_buffer_is_filtered_ = true;
256 }
257
258
259 void StoreBuffer::Filter(int flag) {
260   Address* new_top = old_start_;
261   MemoryChunk* previous_chunk = NULL;
262   for (Address* p = old_start_; p < old_top_; p++) {
263     Address addr = *p;
264     MemoryChunk* containing_chunk = NULL;
265     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
266       containing_chunk = previous_chunk;
267     } else {
268       containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
269       previous_chunk = containing_chunk;
270     }
271     if (!containing_chunk->IsFlagSet(flag)) {
272       *new_top++ = addr;
273     }
274   }
275   old_top_ = new_top;
276
277   // Filtering hash sets are inconsistent with the store buffer after this
278   // operation.
279   ClearFilteringHashSets();
280 }
281
282
283 void StoreBuffer::SortUniq() {
284   Compact();
285   if (old_buffer_is_sorted_) return;
286   qsort(reinterpret_cast<void*>(old_start_),
287         old_top_ - old_start_,
288         sizeof(*old_top_),
289         &CompareAddresses);
290   Uniq();
291
292   old_buffer_is_sorted_ = true;
293
294   // Filtering hash sets are inconsistent with the store buffer after this
295   // operation.
296   ClearFilteringHashSets();
297 }
298
299
300 bool StoreBuffer::PrepareForIteration() {
301   Compact();
302   PointerChunkIterator it(heap_);
303   MemoryChunk* chunk;
304   bool page_has_scan_on_scavenge_flag = false;
305   while ((chunk = it.next()) != NULL) {
306     if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
307   }
308
309   if (page_has_scan_on_scavenge_flag) {
310     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
311   }
312
313   // Filtering hash sets are inconsistent with the store buffer after
314   // iteration.
315   ClearFilteringHashSets();
316
317   return page_has_scan_on_scavenge_flag;
318 }
319
320
321 #ifdef DEBUG
322 void StoreBuffer::Clean() {
323   ClearFilteringHashSets();
324   Uniq();  // Also removes things that no longer point to new space.
325   CheckForFullBuffer();
326 }
327
328
329 static Address* in_store_buffer_1_element_cache = NULL;
330
331
332 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
333   if (!FLAG_enable_slow_asserts) return true;
334   if (in_store_buffer_1_element_cache != NULL &&
335       *in_store_buffer_1_element_cache == cell_address) {
336     return true;
337   }
338   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
339   for (Address* current = top - 1; current >= start_; current--) {
340     if (*current == cell_address) {
341       in_store_buffer_1_element_cache = current;
342       return true;
343     }
344   }
345   for (Address* current = old_top_ - 1; current >= old_start_; current--) {
346     if (*current == cell_address) {
347       in_store_buffer_1_element_cache = current;
348       return true;
349     }
350   }
351   return false;
352 }
353 #endif
354
355
356 void StoreBuffer::ClearFilteringHashSets() {
357   if (!hash_sets_are_empty_) {
358     memset(reinterpret_cast<void*>(hash_set_1_),
359            0,
360            sizeof(uintptr_t) * kHashSetLength);
361     memset(reinterpret_cast<void*>(hash_set_2_),
362            0,
363            sizeof(uintptr_t) * kHashSetLength);
364     hash_sets_are_empty_ = true;
365   }
366 }
367
368
369 void StoreBuffer::GCPrologue() {
370   ClearFilteringHashSets();
371   during_gc_ = true;
372 }
373
374
375 #ifdef DEBUG
376 static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
377   // Do nothing.
378 }
379
380
381 void StoreBuffer::VerifyPointers(PagedSpace* space,
382                                  RegionCallback region_callback) {
383   PageIterator it(space);
384
385   while (it.has_next()) {
386     Page* page = it.next();
387     FindPointersToNewSpaceOnPage(
388         reinterpret_cast<PagedSpace*>(page->owner()),
389         page,
390         region_callback,
391         &DummyScavengePointer);
392   }
393 }
394
395
396 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
397   LargeObjectIterator it(space);
398   for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
399     if (object->IsFixedArray()) {
400       Address slot_address = object->address();
401       Address end = object->address() + object->Size();
402
403       while (slot_address < end) {
404         HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
405         // When we are not in GC the Heap::InNewSpace() predicate
406         // checks that pointers which satisfy predicate point into
407         // the active semispace.
