Updated V8 from git://github.com/v8/v8.git to 3e6ec7e018bbf2c63ef04b85ff688198ea204c04
[profile/ivi/qtjsbackend.git] / src / 3rdparty / v8 / src / handles.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "bootstrapper.h"
34 #include "compiler.h"
35 #include "debug.h"
36 #include "execution.h"
37 #include "global-handles.h"
38 #include "natives.h"
39 #include "runtime.h"
40 #include "string-search.h"
41 #include "stub-cache.h"
42 #include "vm-state-inl.h"
43
44 namespace v8 {
45 namespace internal {
46
47
48 int HandleScope::NumberOfHandles() {
49   Isolate* isolate = Isolate::Current();
50   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
51   int n = impl->blocks()->length();
52   if (n == 0) return 0;
53   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
54       (isolate->handle_scope_data()->next - impl->blocks()->last()));
55 }
56
57
58 Object** HandleScope::Extend() {
59   Isolate* isolate = Isolate::Current();
60   v8::ImplementationUtilities::HandleScopeData* current =
61       isolate->handle_scope_data();
62
63   Object** result = current->next;
64
65   ASSERT(result == current->limit);
66   // Make sure there's at least one scope on the stack and that the
67   // top of the scope stack isn't a barrier.
68   if (current->level == 0) {
69     Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
70                             "Cannot create a handle without a HandleScope");
71     return NULL;
72   }
73   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
74   // If there's more room in the last block, we use that. This is used
75   // for fast creation of scopes after scope barriers.
76   if (!impl->blocks()->is_empty()) {
77     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
78     if (current->limit != limit) {
79       current->limit = limit;
80       ASSERT(limit - current->next < kHandleBlockSize);
81     }
82   }
83
84   // If we still haven't found a slot for the handle, we extend the
85   // current handle scope by allocating a new handle block.
86   if (result == current->limit) {
87     // If there's a spare block, use it for growing the current scope.
88     result = impl->GetSpareOrNewBlock();
89     // Add the extension to the global list of blocks, but count the
90     // extension as part of the current scope.
91     impl->blocks()->Add(result);
92     current->limit = &result[kHandleBlockSize];
93   }
94
95   return result;
96 }
97
98
99 void HandleScope::DeleteExtensions(Isolate* isolate) {
100   ASSERT(isolate == Isolate::Current());
101   v8::ImplementationUtilities::HandleScopeData* current =
102       isolate->handle_scope_data();
103   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
104 }
105
106
107 void HandleScope::ZapRange(Object** start, Object** end) {
108   ASSERT(end - start <= kHandleBlockSize);
109   for (Object** p = start; p != end; p++) {
110     *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
111   }
112 }
113
114
115 Address HandleScope::current_level_address() {
116   return reinterpret_cast<Address>(
117       &Isolate::Current()->handle_scope_data()->level);
118 }
119
120
121 Address HandleScope::current_next_address() {
122   return reinterpret_cast<Address>(
123       &Isolate::Current()->handle_scope_data()->next);
124 }
125
126
127 Address HandleScope::current_limit_address() {
128   return reinterpret_cast<Address>(
129       &Isolate::Current()->handle_scope_data()->limit);
130 }
131
132
133 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
134                                       Handle<JSArray> array) {
135   CALL_HEAP_FUNCTION(content->GetIsolate(),
136                      content->AddKeysFromJSArray(*array), FixedArray);
137 }
138
139
140 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
141                                Handle<FixedArray> second) {
142   CALL_HEAP_FUNCTION(first->GetIsolate(),
143                      first->UnionOfKeys(*second), FixedArray);
144 }
145
146
147 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
148     Handle<JSFunction> constructor,
149     Handle<JSGlobalProxy> global) {
150   CALL_HEAP_FUNCTION(
151       constructor->GetIsolate(),
152       constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
153       JSGlobalProxy);
154 }
155
156
157 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
158   // If objects constructed from this function exist then changing
159   // 'estimated_nof_properties' is dangerous since the previous value might
160   // have been compiled into the fast construct stub. More over, the inobject
161   // slack tracking logic might have adjusted the previous value, so even
162   // passing the same value is risky.
