Imported Upstream version 58.1
[platform/upstream/icu.git] / source / common / ucnv_lmb.c
1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*  
4 **********************************************************************
5 *   Copyright (C) 2000-2016, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 **********************************************************************
8 *   file name:  ucnv_lmb.cpp
9 *   encoding:   US-ASCII
10 *   tab size:   4 (not used)
11 *   indentation:4
12 *
13 *   created on: 2000feb09
14 *   created by: Brendan Murray
15 *   extensively hacked up by: Jim Snyder-Grant
16 *
17 * Modification History:
18
19 *   Date        Name             Description
20
21 *   06/20/2000  helena           OS/400 port changes; mostly typecast.
22 *   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers.
23 *                                Add comments to document LMBCS format and implementation
24 *                                restructured order & breakdown of functions
25 *   06/28/2000  helena           Major rewrite for the callback API changes.
26 */
27
28 #include "unicode/utypes.h"
29
30 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
31
32 #include "unicode/ucnv_err.h"
33 #include "unicode/ucnv.h"
34 #include "unicode/uset.h"
35 #include "cmemory.h"
36 #include "cstring.h"
37 #include "uassert.h"
38 #include "ucnv_imp.h"
39 #include "ucnv_bld.h"
40 #include "ucnv_cnv.h"
41
42 #ifdef EBCDIC_RTL
43     #include "ascii_a.h"
44 #endif
45
46 /*
47   LMBCS
48
49   (Lotus Multi-Byte Character Set)
50
51   LMBCS was invented in the late 1980's and is primarily used in Lotus Notes 
52   databases and in Lotus 1-2-3 files. Programmers who work with the APIs 
53   into these products will sometimes need to deal with strings in this format.
54
55   The code in this file provides an implementation for an ICU converter of 
56   LMBCS to and from Unicode. 
57
58   Since the LMBCS character set is only sparsely documented in existing 
59   printed or online material, we have added  extensive annotation to this 
60   file to serve as a guide to understanding LMBCS. 
61
62   LMBCS was originally designed with these four sometimes-competing design goals:
63
64   -Provide encodings for the characters in 12 existing national standards
65    (plus a few other characters)
66   -Minimal memory footprint
67   -Maximal speed of conversion into the existing national character sets
68   -No need to track a changing state as you interpret a string.
69
70
71   All of the national character sets LMBCS was trying to encode are 'ANSI'
72   based, in that the bytes from 0x20 - 0x7F are almost exactly the 
73   same common Latin unaccented characters and symbols in all character sets. 
74
75   So, in order to help meet the speed & memory design goals, the common ANSI 
76   bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS. 
77
78   The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
79   follows:
80
81   [G] D1 [D2]
82
83   That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
84   data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
85 */
86 #define ULMBCS_CHARSIZE_MAX      3
87 /*
88   The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
89   We often have to figure out if byte values are below or above this, so we 
90   use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control 
91   characters just above & below the common lower-ANSI  range */
92 #define ULMBCS_C0END           0x1F   
93 #define ULMBCS_C1START         0x80   
94 /*
95   Since LMBCS is always dealing in byte units. we create a local type here for 
96   dealing with these units of LMBCS code units:
97
98 */  
99 typedef uint8_t ulmbcs_byte_t;
100
101 /* 
102    Most of the values less than 0x20 are reserved in LMBCS to announce 
103    which national  character standard is being used for the 'D' bytes. 
104    In the comments we show the common name and the IBM character-set ID
105    for these character-set announcers:
106 */
107
108 #define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */
109 #define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */
110 #define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */
111 #define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */
112 #define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */
113 #define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */
114 #define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */
115 #define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */
116 #define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */
117 #define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */
118 #define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */
119 #define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */
120
121 /*
122    So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS 
123    character is one of those 12 values, you can interpret the remaining bytes of 
124    that character as coming from one of those character sets. Since the lower 
125    ANSI bytes already are represented in single bytes, using one of the character 
126    set announcers is used to announce a character that starts with a byte of 
127    0x80 or greater.
