[V8] Generalize external object resources
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / lithium-allocator.h
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef V8_LITHIUM_ALLOCATOR_H_
29 #define V8_LITHIUM_ALLOCATOR_H_
30
31 #include "v8.h"
32
33 #include "allocation.h"
34 #include "lithium.h"
35 #include "zone.h"
36
37 namespace v8 {
38 namespace internal {
39
40 // Forward declarations.
41 class HBasicBlock;
42 class HGraph;
43 class HInstruction;
44 class HPhi;
45 class HTracer;
46 class HValue;
47 class BitVector;
48 class StringStream;
49
50 class LArgument;
51 class LChunk;
52 class LOperand;
53 class LUnallocated;
54 class LConstantOperand;
55 class LGap;
56 class LParallelMove;
57 class LPointerMap;
58 class LStackSlot;
59 class LRegister;
60
61
62 // This class represents a single point of a LOperand's lifetime.
63 // For each lithium instruction there are exactly two lifetime positions:
64 // the beginning and the end of the instruction. Lifetime positions for
65 // different lithium instructions are disjoint.
66 class LifetimePosition {
67  public:
68   // Return the lifetime position that corresponds to the beginning of
69   // the instruction with the given index.
70   static LifetimePosition FromInstructionIndex(int index) {
71     return LifetimePosition(index * kStep);
72   }
73
74   // Returns a numeric representation of this lifetime position.
75   int Value() const {
76     return value_;
77   }
78
79   // Returns the index of the instruction to which this lifetime position
80   // corresponds.
81   int InstructionIndex() const {
82     ASSERT(IsValid());
83     return value_ / kStep;
84   }
85
86   // Returns true if this lifetime position corresponds to the instruction
87   // start.
88   bool IsInstructionStart() const {
89     return (value_ & (kStep - 1)) == 0;
90   }
91
92   // Returns the lifetime position for the start of the instruction which
93   // corresponds to this lifetime position.
94   LifetimePosition InstructionStart() const {
95     ASSERT(IsValid());
96     return LifetimePosition(value_ & ~(kStep - 1));
97   }
98
99   // Returns the lifetime position for the end of the instruction which
100   // corresponds to this lifetime position.
101   LifetimePosition InstructionEnd() const {
102     ASSERT(IsValid());
103     return LifetimePosition(InstructionStart().Value() + kStep/2);
104   }
105
106   // Returns the lifetime position for the beginning of the next instruction.
107   LifetimePosition NextInstruction() const {
108     ASSERT(IsValid());
109     return LifetimePosition(InstructionStart().Value() + kStep);
110   }
111
112   // Returns the lifetime position for the beginning of the previous
113   // instruction.
114   LifetimePosition PrevInstruction() const {
115     ASSERT(IsValid());
116     ASSERT(value_ > 1);
117     return LifetimePosition(InstructionStart().Value() - kStep);
118   }
119
120   // Constructs the lifetime position which does not correspond to any
121   // instruction.
122   LifetimePosition() : value_(-1) {}
123
124   // Returns true if this lifetime positions corrensponds to some
125   // instruction.
126   bool IsValid() const { return value_ != -1; }
127
128   static inline LifetimePosition Invalid() { return LifetimePosition(); }
129
130   static inline LifetimePosition MaxPosition() {
131     // We have to use this kind of getter instead of static member due to
132     // crash bug in GDB.
133     return LifetimePosition(kMaxInt);
134   }
135
136  private:
137   static const int kStep = 2;
138
139   // Code relies on kStep being a power of two.
140   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
141
142   explicit LifetimePosition(int value) : value_(value) { }
143
144   int value_;
145 };
146
147
148 enum RegisterKind {
149   GENERAL_REGISTERS,
150   DOUBLE_REGISTERS
151 };
152
153
154 // A register-allocator view of a Lithium instruction. It contains the id of
155 // the output operand and a list of input operand uses.
156
157 class LInstruction;
158 class LEnvironment;
159
160 // Iterator for non-null temp operands.