163   if (func->shared()->live_objects_may_exist()) return;
164
165   func->shared()->set_expected_nof_properties(nof);
166   if (func->has_initial_map()) {
167     Handle<Map> new_initial_map =
168         func->GetIsolate()->factory()->CopyMapDropTransitions(
169             Handle<Map>(func->initial_map()));
170     new_initial_map->set_unused_property_fields(nof);
171     func->set_initial_map(*new_initial_map);
172   }
173 }
174
175
176 void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
177   CALL_HEAP_FUNCTION_VOID(func->GetIsolate(),
178                           func->SetPrototype(*value));
179 }
180
181
182 static int ExpectedNofPropertiesFromEstimate(int estimate) {
183   // If no properties are added in the constructor, they are more likely
184   // to be added later.
185   if (estimate == 0) estimate = 2;
186
187   // We do not shrink objects that go into a snapshot (yet), so we adjust
188   // the estimate conservatively.
189   if (Serializer::enabled()) return estimate + 2;
190
191   // Inobject slack tracking will reclaim redundant inobject space later,
192   // so we can afford to adjust the estimate generously.
193   if (FLAG_clever_optimizations) {
194     return estimate + 8;
195   } else {
196     return estimate + 3;
197   }
198 }
199
200
201 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
202                                           int estimate) {
203   // See the comment in SetExpectedNofProperties.
204   if (shared->live_objects_may_exist()) return;
205
206   shared->set_expected_nof_properties(
207       ExpectedNofPropertiesFromEstimate(estimate));
208 }
209
210
211 void FlattenString(Handle<String> string) {
212   CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
213 }
214
215
216 Handle<String> FlattenGetString(Handle<String> string) {
217   CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
218 }
219
220
221 Handle<Object> SetPrototype(Handle<JSFunction> function,
222                             Handle<Object> prototype) {
223   ASSERT(function->should_have_prototype());
224   CALL_HEAP_FUNCTION(function->GetIsolate(),
225                      Accessors::FunctionSetPrototype(*function,
226                                                      *prototype,
227                                                      NULL),
228                      Object);
229 }
230
231
232 Handle<Object> SetProperty(Handle<Object> object,
233                            Handle<Object> key,
234                            Handle<Object> value,
235                            PropertyAttributes attributes,
236                            StrictModeFlag strict_mode) {
237   Isolate* isolate = Isolate::Current();
238   CALL_HEAP_FUNCTION(
239       isolate,
240       Runtime::SetObjectProperty(
241           isolate, object, key, value, attributes, strict_mode),
242       Object);
243 }
244
245
246 Handle<Object> ForceSetProperty(Handle<JSObject> object,
247                                 Handle<Object> key,
248                                 Handle<Object> value,
249                                 PropertyAttributes attributes) {
250   Isolate* isolate = object->GetIsolate();
251   CALL_HEAP_FUNCTION(
252       isolate,
253       Runtime::ForceSetObjectProperty(
254           isolate, object, key, value, attributes),
255       Object);
256 }
257
258
259 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
260                                    Handle<Object> key) {
261   Isolate* isolate = object->GetIsolate();
262   CALL_HEAP_FUNCTION(isolate,
263                      Runtime::ForceDeleteObjectProperty(isolate, object, key),
264                      Object);
265 }
266
267
268 Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
269                                           Handle<String> key,
270                                           Handle<Object> value,
271                                           PropertyAttributes attributes,
272                                           StrictModeFlag strict_mode) {
273   CALL_HEAP_FUNCTION(object->GetIsolate(),
274                      object->SetPropertyWithInterceptor(*key,
275                                                         *value,
276                                                         attributes,
277                                                         strict_mode),
278                      Object);
279 }
280
281
282 Handle<Object> GetProperty(Handle<JSReceiver> obj,
283                            const char* name) {
284   Isolate* isolate = obj->GetIsolate();
285   Handle<String> str = isolate->factory()->LookupAsciiSymbol(name);
286   CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
287 }
288
289
290 Handle<Object> GetProperty(Handle<Object> obj,
291                            Handle<Object> key) {
292   Isolate* isolate = Isolate::Current();
293   CALL_HEAP_FUNCTION(isolate,
294                      Runtime::GetObjectProperty(isolate, obj, key), Object);
295 }
296
297
298 Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
299                                           Handle<JSObject> holder,