128
129    The character sets are  arranged so that the single byte sets all appear 
130    before the multi-byte character sets. When we need to tell whether a 
131    group byte is for a single byte char set or not we use this define: */
132
133 #define ULMBCS_DOUBLEOPTGROUP_START  0x10   
134
135 /* 
136 However, to fully understand LMBCS, you must also understand a series of 
137 exceptions & optimizations made in service of the design goals. 
138
139 First, those of you who are character set mavens may have noticed that
140 the 'double-byte' character sets are actually multi-byte character sets 
141 that can have 1 or two bytes, even in the upper-ascii range. To force
142 each group byte to introduce a fixed-width encoding (to make it faster to 
143 count characters), we use a convention of doubling up on the group byte 
144 to introduce any single-byte character > 0x80 in an otherwise double-byte
145 character set. So, for example, the LMBCS sequence x10 x10 xAE is the 
146 same as '0xAE' in the Japanese code page 943.
147
148 Next, you will notice that the list of group bytes has some gaps. 
149 These are used in various ways.
150
151 We reserve a few special single byte values for common control 
152 characters. These are in the same place as their ANSI eqivalents for speed.
153 */
154                      
155 #define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */
156 #define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */
157 #define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */
158
159 /* Then, 1-2-3 reserved a special single-byte character to put at the 
160 beginning of internal 'system' range names: */
161
162 #define ULMBCS_123SYSTEMRANGE  0x19   
163
164 /* Then we needed a place to put all the other ansi control characters 
165 that must be moved to different values because LMBCS reserves those 
166 values for other purposes. To represent the control characters, we start 
167 with a first byte of 0xF & add the control chaarcter value as the 
168 second byte */
169 #define ULMBCS_GRP_CTRL       0x0F   
170
171 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the 
172 useful doctrine that any byte less than 0x20 in a LMBCS char must be 
173 the first byte of a character:*/
174 #define ULMBCS_CTRLOFFSET      0x20   
175
176 /* 
177 Where to put the characters that aren't part of any of the 12 national 
178 character sets? The first thing that was done, in the earlier years of 
179 LMBCS, was to use up the spaces of the form
180
181   [G] D1, 
182   
183  where  'G' was one of the single-byte character groups, and
184  D1 was less than 0x80. These sequences are gathered together 
185  into a Lotus-invented doublebyte character set to represent a 
186  lot of stray values. Internally, in this implementation, we track this 
187  as group '0', as a place to tuck this exceptions list.*/
188
189 #define ULMBCS_GRP_EXCEPT     0x00    
190 /*
191  Finally, as the durability and usefulness of UNICODE became clear, 
192  LOTUS added a new group 0x14 to hold Unicode values not otherwise 
193  represented in LMBCS: */
194 #define ULMBCS_GRP_UNICODE    0x14   
195 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
196 (Big-Endian) characters. The exception comes when the UTF16 
197 representation would have a zero as the second byte. In that case,
198 'F6' is used in its place, and the bytes are swapped. (This prevents 
199 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
200 0xF6xx is in the middle of the Private Use Area.)*/
201 #define ULMBCS_UNICOMPATZERO   0xF6   
202
203 /* It is also useful in our code to have a constant for the size of 
204 a LMBCS char that holds a literal Unicode value */
205 #define ULMBCS_UNICODE_SIZE      3    
206
207 /* 
208 To squish the LMBCS representations down even further, and to make 
209 translations even faster,sometimes the optimization group byte can be dropped 
210 from a LMBCS character. This is decided on a process-by-process basis. The 
211 group byte that is dropped is called the 'optimization group'.
212
213 For Notes, the optimzation group is always 0x1.*/
214 #define ULMBCS_DEFAULTOPTGROUP 0x1    
215 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3 
216 file. 