161 class TempIterator BASE_EMBEDDED {
162  public:
163   inline explicit TempIterator(LInstruction* instr);
164   inline bool Done();
165   inline LOperand* Current();
166   inline void Advance();
167
168  private:
169   inline void SkipUninteresting();
170   LInstruction* instr_;
171   int limit_;
172   int current_;
173 };
174
175
176 // Iterator for non-constant input operands.
177 class InputIterator BASE_EMBEDDED {
178  public:
179   inline explicit InputIterator(LInstruction* instr);
180   inline bool Done();
181   inline LOperand* Current();
182   inline void Advance();
183
184  private:
185   inline void SkipUninteresting();
186   LInstruction* instr_;
187   int limit_;
188   int current_;
189 };
190
191
192 class UseIterator BASE_EMBEDDED {
193  public:
194   inline explicit UseIterator(LInstruction* instr);
195   inline bool Done();
196   inline LOperand* Current();
197   inline void Advance();
198
199  private:
200   InputIterator input_iterator_;
201   DeepIterator env_iterator_;
202 };
203
204
205 // Representation of the non-empty interval [start,end[.
206 class UseInterval: public ZoneObject {
207  public:
208   UseInterval(LifetimePosition start, LifetimePosition end)
209       : start_(start), end_(end), next_(NULL) {
210     ASSERT(start.Value() < end.Value());
211   }
212
213   LifetimePosition start() const { return start_; }
214   LifetimePosition end() const { return end_; }
215   UseInterval* next() const { return next_; }
216
217   // Split this interval at the given position without effecting the
218   // live range that owns it. The interval must contain the position.
219   void SplitAt(LifetimePosition pos, Zone* zone);
220
221   // If this interval intersects with other return smallest position
222   // that belongs to both of them.
223   LifetimePosition Intersect(const UseInterval* other) const {
224     if (other->start().Value() < start_.Value()) return other->Intersect(this);
225     if (other->start().Value() < end_.Value()) return other->start();
226     return LifetimePosition::Invalid();
227   }
228
229   bool Contains(LifetimePosition point) const {
230     return start_.Value() <= point.Value() && point.Value() < end_.Value();
231   }
232
233  private:
234   void set_start(LifetimePosition start) { start_ = start; }
235   void set_next(UseInterval* next) { next_ = next; }
236
237   LifetimePosition start_;
238   LifetimePosition end_;
239   UseInterval* next_;
240
241   friend class LiveRange;  // Assigns to start_.
242 };
243
244 // Representation of a use position.
245 class UsePosition: public ZoneObject {
246  public:
247   UsePosition(LifetimePosition pos, LOperand* operand);
248
249   LOperand* operand() const { return operand_; }
250   bool HasOperand() const { return operand_ != NULL; }
251
252   LOperand* hint() const { return hint_; }
253   void set_hint(LOperand* hint) { hint_ = hint; }
254   bool HasHint() const;
255   bool RequiresRegister() const;
256   bool RegisterIsBeneficial() const;
257
258   LifetimePosition pos() const { return pos_; }
259   UsePosition* next() const { return next_; }
260
261  private:
262   void set_next(UsePosition* next) { next_ = next; }
263
264   LOperand* operand_;
265   LOperand* hint_;
266   LifetimePosition pos_;
267   UsePosition* next_;
268   bool requires_reg_;
269   bool register_beneficial_;
270
271   friend class LiveRange;
272 };
273
274 // Representation of SSA values' live ranges as a collection of (continuous)
275 // intervals over the instruction ordering.
276 class LiveRange: public ZoneObject {
277  public:
278   static const int kInvalidAssignment = 0x7fffffff;
279
280   LiveRange(int id, Zone* zone);
281
282   UseInterval* first_interval() const { return first_interval_; }
283   UsePosition* first_pos() const { return first_pos_; }
284   LiveRange* parent() const { return parent_; }
285   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
286   LiveRange* next() const { return next_; }
287   bool IsChild() const { return parent() != NULL; }
288   int id() const { return id_; }
289   bool IsFixed() const { return id_ < 0; }
290   bool IsEmpty() const { return first_interval() == NULL; }
291   LOperand* CreateAssignedOperand(Zone* zone);
292   int assigned_register() const { return assigned_register_; }
293   int spill_start_index() const { return spill_start_index_; }
294   void set_assigned_register(int reg,
295                              RegisterKind register_kind,
296                              Zone* zone);
297   void MakeSpilled(Zone* zone);
298
299   // Returns use position in this live range that follows both start
300   // and last processed use position.