300                                           Handle<String> name,
301                                           PropertyAttributes* attributes) {
302   Isolate* isolate = receiver->GetIsolate();
303   CALL_HEAP_FUNCTION(isolate,
304                      holder->GetPropertyWithInterceptor(*receiver,
305                                                         *name,
306                                                         attributes),
307                      Object);
308 }
309
310
311 Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
312   const bool skip_hidden_prototypes = false;
313   CALL_HEAP_FUNCTION(obj->GetIsolate(),
314                      obj->SetPrototype(*value, skip_hidden_prototypes), Object);
315 }
316
317
318 Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
319   Isolate* isolate = Isolate::Current();
320   CALL_HEAP_FUNCTION(
321       isolate,
322       isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
323 }
324
325
326 Handle<String> SubString(Handle<String> str,
327                          int start,
328                          int end,
329                          PretenureFlag pretenure) {
330   CALL_HEAP_FUNCTION(str->GetIsolate(),
331                      str->SubString(start, end, pretenure), String);
332 }
333
334
335 Handle<JSObject> Copy(Handle<JSObject> obj) {
336   Isolate* isolate = obj->GetIsolate();
337   CALL_HEAP_FUNCTION(isolate,
338                      isolate->heap()->CopyJSObject(*obj), JSObject);
339 }
340
341
342 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
343   CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
344 }
345
346
347 // Wrappers for scripts are kept alive and cached in weak global
348 // handles referred from foreign objects held by the scripts as long as
349 // they are used. When they are not used anymore, the garbage
350 // collector will call the weak callback on the global handle
351 // associated with the wrapper and get rid of both the wrapper and the
352 // handle.
353 static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
354   Handle<Object> cache = Utils::OpenHandle(*handle);
355   JSValue* wrapper = JSValue::cast(*cache);
356   Foreign* foreign = Script::cast(wrapper->value())->wrapper();
357   ASSERT(foreign->foreign_address() ==
358          reinterpret_cast<Address>(cache.location()));
359   foreign->set_foreign_address(0);
360   Isolate* isolate = Isolate::Current();
361   isolate->global_handles()->Destroy(cache.location());
362   isolate->counters()->script_wrappers()->Decrement();
363 }
364
365
366 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
367   if (script->wrapper()->foreign_address() != NULL) {
368     // Return the script wrapper directly from the cache.
369     return Handle<JSValue>(
370         reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
371   }
372   Isolate* isolate = Isolate::Current();
373   // Construct a new script wrapper.
374   isolate->counters()->script_wrappers()->Increment();
375   Handle<JSFunction> constructor = isolate->script_function();
376   Handle<JSValue> result =
377       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
378   result->set_value(*script);
379
380   // Create a new weak global handle and use it to cache the wrapper
381   // for future use. The cache will automatically be cleared by the
382   // garbage collector when it is not used anymore.
383   Handle<Object> handle = isolate->global_handles()->Create(*result);
384   isolate->global_handles()->MakeWeak(handle.location(), NULL,
385                                       &ClearWrapperCache);
386   script->wrapper()->set_foreign_address(
387       reinterpret_cast<Address>(handle.location()));
388   return result;
389 }
390
391
392 // Init line_ends array with code positions of line ends inside script
393 // source.
394 void InitScriptLineEnds(Handle<Script> script) {
395   if (!script->line_ends()->IsUndefined()) return;
396
397   Isolate* isolate = script->GetIsolate();
398
399   if (!script->source()->IsString()) {
400     ASSERT(script->source()->IsUndefined());
401     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
402     script->set_line_ends(*empty);
403     ASSERT(script->line_ends()->IsFixedArray());
404     return;
405   }
406
407   Handle<String> src(String::cast(script->source()), isolate);
408
409   Handle<FixedArray> array = CalculateLineEnds(src, true);
410
411   if (*array != isolate->heap()->empty_fixed_array()) {
412     array->set_map(isolate->heap()->fixed_cow_array_map());
413   }
414
415   script->set_line_ends(*array);
416   ASSERT(script->line_ends()->IsFixedArray());
417 }
418
419
420 template <typename SourceChar>
421 static void CalculateLineEnds(Isolate* isolate,
422                               List<int>* line_ends,
423                               Vector<const SourceChar> src,
424                               bool with_last_line) {
425   const int src_len = src.length();
426   StringSearch<char, SourceChar> search(isolate, CStrVector("\n"));
427
428   // Find and record line ends.