217
218  In any case, when using ICU, you either pass in the 
219 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2, 
220 etc.). Using plain 'LMBCS' as the name of the converter will give you 
221 LMBCS-1.
222
223
224 *** Implementation strategy ***
225
226
227 Because of the extensive use of other character sets, the LMBCS converter
228 keeps a mapping between optimization groups and IBM character sets, so that
229 ICU converters can be created and used as needed. */
230
231 /* As you can see, even though any byte below 0x20 could be an optimization 
232 byte, only those at 0x13 or below can map to an actual converter. To limit
233 some loops and searches, we define a value for that last group converter:*/
234
235 #define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */
236
237 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
238    /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
239    /* 0x0001 */ "ibm-850",
240    /* 0x0002 */ "ibm-851",
241    /* 0x0003 */ "windows-1255",
242    /* 0x0004 */ "windows-1256",
243    /* 0x0005 */ "windows-1251",
244    /* 0x0006 */ "ibm-852",
245    /* 0x0007 */ NULL,      /* Unused */
246    /* 0x0008 */ "windows-1254",
247    /* 0x0009 */ NULL,      /* Control char HT */
248    /* 0x000A */ NULL,      /* Control char LF */
249    /* 0x000B */ "windows-874",
250    /* 0x000C */ NULL,      /* Unused */
251    /* 0x000D */ NULL,      /* Control char CR */
252    /* 0x000E */ NULL,      /* Unused */
253    /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
254    /* 0x0010 */ "windows-932",
255    /* 0x0011 */ "windows-949",
256    /* 0x0012 */ "windows-950",
257    /* 0x0013 */ "windows-936"
258
259    /* The rest are null, including the 0x0014 Unicode compatibility region
260    and 0x0019, the 1-2-3 system range control char */      
261 };
262
263
264 /* That's approximately all the data that's needed for translating 
265   LMBCS to Unicode. 
266
267
268 However, to translate Unicode to LMBCS, we need some more support.
269
270 That's because there are often more than one possible mappings from a Unicode
271 code point back into LMBCS. The first thing we do is look up into a table
272 to figure out if there are more than one possible mappings. This table,
273 arranged by Unicode values (including ranges) either lists which group 
274 to use, or says that it could go into one or more of the SBCS sets, or
275 into one or more of the DBCS sets.  (If the character exists in both DBCS & 
276 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point 
277 length as small as possible. Here's the two special markers we use to indicate
278 ambiguous mappings: */
279
280 #define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one 
281                                           LMBCS sbcs native encoding 
282                                           (example: most accented latin) */
283 #define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one 
284                                           LMBCS mbcs native encoding 
285                                           (example: Unihan) */
286 #define ULMBCS_AMBIGUOUS_ALL   0x82
287 /* And here's a simple way to see if a group falls in an appropriate range */
288 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
289                   ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
290                   (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
291                   (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
292                   (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
293                   ((agroup) == ULMBCS_AMBIGUOUS_ALL)
294
295
296 /* The table & some code to use it: */
297
298
299 static const struct _UniLMBCSGrpMap  
300 {
301    const UChar uniStartRange;
302    const UChar uniEndRange;
303    const ulmbcs_byte_t  GrpType;
304 } UniLMBCSGrpMap[]
305 =
306 {
307
308     {0x0001, 0x001F,  ULMBCS_GRP_CTRL},
309     {0x0080, 0x009F,  ULMBCS_GRP_CTRL},
310     {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS},
311     {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL},
312     {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS},
313     {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL},
314     {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS},
315     {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL},
316     {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS},
317     {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL},
318     {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS},
319     {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL},
320     {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS},
321     {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL},
322     {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS},
323     {0x01CE, 0x01CE,  ULMBCS_GRP_TW },
324     {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS},
325     {0x02BA, 0x02BA,  ULMBCS_GRP_CN},
326     {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS},
327     {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS},
328     {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS},
329     {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS},
330     {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL},
331     {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS},
332     {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL},
333     {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS},
334     {0x0400, 0x0400,  ULMBCS_GRP_RU},
335     {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL},
336     {0x0402, 0x040F,  ULMBCS_GRP_RU},
337     {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL},
338     {0x0432, 0x044E,  ULMBCS_GRP_RU},
339     {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL},
340     {0x0450, 0x0491,  ULMBCS_GRP_RU},
341     {0x05B0, 0x05F2,  ULMBCS_GRP_HE},
342     {0x060C, 0x06AF,  ULMBCS_GRP_AR},
343     {0x0E01, 0x0E5B,  ULMBCS_GRP_TH},
344     {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS},
345     {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS},
346     {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS},
347     {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS},
348     {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS},
349     {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS},
350     {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL},
351     {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS},
352     {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL},
353     {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS},
354     {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL},
355     {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS},
356     {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS},