408         heap_->InNewSpace(*slot);
409         slot_address += kPointerSize;
410       }
411     }
412   }
413 }
414 #endif
415
416
417 void StoreBuffer::Verify() {
418 #ifdef DEBUG
419   VerifyPointers(heap_->old_pointer_space(),
420                  &StoreBuffer::FindPointersToNewSpaceInRegion);
421   VerifyPointers(heap_->map_space(),
422                  &StoreBuffer::FindPointersToNewSpaceInMapsRegion);
423   VerifyPointers(heap_->lo_space());
424 #endif
425 }
426
427
428 void StoreBuffer::GCEpilogue() {
429   during_gc_ = false;
430   if (FLAG_verify_heap) {
431     Verify();
432   }
433 }
434
435
436 void StoreBuffer::FindPointersToNewSpaceInRegion(
437     Address start, Address end, ObjectSlotCallback slot_callback) {
438   for (Address slot_address = start;
439        slot_address < end;
440        slot_address += kPointerSize) {
441     Object** slot = reinterpret_cast<Object**>(slot_address);
442     if (heap_->InNewSpace(*slot)) {
443       HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
444       ASSERT(object->IsHeapObject());
445       slot_callback(reinterpret_cast<HeapObject**>(slot), object);
446       if (heap_->InNewSpace(*slot)) {
447         EnterDirectlyIntoStoreBuffer(slot_address);
448       }
449     }
450   }
451 }
452
453
454 // Compute start address of the first map following given addr.
455 static inline Address MapStartAlign(Address addr) {
456   Address page = Page::FromAddress(addr)->area_start();
457   return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
458 }
459
460
461 // Compute end address of the first map preceding given addr.
462 static inline Address MapEndAlign(Address addr) {
463   Address page = Page::FromAllocationTop(addr)->area_start();
464   return page + ((addr - page) / Map::kSize * Map::kSize);
465 }
466
467
468 void StoreBuffer::FindPointersToNewSpaceInMaps(
469     Address start,
470     Address end,
471     ObjectSlotCallback slot_callback) {
472   ASSERT(MapStartAlign(start) == start);
473   ASSERT(MapEndAlign(end) == end);
474
475   Address map_address = start;
476   while (map_address < end) {
477     ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
478     ASSERT(Memory::Object_at(map_address)->IsMap());
479
480     Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
481     Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
482
483     FindPointersToNewSpaceInRegion(pointer_fields_start,
484                                    pointer_fields_end,
485                                    slot_callback);
486     map_address += Map::kSize;
487   }
488 }
489
490
491 void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
492     Address start,
493     Address end,
494     ObjectSlotCallback slot_callback) {
495   Address map_aligned_start = MapStartAlign(start);
496   Address map_aligned_end   = MapEndAlign(end);
497
498   ASSERT(map_aligned_start == start);
499   ASSERT(map_aligned_end == end);
500
501   FindPointersToNewSpaceInMaps(map_aligned_start,
502                                map_aligned_end,
503                                slot_callback);
504 }
505
506
507 // This function iterates over all the pointers in a paged space in the heap,
508 // looking for pointers into new space.  Within the pages there may be dead
509 // objects that have not been overwritten by free spaces or fillers because of
510 // lazy sweeping.  These dead objects may not contain pointers to new space.
511 // The garbage areas that have been swept properly (these will normally be the
512 // large ones) will be marked with free space and filler map words.  In
513 // addition any area that has never been used at all for object allocation must
514 // be marked with a free space or filler.  Because the free space and filler
515 // maps do not move we can always recognize these even after a compaction.