429   int position = 0;
430   while (position != -1 && position < src_len) {
431     position = search.Search(src, position);
432     if (position != -1) {
433       line_ends->Add(position);
434       position++;
435     } else if (with_last_line) {
436       // Even if the last line misses a line end, it is counted.
437       line_ends->Add(src_len);
438       return;
439     }
440   }
441 }
442
443
444 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
445                                      bool with_last_line) {
446   src = FlattenGetString(src);
447   // Rough estimate of line count based on a roughly estimated average
448   // length of (unpacked) code.
449   int line_count_estimate = src->length() >> 4;
450   List<int> line_ends(line_count_estimate);
451   Isolate* isolate = src->GetIsolate();
452   {
453     AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid.
454     // Dispatch on type of strings.
455     String::FlatContent content = src->GetFlatContent();
456     ASSERT(content.IsFlat());
457     if (content.IsAscii()) {
458       CalculateLineEnds(isolate,
459                         &line_ends,
460                         content.ToAsciiVector(),
461                         with_last_line);
462     } else {
463       CalculateLineEnds(isolate,
464                         &line_ends,
465                         content.ToUC16Vector(),
466                         with_last_line);
467     }
468   }
469   int line_count = line_ends.length();
470   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
471   for (int i = 0; i < line_count; i++) {
472     array->set(i, Smi::FromInt(line_ends[i]));
473   }
474   return array;
475 }
476
477
478 // Convert code position into line number.
479 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
480   InitScriptLineEnds(script);
481   AssertNoAllocation no_allocation;
482   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
483   const int line_ends_len = line_ends_array->length();
484
485   if (!line_ends_len) return -1;
486
487   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
488     return script->line_offset()->value();
489   }
490
491   int left = 0;
492   int right = line_ends_len;
493   while (int half = (right - left) / 2) {
494     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
495       right -= half;
496     } else {
497       left += half;
498     }
499   }
500   return right + script->line_offset()->value();
501 }
502
503 // Convert code position into column number.
504 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
505   int line_number = GetScriptLineNumber(script, code_pos);
506   if (line_number == -1) return -1;
507
508   AssertNoAllocation no_allocation;
509   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
510   line_number = line_number - script->line_offset()->value();
511   if (line_number == 0) return code_pos + script->column_offset()->value();
512   int prev_line_end_pos =
513       Smi::cast(line_ends_array->get(line_number - 1))->value();
514   return code_pos - (prev_line_end_pos + 1);
515 }
516
517 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
518   AssertNoAllocation no_allocation;
519   if (!script->line_ends()->IsUndefined()) {
520     return GetScriptLineNumber(script, code_pos);
521   }
522   // Slow mode: we do not have line_ends. We have to iterate through source.
523   if (!script->source()->IsString()) {
524     return -1;
525   }
526   String* source = String::cast(script->source());
527   int line = 0;
528   int len = source->length();
529   for (int pos = 0; pos < len; pos++) {
530     if (pos == code_pos) {
531       break;
532     }
533     if (source->Get(pos) == '\n') {
534       line++;
535     }
536   }
537   return line;
538 }
539
540
541 void CustomArguments::IterateInstance(ObjectVisitor* v) {
542   v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
543 }
544
545
546 // Compute the property keys from the interceptor.
547 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
548                                                  Handle<JSObject> object) {
549   Isolate* isolate = receiver->GetIsolate();
550   Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
551   CustomArguments args(isolate, interceptor->data(), *receiver, *object);
552   v8::AccessorInfo info(args.end());
553   v8::Handle<v8::Array> result;
554   if (!interceptor->enumerator()->IsUndefined()) {
555     v8::NamedPropertyEnumerator enum_fun =
556         v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
557     LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
558     {
559       // Leaving JavaScript.
560       VMState state(isolate, EXTERNAL);
561       result = enum_fun(info);
562     }
563   }
564   return result;
565 }
566
567
568 // Compute the element keys from the interceptor.
