[V8] Introduce a QML compilation mode
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / spaces-inl.h
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_SPACES_INL_H_
29 #define V8_SPACES_INL_H_
30
31 #include "isolate.h"
32 #include "spaces.h"
33 #include "v8memory.h"
34
35 namespace v8 {
36 namespace internal {
37
38
39 // -----------------------------------------------------------------------------
40 // Bitmap
41
42 void Bitmap::Clear(MemoryChunk* chunk) {
43   Bitmap* bitmap = chunk->markbits();
44   for (int i = 0; i < bitmap->CellsCount(); i++) bitmap->cells()[i] = 0;
45   chunk->ResetLiveBytes();
46 }
47
48
49 // -----------------------------------------------------------------------------
50 // PageIterator
51
52
53 PageIterator::PageIterator(PagedSpace* space)
54     : space_(space),
55       prev_page_(&space->anchor_),
56       next_page_(prev_page_->next_page()) { }
57
58
59 bool PageIterator::has_next() {
60   return next_page_ != &space_->anchor_;
61 }
62
63
64 Page* PageIterator::next() {
65   ASSERT(has_next());
66   prev_page_ = next_page_;
67   next_page_ = next_page_->next_page();
68   return prev_page_;
69 }
70
71
72 // -----------------------------------------------------------------------------
73 // NewSpacePageIterator
74
75
76 NewSpacePageIterator::NewSpacePageIterator(NewSpace* space)
77     : prev_page_(NewSpacePage::FromAddress(space->ToSpaceStart())->prev_page()),
78       next_page_(NewSpacePage::FromAddress(space->ToSpaceStart())),
79       last_page_(NewSpacePage::FromLimit(space->ToSpaceEnd())) { }
80
81 NewSpacePageIterator::NewSpacePageIterator(SemiSpace* space)
82     : prev_page_(space->anchor()),
83       next_page_(prev_page_->next_page()),
84       last_page_(prev_page_->prev_page()) { }
85
86 NewSpacePageIterator::NewSpacePageIterator(Address start, Address limit)
87     : prev_page_(NewSpacePage::FromAddress(start)->prev_page()),
88       next_page_(NewSpacePage::FromAddress(start)),
89       last_page_(NewSpacePage::FromLimit(limit)) {
90   SemiSpace::AssertValidRange(start, limit);
91 }
92
93
94 bool NewSpacePageIterator::has_next() {
95   return prev_page_ != last_page_;
96 }
97
98
99 NewSpacePage* NewSpacePageIterator::next() {
100   ASSERT(has_next());
101   prev_page_ = next_page_;
102   next_page_ = next_page_->next_page();
103   return prev_page_;
104 }
105
106
107 // -----------------------------------------------------------------------------
108 // HeapObjectIterator
109 HeapObject* HeapObjectIterator::FromCurrentPage() {
110   while (cur_addr_ != cur_end_) {
111     if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) {
112       cur_addr_ = space_->limit();
113       continue;
114     }
115     HeapObject* obj = HeapObject::FromAddress(cur_addr_);
116     int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
117     cur_addr_ += obj_size;
118     ASSERT(cur_addr_ <= cur_end_);
119     if (!obj->IsFiller()) {
120       ASSERT_OBJECT_SIZE(obj_size);
121       return obj;
122     }
123   }
124   return NULL;
125 }
126
127
128 // -----------------------------------------------------------------------------
129 // MemoryAllocator
130
131 #ifdef ENABLE_HEAP_PROTECTION
132
133 void MemoryAllocator::Protect(Address start, size_t size) {
134   OS::Protect(start, size);
135 }
136
137
138 void MemoryAllocator::Unprotect(Address start,
139                                 size_t size,
140                                 Executability executable) {
141   OS::Unprotect(start, size, executable);
142 }
143
144
145 void MemoryAllocator::ProtectChunkFromPage(Page* page) {
146   int id = GetChunkId(page);
147   OS::Protect(chunks_[id].address(), chunks_[id].size());
148 }
149
150
151 void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
152   int id = GetChunkId(page);
153   OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
154                 chunks_[id].owner()->executable() == EXECUTABLE);
155 }
156
157 #endif
158
159
160 // --------------------------------------------------------------------------
161 // PagedSpace
162 Page* Page::Initialize(Heap* heap,
163                        MemoryChunk* chunk,
164                        Executability executable,
165                        PagedSpace* owner) {
166   Page* page = reinterpret_cast<Page*>(chunk);
167   ASSERT(chunk->size() <= static_cast<size_t>(kPageSize));
168   ASSERT(chunk->owner() == owner);
169   owner->IncreaseCapacity(page->area_size());
170   owner->Free(page->area_start(), page->area_size());
171
172   heap->incremental_marking()->SetOldSpacePageFlags(chunk);
173
174   return page;
175 }
176
177
178 bool PagedSpace::Contains(Address addr) {
179   Page* p = Page::FromAddress(addr);
180   if (!p->is_valid()) return false;
181   return p->owner() == this;
182 }
183
184
185 void MemoryChunk::set_scan_on_scavenge(bool scan) {
186   if (scan) {
187     if (!scan_on_scavenge()) heap_->increment_scan_on_scavenge_pages();
188     SetFlag(SCAN_ON_SCAVENGE);
189   } else {
190     if (scan_on_scavenge()) heap_->decrement_scan_on_scavenge_pages();
191     ClearFlag(SCAN_ON_SCAVENGE);
192   }
193   heap_->incremental_marking()->SetOldSpacePageFlags(this);
194 }
195
196
197 MemoryChunk* MemoryChunk::FromAnyPointerAddress(Address addr) {
198   MemoryChunk* maybe = reinterpret_cast<MemoryChunk*>(
199       OffsetFrom(addr) & ~Page::kPageAlignmentMask);
200   if (maybe->owner() != NULL) return maybe;
201   LargeObjectIterator iterator(HEAP->lo_space());
202   for (HeapObject* o = iterator.Next(); o != NULL; o = iterator.Next()) {
203     // Fixed arrays are the only pointer-containing objects in large object
204     // space.