357     {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL},
358     {0x2027, 0x2027,  ULMBCS_GRP_TW},
359     {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL},
360     {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS},
361     {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS},
362     {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS},
363     {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS},
364     {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS},
365     {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT},
366     {0x2074, 0x2074,  ULMBCS_GRP_KO},
367     {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT},
368     {0x2081, 0x2084,  ULMBCS_GRP_KO},
369     {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS},
370     {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS},
371     {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS},
372     /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
373     {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS},
374     {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS},
375     {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS},
376     {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS},
377     {0x2153, 0x2154,  ULMBCS_GRP_KO},
378     {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT},
379     {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS},
380     {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL},
381     {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT},
382     {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS},
383     {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT},
384     {0x21B8, 0x21B9,  ULMBCS_GRP_CN},
385     {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT},
386     {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS},
387     {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT},
388     {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS},
389     {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT},
390     {0x21E7, 0x21E7,  ULMBCS_GRP_CN},
391     {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS},
392     {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT},
393     {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS},
394     {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS},
395     {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT},
396     {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS},
397     {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT},
398     {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS},
399     {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS},
400     {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT},
401     {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS},
402     {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT},
403     {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS},
404     {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT},
405     {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS},
406     {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS},
407     {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS},
408     {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT},
409     {0x224C, 0x224C,  ULMBCS_GRP_TW},
410     {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS},
411     {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS},
412     {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT},
413     {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS},
414     {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS},
415     {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT},
416     {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS},
417     {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT},
418     {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS},
419     {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT},
420     {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT},
421     {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS},
422     {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT},
423     {0x2318, 0x2321,  ULMBCS_GRP_CN},
424     {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS},
425     {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS},
426     {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS},
427     {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL},
428     {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS},
429     {0x2504, 0x2505,  ULMBCS_GRP_TW},
430     {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL},
431     {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT},
432     {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS},
433     {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL},
434     {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS},
435     {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS},
436     {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS},
437     {0x266F, 0x266F,  ULMBCS_GRP_JA},
438     {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS},
439     {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS},
440     {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT},
441     {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS},
442     {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS},
443     {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS},
444     {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE}
445 };
446    
447 static ulmbcs_byte_t 
448 FindLMBCSUniRange(UChar uniChar)
449 {
450    const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
451
452    while (uniChar > pTable->uniEndRange) 
453    {
454       pTable++;
455    }
456
457    if (uniChar >= pTable->uniStartRange) 
458    {
459       return pTable->GrpType;
460    }
461    return ULMBCS_GRP_UNICODE;
462 }
463
464 /* 
465 We also ask the creator of a converter to send in a preferred locale 
466 that we can use in resolving ambiguous mappings. They send the locale
467 in as a string, and we map it, if possible, to one of the 
468 LMBCS groups. We use this table, and the associated code, to 
469 do the lookup: */
470
471 /**************************************************
472   This table maps locale ID's to LMBCS opt groups.
473   The default return is group 0x01. Note that for
474   performance reasons, the table is sorted in
475   increasing alphabetic order, with the notable
476   exception of zhTW. This is to force the check
477   for Traditonal Chinese before dropping back to
478   Simplified.
479
480   Note too that the Latin-1 groups have been
481   commented out because it's the default, and
482   this shortens the table, allowing a serial
483   search to go quickly.