569 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
570                                                    Handle<JSObject> object) {
571   Isolate* isolate = receiver->GetIsolate();
572   Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
573   CustomArguments args(isolate, interceptor->data(), *receiver, *object);
574   v8::AccessorInfo info(args.end());
575   v8::Handle<v8::Array> result;
576   if (!interceptor->enumerator()->IsUndefined()) {
577     v8::IndexedPropertyEnumerator enum_fun =
578         v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
579     LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
580     {
581       // Leaving JavaScript.
582       VMState state(isolate, EXTERNAL);
583       result = enum_fun(info);
584     }
585   }
586   return result;
587 }
588
589
590 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
591   int len = array->length();
592   for (int i = 0; i < len; i++) {
593     Object* e = array->get(i);
594     if (!(e->IsString() || e->IsNumber())) return false;
595   }
596   return true;
597 }
598
599
600 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
601                                           KeyCollectionType type,
602                                           bool* threw) {
603   USE(ContainsOnlyValidKeys);
604   Isolate* isolate = object->GetIsolate();
605   Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
606   Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
607       isolate->context()->global_context()->arguments_boilerplate(),
608       isolate);
609   Handle<JSFunction> arguments_function = Handle<JSFunction>(
610       JSFunction::cast(arguments_boilerplate->map()->constructor()),
611       isolate);
612
613   // Only collect keys if access is permitted.
614   for (Handle<Object> p = object;
615        *p != isolate->heap()->null_value();
616        p = Handle<Object>(p->GetPrototype(), isolate)) {
617     if (p->IsJSProxy()) {
618       Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
619       Handle<Object> args[] = { proxy };
620       Handle<Object> names = Execution::Call(
621           isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
622       if (*threw) return content;
623       content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
624       break;
625     }
626
627     Handle<JSObject> current(JSObject::cast(*p), isolate);
628
629     // Check access rights if required.
630     if (current->IsAccessCheckNeeded() &&
631         !isolate->MayNamedAccess(*current,
632                                  isolate->heap()->undefined_value(),
633                                  v8::ACCESS_KEYS)) {
634       isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
635       break;
636     }
637
638     // Compute the element keys.
639     Handle<FixedArray> element_keys =
640         isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
641     current->GetEnumElementKeys(*element_keys);
642     content = UnionOfKeys(content, element_keys);
643     ASSERT(ContainsOnlyValidKeys(content));
644
645     // Add the element keys from the interceptor.
646     if (current->HasIndexedInterceptor()) {
647       v8::Handle<v8::Array> result =
648           GetKeysForIndexedInterceptor(object, current);
649       if (!result.IsEmpty())
650         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
651       ASSERT(ContainsOnlyValidKeys(content));
652     }
653
654     // We can cache the computed property keys if access checks are
655     // not needed and no interceptors are involved.
656     //
657     // We do not use the cache if the object has elements and
658     // therefore it does not make sense to cache the property names
659     // for arguments objects.  Arguments objects will always have
660     // elements.
661     // Wrapped strings have elements, but don't have an elements
662     // array or dictionary.  So the fast inline test for whether to
663     // use the cache says yes, so we should not create a cache.
664     bool cache_enum_keys =
665         ((current->map()->constructor() != *arguments_function) &&
666          !current->IsJSValue() &&
667          !current->IsAccessCheckNeeded() &&
668          !current->HasNamedInterceptor() &&
669          !current->HasIndexedInterceptor());
670     // Compute the property keys and cache them if possible.
671     content =
672         UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
673     ASSERT(ContainsOnlyValidKeys(content));
674
675     // Add the property keys from the interceptor.
676     if (current->HasNamedInterceptor()) {
677       v8::Handle<v8::Array> result =
678           GetKeysForNamedInterceptor(object, current);
679       if (!result.IsEmpty())
680         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
681       ASSERT(ContainsOnlyValidKeys(content));
682     }
683
684     // If we only want local properties we bail out after the first
685     // iteration.