516 // Normal objects like FixedArrays and JSObjects should not contain references
517 // to these maps.  The special garbage section (see comment in spaces.h) is
518 // skipped since it can contain absolutely anything.  Any objects that are
519 // allocated during iteration may or may not be visited by the iteration, but
520 // they will not be partially visited.
521 void StoreBuffer::FindPointersToNewSpaceOnPage(
522     PagedSpace* space,
523     Page* page,
524     RegionCallback region_callback,
525     ObjectSlotCallback slot_callback) {
526   Address visitable_start = page->area_start();
527   Address end_of_page = page->area_end();
528
529   Address visitable_end = visitable_start;
530
531   Object* free_space_map = heap_->free_space_map();
532   Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
533
534   while (visitable_end < end_of_page) {
535     Object* o = *reinterpret_cast<Object**>(visitable_end);
536     // Skip fillers but not things that look like fillers in the special
537     // garbage section which can contain anything.
538     if (o == free_space_map ||
539         o == two_pointer_filler_map ||
540         (visitable_end == space->top() && visitable_end != space->limit())) {
541       if (visitable_start != visitable_end) {
542         // After calling this the special garbage section may have moved.
543         (this->*region_callback)(visitable_start,
544                                  visitable_end,
545                                  slot_callback);
546         if (visitable_end >= space->top() && visitable_end < space->limit()) {
547           visitable_end = space->limit();
548           visitable_start = visitable_end;
549           continue;
550         }
551       }
552       if (visitable_end == space->top() && visitable_end != space->limit()) {
553         visitable_start = visitable_end = space->limit();
554       } else {
555         // At this point we are either at the start of a filler or we are at
556         // the point where the space->top() used to be before the
557         // visit_pointer_region call above.  Either way we can skip the
558         // object at the current spot:  We don't promise to visit objects
559         // allocated during heap traversal, and if space->top() moved then it
560         // must be because an object was allocated at this point.
561         visitable_start =
562             visitable_end + HeapObject::FromAddress(visitable_end)->Size();
563         visitable_end = visitable_start;
564       }
565     } else {
566       ASSERT(o != free_space_map);
567       ASSERT(o != two_pointer_filler_map);
568       ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
569       visitable_end += kPointerSize;
570     }
571   }
572   ASSERT(visitable_end == end_of_page);
573   if (visitable_start != visitable_end) {
574     (this->*region_callback)(visitable_start,
575                              visitable_end,
576                              slot_callback);
577   }
578 }
579
580
581 void StoreBuffer::IteratePointersInStoreBuffer(
582     ObjectSlotCallback slot_callback) {
583   Address* limit = old_top_;
584   old_top_ = old_start_;
585   {
586     DontMoveStoreBufferEntriesScope scope(this);
587     for (Address* current = old_start_; current < limit; current++) {
588 #ifdef DEBUG
589       Address* saved_top = old_top_;
590 #endif
591       Object** slot = reinterpret_cast<Object**>(*current);
592       Object* object = *slot;
593       if (heap_->InFromSpace(object)) {
594         HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
595         slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
596         if (heap_->InNewSpace(*slot)) {
597           EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
598         }
599       }
600       ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
601     }
602   }
603 }
604
605
606 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
607   // We do not sort or remove duplicated entries from the store buffer because
608   // we expect that callback will rebuild the store buffer thus removing
609   // all duplicates and pointers to old space.
610   bool some_pages_to_scan = PrepareForIteration();
611
612   // TODO(gc): we want to skip slots on evacuation candidates
613   // but we can't simply figure that out from slot address
614   // because slot can belong to a large object.
615   IteratePointersInStoreBuffer(slot_callback);
616
617   // We are done scanning all the pointers that were in the store buffer, but
618   // there may be some pages marked scan_on_scavenge that have pointers to new
619   // space that are not in the store buffer.  We must scan them now.  As we
620   // scan, the surviving pointers to new space will be added to the store
621   // buffer.  If there are still a lot of pointers to new space then we will
622   // keep the scan_on_scavenge flag on the page and discard the pointers that
623   // were added to the store buffer.  If there are not many pointers to new
624   // space left on the page we will keep the pointers in the store buffer and
625   // remove the flag from the page.