484  *************************************************/
485
486 static const struct _LocaleLMBCSGrpMap
487 {
488    const char    *LocaleID;
489    const ulmbcs_byte_t OptGroup;
490 } LocaleLMBCSGrpMap[] =
491 {
492     {"ar", ULMBCS_GRP_AR},
493     {"be", ULMBCS_GRP_RU},
494     {"bg", ULMBCS_GRP_L2},
495    /* {"ca", ULMBCS_GRP_L1}, */
496     {"cs", ULMBCS_GRP_L2},
497    /* {"da", ULMBCS_GRP_L1}, */
498    /* {"de", ULMBCS_GRP_L1}, */
499     {"el", ULMBCS_GRP_GR},
500    /* {"en", ULMBCS_GRP_L1}, */
501    /* {"es", ULMBCS_GRP_L1}, */
502    /* {"et", ULMBCS_GRP_L1}, */
503    /* {"fi", ULMBCS_GRP_L1}, */
504    /* {"fr", ULMBCS_GRP_L1}, */
505     {"he", ULMBCS_GRP_HE},
506     {"hu", ULMBCS_GRP_L2},
507    /* {"is", ULMBCS_GRP_L1}, */
508    /* {"it", ULMBCS_GRP_L1}, */
509     {"iw", ULMBCS_GRP_HE},
510     {"ja", ULMBCS_GRP_JA},
511     {"ko", ULMBCS_GRP_KO},
512    /* {"lt", ULMBCS_GRP_L1}, */
513    /* {"lv", ULMBCS_GRP_L1}, */
514     {"mk", ULMBCS_GRP_RU},
515    /* {"nl", ULMBCS_GRP_L1}, */
516    /* {"no", ULMBCS_GRP_L1}, */
517     {"pl", ULMBCS_GRP_L2},
518    /* {"pt", ULMBCS_GRP_L1}, */
519     {"ro", ULMBCS_GRP_L2},
520     {"ru", ULMBCS_GRP_RU},
521     {"sh", ULMBCS_GRP_L2},
522     {"sk", ULMBCS_GRP_L2},
523     {"sl", ULMBCS_GRP_L2},
524     {"sq", ULMBCS_GRP_L2},
525     {"sr", ULMBCS_GRP_RU},
526    /* {"sv", ULMBCS_GRP_L1}, */
527     {"th", ULMBCS_GRP_TH},
528     {"tr", ULMBCS_GRP_TR},
529     {"uk", ULMBCS_GRP_RU},
530    /* {"vi", ULMBCS_GRP_L1}, */
531     {"zhTW", ULMBCS_GRP_TW},
532     {"zh", ULMBCS_GRP_CN},
533     {NULL, ULMBCS_GRP_L1}
534 };
535
536
537 static ulmbcs_byte_t 
538 FindLMBCSLocale(const char *LocaleID)
539 {
540    const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
541
542    if ((!LocaleID) || (!*LocaleID)) 
543    {
544       return 0;
545    }
546
547    while (pTable->LocaleID)
548    {
549       if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
550       {
551          /* First char matches - check whole name, for entry-length */
552          if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
553             return pTable->OptGroup;
554       }
555       else
556       if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
557          break;
558       pTable++;
559    }
560    return ULMBCS_GRP_L1;
561 }
562
563
564 /* 
565   Before we get to the main body of code, here's how we hook up to the rest 
566   of ICU. ICU converters are required to define a structure that includes 
567   some function pointers, and some common data, in the style of a C++
568   vtable. There is also room in there for converter-specific data. LMBCS
569   uses that converter-specific data to keep track of the 12 subconverters
570   we use, the optimization group, and the group (if any) that matches the 
571   locale. We have one structure instantiated for each of the 12 possible
572   optimization groups. To avoid typos & to avoid boring the reader, we 
573   put the declarations of these structures and functions into macros. To see 
574   the definitions of these structures, see unicode\ucnv_bld.h
575 */
576
577 typedef struct
578   {
579     UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */
580     uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */
581     uint8_t    localeConverterIndex;      /* reasonable locale match for index */
582   }
583 UConverterDataLMBCS;
584
585 static void _LMBCSClose(UConverter * _this);
586
587 #define DECLARE_LMBCS_DATA(n) \
588 static const UConverterImpl _LMBCSImpl##n={\
589     UCNV_LMBCS_##n,\
590     NULL,NULL,\
591     _LMBCSOpen##n,\
592     _LMBCSClose,\
593     NULL,\
594     _LMBCSToUnicodeWithOffsets,\
595     _LMBCSToUnicodeWithOffsets,\
596     _LMBCSFromUnicode,\
597     _LMBCSFromUnicode,\
598     NULL,\
599     NULL,\
600     NULL,\
601     NULL,\
602     _LMBCSSafeClone,\
603     ucnv_getCompleteUnicodeSet\
604 };\
605 static const UConverterStaticData _LMBCSStaticData##n={\
606   sizeof(UConverterStaticData),\
607  "LMBCS-"  #n,\
608     0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
609     { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