686     if (type == LOCAL_ONLY)
687       break;
688   }
689   return content;
690 }
691
692
693 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
694   Isolate* isolate = object->GetIsolate();
695   isolate->counters()->for_in()->Increment();
696   Handle<FixedArray> elements =
697       GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
698   return isolate->factory()->NewJSArrayWithElements(elements);
699 }
700
701
702 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
703                                        bool cache_result) {
704   int index = 0;
705   Isolate* isolate = object->GetIsolate();
706   if (object->HasFastProperties()) {
707     if (object->map()->instance_descriptors()->HasEnumCache()) {
708       isolate->counters()->enum_cache_hits()->Increment();
709       DescriptorArray* desc = object->map()->instance_descriptors();
710       return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()),
711                                 isolate);
712     }
713     isolate->counters()->enum_cache_misses()->Increment();
714     Handle<Map> map(object->map());
715     int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
716
717     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
718     Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
719
720     Handle<FixedArray> indices;
721     Handle<FixedArray> sort_array2;
722
723     if (cache_result) {
724       indices = isolate->factory()->NewFixedArray(num_enum);
725       sort_array2 = isolate->factory()->NewFixedArray(num_enum);
726     }
727
728     Handle<DescriptorArray> descs =
729         Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
730
731     for (int i = 0; i < descs->number_of_descriptors(); i++) {
732       if (descs->IsProperty(i) && !descs->GetDetails(i).IsDontEnum()) {
733         storage->set(index, descs->GetKey(i));
734         PropertyDetails details = descs->GetDetails(i);
735         sort_array->set(index, Smi::FromInt(details.index()));
736         if (!indices.is_null()) {
737           if (details.type() != FIELD) {
738             indices = Handle<FixedArray>();
739             sort_array2 = Handle<FixedArray>();
740           } else {
741             int field_index = Descriptor::IndexFromValue(descs->GetValue(i));
742             if (field_index >= map->inobject_properties()) {
743               field_index = -(field_index - map->inobject_properties() + 1);
744             }
745             indices->set(index, Smi::FromInt(field_index));
746             sort_array2->set(index, Smi::FromInt(details.index()));
747           }
748         }
749         index++;
750       }
751     }
752     storage->SortPairs(*sort_array, sort_array->length());
753     if (!indices.is_null()) {
754       indices->SortPairs(*sort_array2, sort_array2->length());
755     }
756     if (cache_result) {
757       Handle<FixedArray> bridge_storage =
758           isolate->factory()->NewFixedArray(
759               DescriptorArray::kEnumCacheBridgeLength);
760       DescriptorArray* desc = object->map()->instance_descriptors();
761       desc->SetEnumCache(*bridge_storage,
762                          *storage,
763                          indices.is_null() ? Object::cast(Smi::FromInt(0))
764                                            : Object::cast(*indices));
765     }
766     ASSERT(storage->length() == index);
767     return storage;
768   } else {
769     int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
770     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
771     Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
772     object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array);
773     return storage;
774   }
775 }
776
777
778 Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
779                                        Handle<Object> key) {
780   CALL_HEAP_FUNCTION(table->GetIsolate(),
781                      table->Add(*key),
782                      ObjectHashSet);
783 }
784
785
786 Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
787                                           Handle<Object> key) {
788   CALL_HEAP_FUNCTION(table->GetIsolate(),
789                      table->Remove(*key),
790                      ObjectHashSet);
791 }
792
793
794 Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
795                                                Handle<Object> key,
796                                                Handle<Object> value) {
797   CALL_HEAP_FUNCTION(table->GetIsolate(),
798                      table->Put(*key, *value),
799                      ObjectHashTable);
800 }
801
802
803 // This method determines the type of string involved and then gets the UTF8
804 // length of the string.  It doesn't flatten the string and has log(n) recursion
805 // for a string of length n.  If the failure flag gets set, then we have to
806 // flatten the string and retry.  Failures are caused by surrogate pairs in deep
807 // cons strings.
808
809 // Single surrogate characters that are encountered in the UTF-16 character
810 // sequence of the input string get counted as 3 UTF-8 bytes, because that
811 // is the way that WriteUtf8 will encode them.  Surrogate pairs are counted and
812 // encoded as one 4-byte UTF-8 sequence.
813
814 // This function conceptually uses recursion on the two halves of cons strings.
815 // However, in order to avoid the recursion going too deep it recurses on the
816 // second string of the cons, but iterates on the first substring (by manually
817 // eliminating it as a tail recursion).  This means it counts the UTF-8 length
818 // from the end to the start, which makes no difference to the total.