205     if (o->IsFixedArray()) {
206       MemoryChunk* chunk = MemoryChunk::FromAddress(o->address());
207       if (chunk->Contains(addr)) {
208         return chunk;
209       }
210     }
211   }
212   UNREACHABLE();
213   return NULL;
214 }
215
216
217 PointerChunkIterator::PointerChunkIterator(Heap* heap)
218     : state_(kOldPointerState),
219       old_pointer_iterator_(heap->old_pointer_space()),
220       map_iterator_(heap->map_space()),
221       lo_iterator_(heap->lo_space()) { }
222
223
224 Page* Page::next_page() {
225   ASSERT(next_chunk()->owner() == owner());
226   return static_cast<Page*>(next_chunk());
227 }
228
229
230 Page* Page::prev_page() {
231   ASSERT(prev_chunk()->owner() == owner());
232   return static_cast<Page*>(prev_chunk());
233 }
234
235
236 void Page::set_next_page(Page* page) {
237   ASSERT(page->owner() == owner());
238   set_next_chunk(page);
239 }
240
241
242 void Page::set_prev_page(Page* page) {
243   ASSERT(page->owner() == owner());
244   set_prev_chunk(page);
245 }
246
247
248 // Try linear allocation in the page of alloc_info's allocation top.  Does
249 // not contain slow case logic (e.g. move to the next page or try free list
250 // allocation) so it can be used by all the allocation functions and for all
251 // the paged spaces.
252 HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
253   Address current_top = allocation_info_.top;
254   Address new_top = current_top + size_in_bytes;
255   if (new_top > allocation_info_.limit) return NULL;
256
257   allocation_info_.top = new_top;
258   return HeapObject::FromAddress(current_top);
259 }
260
261
262 // Raw allocation.
263 MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) {
264   HeapObject* object = AllocateLinearly(size_in_bytes);
265   if (object != NULL) {
266     if (identity() == CODE_SPACE) {
267       SkipList::Update(object->address(), size_in_bytes);
268     }
269     return object;
270   }
271
272   object = free_list_.Allocate(size_in_bytes);
273   if (object != NULL) {
274     if (identity() == CODE_SPACE) {
275       SkipList::Update(object->address(), size_in_bytes);
276     }
277     return object;
278   }
279
280   object = SlowAllocateRaw(size_in_bytes);
281   if (object != NULL) {
282     if (identity() == CODE_SPACE) {
283       SkipList::Update(object->address(), size_in_bytes);
284     }
285     return object;
286   }
287
288   return Failure::RetryAfterGC(identity());
289 }
290
291
292 // -----------------------------------------------------------------------------
293 // NewSpace
294
295
296 MaybeObject* NewSpace::AllocateRaw(int size_in_bytes) {
297   Address old_top = allocation_info_.top;
298 #ifdef DEBUG
299   // If we are stressing compaction we waste some memory in new space
300   // in order to get more frequent GCs.
301   if (FLAG_stress_compaction && !HEAP->linear_allocation()) {
302     if (allocation_info_.limit - old_top >= size_in_bytes * 4) {
303       int filler_size = size_in_bytes * 4;
304       for (int i = 0; i < filler_size; i += kPointerSize) {
305         *(reinterpret_cast<Object**>(old_top + i)) =
306             HEAP->one_pointer_filler_map();
307       }
308       old_top += filler_size;
309       allocation_info_.top += filler_size;
310     }
311   }
312 #endif
313
314   if (allocation_info_.limit - old_top < size_in_bytes) {
315     return SlowAllocateRaw(size_in_bytes);
316   }
317
318   Object* obj = HeapObject::FromAddress(old_top);
319   allocation_info_.top += size_in_bytes;
320   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
321
322   return obj;
323 }
324
325
326 LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk) {
327   heap->incremental_marking()->SetOldSpacePageFlags(chunk);
328   return static_cast<LargePage*>(chunk);
329 }
330
331
332 intptr_t LargeObjectSpace::Available() {
333   return ObjectSizeFor(heap()->isolate()->memory_allocator()->Available());
334 }
335
336
337 template <typename StringType>
338 void NewSpace::ShrinkStringAtAllocationBoundary(String* string, int length) {
339   ASSERT(length <= string->length());
340   ASSERT(string->IsSeqString());
341   ASSERT(string->address() + StringType::SizeFor(string->length()) ==
342          allocation_info_.top);
343   Address old_top = allocation_info_.top;
344   allocation_info_.top =
345       string->address() + StringType::SizeFor(length);
346   string->set_length(length);
347   if (Marking::IsBlack(Marking::MarkBitFrom(string))) {
348     int delta = static_cast<int>(old_top - allocation_info_.top);
349     MemoryChunk::IncrementLiveBytesFromMutator(string->address(), -delta);
350   }
351 }
352
353
354 bool FreeListNode::IsFreeListNode(HeapObject* object) {
355   Map* map = object->map();
356   Heap* heap = object->GetHeap();
357   return map == heap->raw_unchecked_free_space_map()
358       || map == heap->raw_unchecked_one_pointer_filler_map()
359       || map == heap->raw_unchecked_two_pointer_filler_map();
360 }
361
362 } }  // namespace v8::internal
363
364 #endif  // V8_SPACES_INL_H_