301   // Modifies internal state of live range!
302   UsePosition* NextUsePosition(LifetimePosition start);
303
304   // Returns use position for which register is required in this live
305   // range and which follows both start and last processed use position
306   // Modifies internal state of live range!
307   UsePosition* NextRegisterPosition(LifetimePosition start);
308
309   // Returns use position for which register is beneficial in this live
310   // range and which follows both start and last processed use position
311   // Modifies internal state of live range!
312   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
313
314   // Can this live range be spilled at this position.
315   bool CanBeSpilled(LifetimePosition pos);
316
317   // Split this live range at the given position which must follow the start of
318   // the range.
319   // All uses following the given position will be moved from this
320   // live range to the result live range.
321   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
322
323   bool IsDouble() const { return is_double_; }
324   bool HasRegisterAssigned() const {
325     return assigned_register_ != kInvalidAssignment;
326   }
327   bool IsSpilled() const { return spilled_; }
328   UsePosition* FirstPosWithHint() const;
329
330   LOperand* FirstHint() const {
331     UsePosition* pos = FirstPosWithHint();
332     if (pos != NULL) return pos->hint();
333     return NULL;
334   }
335
336   LifetimePosition Start() const {
337     ASSERT(!IsEmpty());
338     return first_interval()->start();
339   }
340
341   LifetimePosition End() const {
342     ASSERT(!IsEmpty());
343     return last_interval_->end();
344   }
345
346   bool HasAllocatedSpillOperand() const;
347   LOperand* GetSpillOperand() const { return spill_operand_; }
348   void SetSpillOperand(LOperand* operand);
349
350   void SetSpillStartIndex(int start) {
351     spill_start_index_ = Min(start, spill_start_index_);
352   }
353
354   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
355   bool CanCover(LifetimePosition position) const;
356   bool Covers(LifetimePosition position);
357   LifetimePosition FirstIntersection(LiveRange* other);
358
359   // Add a new interval or a new use position to this live range.
360   void EnsureInterval(LifetimePosition start,
361                       LifetimePosition end,
362                       Zone* zone);
363   void AddUseInterval(LifetimePosition start,
364                       LifetimePosition end,
365                       Zone* zone);
366   UsePosition* AddUsePosition(LifetimePosition pos,
367                               LOperand* operand,
368                               Zone* zone);
369
370   // Shorten the most recently added interval by setting a new start.
371   void ShortenTo(LifetimePosition start);
372
373 #ifdef DEBUG
374   // True if target overlaps an existing interval.
375   bool HasOverlap(UseInterval* target) const;
376   void Verify() const;
377 #endif
378
379  private:
380   void ConvertOperands(Zone* zone);
381   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
382   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
383                                   LifetimePosition but_not_past) const;
384
385   int id_;
386   bool spilled_;
387   bool is_double_;
388   int assigned_register_;
389   UseInterval* last_interval_;
390   UseInterval* first_interval_;
391   UsePosition* first_pos_;
392   LiveRange* parent_;
393   LiveRange* next_;
394   // This is used as a cache, it doesn't affect correctness.