819
820 // Surrogate pairs are recognized even if they are split across two sides of a
821 // cons, which complicates the implementation somewhat.  Therefore, too deep
822 // recursion cannot always be avoided.  This case is detected, and the failure
823 // flag is set, a signal to the caller that the string should be flattened and
824 // the operation retried.
825 int Utf8LengthHelper(String* input,
826                      int from,
827                      int to,
828                      bool followed_by_surrogate,
829                      int max_recursion,
830                      bool* failure,
831                      bool* starts_with_surrogate) {
832   if (from == to) return 0;
833   int total = 0;
834   bool dummy;
835   while (true) {
836     if (input->IsAsciiRepresentation()) {
837       *starts_with_surrogate = false;
838       return total + to - from;
839     }
840     switch (StringShape(input).representation_tag()) {
841       case kConsStringTag: {
842         ConsString* str = ConsString::cast(input);
843         String* first = str->first();
844         String* second = str->second();
845         int first_length = first->length();
846         if (first_length - from > to - first_length) {
847           if (first_length < to) {
848             // Right hand side is shorter.  No need to check the recursion depth
849             // since this can only happen log(n) times.
850             bool right_starts_with_surrogate = false;
851             total += Utf8LengthHelper(second,
852                                       0,
853                                       to - first_length,
854                                       followed_by_surrogate,
855                                       max_recursion - 1,
856                                       failure,
857                                       &right_starts_with_surrogate);
858             if (*failure) return 0;
859             followed_by_surrogate = right_starts_with_surrogate;
860             input = first;
861             to = first_length;
862           } else {
863             // We only need the left hand side.
864             input = first;
865           }
866         } else {
867           if (first_length > from) {
868             // Left hand side is shorter.
869             if (first->IsAsciiRepresentation()) {
870               total += first_length - from;
871               *starts_with_surrogate = false;
872               starts_with_surrogate = &dummy;
873               input = second;
874               from = 0;
875               to -= first_length;
876             } else if (second->IsAsciiRepresentation()) {
877               followed_by_surrogate = false;
878               total += to - first_length;
879               input = first;
880               to = first_length;
881             } else if (max_recursion > 0) {
882               bool right_starts_with_surrogate = false;
883               // Recursing on the long one.  This may fail.
884               total += Utf8LengthHelper(second,
885                                         0,
886                                         to - first_length,
887                                         followed_by_surrogate,
888                                         max_recursion - 1,
889                                         failure,
890                                         &right_starts_with_surrogate);
891               if (*failure) return 0;
892               input = first;
893               to = first_length;
894               followed_by_surrogate = right_starts_with_surrogate;
895             } else {
896               *failure = true;
897               return 0;
898             }
899           } else {
900             // We only need the right hand side.
901             input = second;
902             from = 0;
903             to -= first_length;
904           }
905         }
906         continue;
907       }
908       case kExternalStringTag:
909       case kSeqStringTag: {
910         Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector();
911         const uc16* p = vector.start();
912         int previous = unibrow::Utf16::kNoPreviousCharacter;
913         for (int i = from; i < to; i++) {
914           uc16 c = p[i];
915           total += unibrow::Utf8::Length(c, previous);
916           previous = c;
917         }
918         if (to - from > 0) {
919           if (unibrow::Utf16::IsLeadSurrogate(previous) &&
920               followed_by_surrogate) {
921             total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
922           }
923           if (unibrow::Utf16::IsTrailSurrogate(p[from])) {
924             *starts_with_surrogate = true;
925           }
926         }
927         return total;
928       }
929       case kSlicedStringTag: {
930         SlicedString* str = SlicedString::cast(input);
931         int offset = str->offset();
932         input = str->parent();
933         from += offset;
934         to += offset;
935         continue;
936       }
937       default:
938         break;
939     }
940     UNREACHABLE();
941     return 0;
942   }
943   return 0;
944 }
945
946
947 int Utf8Length(Handle<String> str) {
948   bool dummy;
949   bool failure;
950   int len;
951   const int kRecursionBudget = 100;
952   do {
953     failure = false;
954     len = Utf8LengthHelper(
955         *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy);
956     if (failure) FlattenString(str);
957   } while (failure);
958   return len;
959 }
960
961 } }  // namespace v8::internal