626   if (some_pages_to_scan) {
627     if (callback_ != NULL) {
628       (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
629     }
630     PointerChunkIterator it(heap_);
631     MemoryChunk* chunk;
632     while ((chunk = it.next()) != NULL) {
633       if (chunk->scan_on_scavenge()) {
634         chunk->set_scan_on_scavenge(false);
635         if (callback_ != NULL) {
636           (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
637         }
638         if (chunk->owner() == heap_->lo_space()) {
639           LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
640           HeapObject* array = large_page->GetObject();
641           ASSERT(array->IsFixedArray());
642           Address start = array->address();
643           Address end = start + array->Size();
644           FindPointersToNewSpaceInRegion(start, end, slot_callback);
645         } else {
646           Page* page = reinterpret_cast<Page*>(chunk);
647           PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
648           FindPointersToNewSpaceOnPage(
649               owner,
650               page,
651               (owner == heap_->map_space() ?
652                  &StoreBuffer::FindPointersToNewSpaceInMapsRegion :
653                  &StoreBuffer::FindPointersToNewSpaceInRegion),
654               slot_callback);
655         }
656       }
657     }
658     if (callback_ != NULL) {
659       (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
660     }
661   }
662 }
663
664
665 void StoreBuffer::Compact() {
666   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
667
668   if (top == start_) return;
669
670   // There's no check of the limit in the loop below so we check here for
671   // the worst case (compaction doesn't eliminate any pointers).
672   ASSERT(top <= limit_);
673   heap_->public_set_store_buffer_top(start_);
674   EnsureSpace(top - start_);
675   ASSERT(may_move_store_buffer_entries_);
676   // Goes through the addresses in the store buffer attempting to remove
677   // duplicates.  In the interest of speed this is a lossy operation.  Some
678   // duplicates will remain.  We have two hash sets with different hash
679   // functions to reduce the number of unnecessary clashes.
680   hash_sets_are_empty_ = false;  // Hash sets are in use.
681   for (Address* current = start_; current < top; current++) {
682     ASSERT(!heap_->cell_space()->Contains(*current));
683     ASSERT(!heap_->code_space()->Contains(*current));
684     ASSERT(!heap_->old_data_space()->Contains(*current));
685     uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
686     // Shift out the last bits including any tags.
687     int_addr >>= kPointerSizeLog2;
688     int hash1 =
689         ((int_addr ^ (int_addr >> kHashSetLengthLog2)) & (kHashSetLength - 1));
690     if (hash_set_1_[hash1] == int_addr) continue;
691     uintptr_t hash2 = (int_addr - (int_addr >> kHashSetLengthLog2));
692     hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
693     hash2 &= (kHashSetLength - 1);
694     if (hash_set_2_[hash2] == int_addr) continue;
695     if (hash_set_1_[hash1] == 0) {
696       hash_set_1_[hash1] = int_addr;
697     } else if (hash_set_2_[hash2] == 0) {
698       hash_set_2_[hash2] = int_addr;
699     } else {
700       // Rather than slowing down we just throw away some entries.  This will
701       // cause some duplicates to remain undetected.
702       hash_set_1_[hash1] = int_addr;
703       hash_set_2_[hash2] = 0;
704     }
705     old_buffer_is_sorted_ = false;
706     old_buffer_is_filtered_ = false;
707     *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
708     ASSERT(old_top_ <= old_limit_);
709   }
710   heap_->isolate()->counters()->store_buffer_compactions()->Increment();
711   CheckForFullBuffer();
712 }
713
714
715 void StoreBuffer::CheckForFullBuffer() {
716   EnsureSpace(kStoreBufferSize * 2);
717 }
718
719 } }  // namespace v8::internal