395   mutable UseInterval* current_interval_;
396   UsePosition* last_processed_use_;
397   LOperand* spill_operand_;
398   int spill_start_index_;
399 };
400
401
402 class GrowableBitVector BASE_EMBEDDED {
403  public:
404   GrowableBitVector() : bits_(NULL) { }
405
406   bool Contains(int value) const {
407     if (!InBitsRange(value)) return false;
408     return bits_->Contains(value);
409   }
410
411   void Add(int value, Zone* zone) {
412     EnsureCapacity(value, zone);
413     bits_->Add(value);
414   }
415
416  private:
417   static const int kInitialLength = 1024;
418
419   bool InBitsRange(int value) const {
420     return bits_ != NULL && bits_->length() > value;
421   }
422
423   void EnsureCapacity(int value, Zone* zone) {
424     if (InBitsRange(value)) return;
425     int new_length = bits_ == NULL ? kInitialLength : bits_->length();
426     while (new_length <= value) new_length *= 2;
427     BitVector* new_bits = new(zone) BitVector(new_length, zone);
428     if (bits_ != NULL) new_bits->CopyFrom(*bits_);
429     bits_ = new_bits;
430   }
431
432   BitVector* bits_;
433 };
434
435
436 class LAllocator BASE_EMBEDDED {
437  public:
438   LAllocator(int first_virtual_register, HGraph* graph);
439
440   static void TraceAlloc(const char* msg, ...);
441
442   // Checks whether the value of a given virtual register is tagged.
443   bool HasTaggedValue(int virtual_register) const;
444
445   // Returns the register kind required by the given virtual register.
446   RegisterKind RequiredRegisterKind(int virtual_register) const;
447
448   bool Allocate(LChunk* chunk);
449
450   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
451   const Vector<LiveRange*>* fixed_live_ranges() const {
452     return &fixed_live_ranges_;
453   }
454   const Vector<LiveRange*>* fixed_double_live_ranges() const {
455     return &fixed_double_live_ranges_;
456   }
457
458   LChunk* chunk() const { return chunk_; }
459   HGraph* graph() const { return graph_; }
460
461   int GetVirtualRegister() {
462     if (next_virtual_register_ > LUnallocated::kMaxVirtualRegisters) {
463       allocation_ok_ = false;
464     }
465     return next_virtual_register_++;
466   }
467
468   bool AllocationOk() { return allocation_ok_; }
469
470   void MarkAsOsrEntry() {
471     // There can be only one.
472     ASSERT(!has_osr_entry_);
473     // Simply set a flag to find and process instruction later.
474     has_osr_entry_ = true;
475   }
476
477 #ifdef DEBUG
478   void Verify() const;
479 #endif
480
481  private:
482   void MeetRegisterConstraints();
483   void ResolvePhis();
484   void BuildLiveRanges();
485   void AllocateGeneralRegisters();
486   void AllocateDoubleRegisters();
487   void ConnectRanges();
488   void ResolveControlFlow();
489   void PopulatePointerMaps();
490   void ProcessOsrEntry();
491   void AllocateRegisters();
492   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
493   inline bool SafePointsAreInOrder() const;
494
495   // Liveness analysis support.
496   void InitializeLivenessAnalysis();
497   BitVector* ComputeLiveOut(HBasicBlock* block);
498   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
499   void ProcessInstructions(HBasicBlock* block, BitVector* live);
500   void MeetRegisterConstraints(HBasicBlock* block);
501   void MeetConstraintsBetween(LInstruction* first,
502                               LInstruction* second,
503                               int gap_index);
504   void ResolvePhis(HBasicBlock* block);
505
506   // Helper methods for building intervals.
507   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
508   LiveRange* LiveRangeFor(LOperand* operand);
509   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
510   void Use(LifetimePosition block_start,
511            LifetimePosition position,
512            LOperand* operand,
513            LOperand* hint);
514   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
515
516   // Helper methods for updating the life range lists.
517   void AddToActive(LiveRange* range);
518   void AddToInactive(LiveRange* range);
519   void AddToUnhandledSorted(LiveRange* range);
520   void AddToUnhandledUnsorted(LiveRange* range);
521   void SortUnhandled();
522   bool UnhandledIsSorted();
523   void ActiveToHandled(LiveRange* range);
524   void ActiveToInactive(LiveRange* range);
525   void InactiveToHandled(LiveRange* range);
526   void InactiveToActive(LiveRange* range);
527   void FreeSpillSlot(LiveRange* range);
528   LOperand* TryReuseSpillSlot(LiveRange* range);
529
530   // Helper methods for allocating registers.