610 };\
611 const UConverterSharedData _LMBCSData##n= \
612         UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
613
614  /* The only function we needed to duplicate 12 times was the 'open'
615 function, which will do basically the same thing except set a  different
616 optimization group. So, we put the common stuff into a worker function, 
617 and set up another macro to stamp out the 12 open functions:*/
618 #define DEFINE_LMBCS_OPEN(n) \
619 static void \
620    _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
621 { _LMBCSOpenWorker(_this, pArgs, err, n); }
622
623
624
625 /* Here's the open worker & the common close function */
626 static void 
627 _LMBCSOpenWorker(UConverter*  _this,
628                  UConverterLoadArgs *pArgs,
629                  UErrorCode*  err,
630                  ulmbcs_byte_t OptGroup)
631 {
632     UConverterDataLMBCS * extraInfo = _this->extraInfo =
633         (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
634     if(extraInfo != NULL)
635     {
636         UConverterNamePieces stackPieces;
637         UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
638         ulmbcs_byte_t i;
639
640         uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
641
642         stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
643
644         for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)         
645         {
646             if(OptGroupByteToCPName[i] != NULL) {
647                 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
648             }
649         }
650
651         if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
652             _LMBCSClose(_this);
653             return;
654         }
655         extraInfo->OptGroup = OptGroup;
656         extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
657     }
658     else
659     {
660         *err = U_MEMORY_ALLOCATION_ERROR;
661     }
662 }
663
664 static void 
665 _LMBCSClose(UConverter *   _this) 
666 {
667     if (_this->extraInfo != NULL)
668     {
669         ulmbcs_byte_t Ix;
670         UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
671
672         for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
673         {
674            if (extraInfo->OptGrpConverter[Ix] != NULL)
675               ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
676         }
677         if (!_this->isExtraLocal) {
678             uprv_free (_this->extraInfo);
679             _this->extraInfo = NULL;
680         }
681     }
682 }
683
684 typedef struct LMBCSClone {
685     UConverter cnv;
686     UConverterDataLMBCS lmbcs;
687 } LMBCSClone;
688
689 static UConverter * 
690 _LMBCSSafeClone(const UConverter *cnv, 
691                 void *stackBuffer, 
692                 int32_t *pBufferSize, 
693                 UErrorCode *status) {
694     LMBCSClone *newLMBCS;
695     UConverterDataLMBCS *extraInfo;
696     int32_t i;
697
698     if(*pBufferSize<=0) {
699         *pBufferSize=(int32_t)sizeof(LMBCSClone);
700         return NULL;
701     }
702
703     extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
704     newLMBCS=(LMBCSClone *)stackBuffer;
705
706     /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
707
708     uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
709
710     /* share the subconverters */
711     for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
712         if(extraInfo->OptGrpConverter[i] != NULL) {
713             ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
714         }
715     }
716
717     newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
718     newLMBCS->cnv.isExtraLocal = TRUE;
719     return &newLMBCS->cnv;
720 }
721
722 /*
723  * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
724  * which added all code points except for U+F6xx
725  * because those cannot be represented in the Unicode group.
726  * However, it turns out that windows-950 has roundtrips for all of U+F6xx
727  * which means that LMBCS can convert all Unicode code points after all.
728  * We now simply use ucnv_getCompleteUnicodeSet().