531   bool TryAllocateFreeReg(LiveRange* range);
532   void AllocateBlockedReg(LiveRange* range);
533
534   // Live range splitting helpers.
535
536   // Split the given range at the given position.
537   // If range starts at or after the given position then the
538   // original range is returned.
539   // Otherwise returns the live range that starts at pos and contains
540   // all uses from the original range that follow pos. Uses at pos will
541   // still be owned by the original range after splitting.
542   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
543
544   // Split the given range in a position from the interval [start, end].
545   LiveRange* SplitBetween(LiveRange* range,
546                           LifetimePosition start,
547                           LifetimePosition end);
548
549   // Find a lifetime position in the interval [start, end] which
550   // is optimal for splitting: it is either header of the outermost
551   // loop covered by this interval or the latest possible position.
552   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
553                                        LifetimePosition end);
554
555   // Spill the given life range after position pos.
556   void SpillAfter(LiveRange* range, LifetimePosition pos);
557
558   // Spill the given life range after position start and up to position end.
559   void SpillBetween(LiveRange* range,
560                     LifetimePosition start,
561                     LifetimePosition end);
562
563   void SplitAndSpillIntersecting(LiveRange* range);
564
565   void Spill(LiveRange* range);
566   bool IsBlockBoundary(LifetimePosition pos);
567
568   // Helper methods for resolving control flow.
569   void ResolveControlFlow(LiveRange* range,
570                           HBasicBlock* block,
571                           HBasicBlock* pred);
572
573   // Return parallel move that should be used to connect ranges split at the
574   // given position.
575   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
576
577   // Return the block which contains give lifetime position.
578   HBasicBlock* GetBlock(LifetimePosition pos);
579
580   // Helper methods for the fixed registers.
581   int RegisterCount() const;
582   static int FixedLiveRangeID(int index) { return -index - 1; }
583   static int FixedDoubleLiveRangeID(int index);
584   LiveRange* FixedLiveRangeFor(int index);
585   LiveRange* FixedDoubleLiveRangeFor(int index);
586   LiveRange* LiveRangeFor(int index);
587   HPhi* LookupPhi(LOperand* operand) const;
588   LGap* GetLastGap(HBasicBlock* block);
589
590   const char* RegisterName(int allocation_index);
591
592   inline bool IsGapAt(int index);
593
594   inline LInstruction* InstructionAt(int index);
595
596   inline LGap* GapAt(int index);
597
598   Zone* zone_;
599
600   LChunk* chunk_;
601
602   // During liveness analysis keep a mapping from block id to live_in sets
603   // for blocks already analyzed.
604   ZoneList<BitVector*> live_in_sets_;
605
606   // Liveness analysis results.
607   ZoneList<LiveRange*> live_ranges_;
608
609   // Lists of live ranges
610   EmbeddedVector<LiveRange*, Register::kNumAllocatableRegisters>
611       fixed_live_ranges_;
612   EmbeddedVector<LiveRange*, DoubleRegister::kNumAllocatableRegisters>
613       fixed_double_live_ranges_;
614   ZoneList<LiveRange*> unhandled_live_ranges_;
615   ZoneList<LiveRange*> active_live_ranges_;
616   ZoneList<LiveRange*> inactive_live_ranges_;
617   ZoneList<LiveRange*> reusable_slots_;
618
619   // Next virtual register number to be assigned to temporaries.
620   int next_virtual_register_;
621   int first_artificial_register_;
622   GrowableBitVector double_artificial_registers_;
623
624   RegisterKind mode_;
625   int num_registers_;
626
627   HGraph* graph_;
628
629   bool has_osr_entry_;
630
631   // Indicates success or failure during register allocation.
632   bool allocation_ok_;
633
634   DISALLOW_COPY_AND_ASSIGN(LAllocator);
635 };
636
637
638 } }  // namespace v8::internal
639
640 #endif  // V8_LITHIUM_ALLOCATOR_H_