729  *
730  * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
731  */
732
733 /* 
734    Here's the basic helper function that we use when converting from
735    Unicode to LMBCS, and we suspect that a Unicode character will fit into 
736    one of the 12 groups. The return value is the number of bytes written 
737    starting at pStartLMBCS (if any).
738 */
739
740 static size_t
741 LMBCSConversionWorker (
742    UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */
743    ulmbcs_byte_t group,                /* The group to try */
744    ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */
745    UChar * pUniChar,                   /* The input unicode character */
746    ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
747    UBool * groups_tried                /* output: track any unsuccessful groups */
748 )   
749 {
750    ulmbcs_byte_t  * pLMBCS = pStartLMBCS;
751    UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
752
753    int bytesConverted;
754    uint32_t value;
755    ulmbcs_byte_t firstByte;
756
757    U_ASSERT(xcnv);
758    U_ASSERT(group<ULMBCS_GRP_UNICODE);
759
760    bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
761
762    /* get the first result byte */
763    if(bytesConverted > 0) {
764       firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
765    } else {
766       /* most common failure mode is an unassigned character */
767       groups_tried[group] = TRUE;
768       return 0;
769    }
770
771    *lastConverterIndex = group;
772
773    /* All initial byte values in lower ascii range should have been caught by now,
774       except with the exception group.
775     */
776    U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
777    
778    /* use converted data: first write 0, 1 or two group bytes */
779    if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
780    {
781       *pLMBCS++ = group;
782       if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
783       {
784          *pLMBCS++ = group;
785       }
786    }
787
788   /* don't emit control chars */
789    if ( bytesConverted == 1 && firstByte < 0x20 )
790       return 0;
791
792
793    /* then move over the converted data */
794    switch(bytesConverted)
795    {
796    case 4:
797       *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
798       U_FALLTHROUGH;
799    case 3:
800       *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
801       U_FALLTHROUGH;
802    case 2:
803       *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
804       U_FALLTHROUGH;
805    case 1:
806       *pLMBCS++ = (ulmbcs_byte_t)value;
807       U_FALLTHROUGH;
808    default:
809       /* will never occur */
810       break;
811    }
812
813    return (pLMBCS - pStartLMBCS);
814 }
815
816
817 /* This is a much simpler version of above, when we 
818 know we are writing LMBCS using the Unicode group
819 */
820 static size_t 
821 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)  
822 {
823      /* encode into LMBCS Unicode range */
824    uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF);
825    uint8_t HighCh  = (uint8_t)(uniChar >> 8);
826
827    *pLMBCS++ = ULMBCS_GRP_UNICODE;
828
829    if (LowCh == 0)
830    {
831       *pLMBCS++ = ULMBCS_UNICOMPATZERO;
832       *pLMBCS++ = HighCh;
833    }
834    else
835    {
836       *pLMBCS++ = HighCh;
837       *pLMBCS++ = LowCh;
838    }
839    return ULMBCS_UNICODE_SIZE;
840 }
841
842
843
844 /* The main Unicode to LMBCS conversion function */
845 static void 
846 _LMBCSFromUnicode(UConverterFromUnicodeArgs*     args,
847                   UErrorCode*     err)
848 {
849    ulmbcs_byte_t lastConverterIndex = 0;
850    UChar uniChar;
851    ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX];
852    ulmbcs_byte_t  * pLMBCS;
853    int32_t bytes_written;
854    UBool groups_tried[ULMBCS_GRP_LAST+1];
855    UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
856    int sourceIndex = 0; 
857
858    /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
859       If that succeeds, see if it will all fit into the target & copy it over 
860       if it does.
861
862       We try conversions in the following order:
863
864       1. Single-byte ascii & special fixed control chars (&null)
865       2. Look up group in table & try that (could be 
866             A) Unicode group
867             B) control group,
868             C) national encoding, 
869                or ambiguous SBCS or MBCS group (on to step 4...)
870         
871       3. If its ambiguous, try this order:
872          A) The optimization group
873          B) The locale group
874          C) The last group that succeeded with this string.
875          D) every other group that's relevent (single or double)
876          E) If its single-byte ambiguous, try the exceptions group
877
878       4. And as a grand fallback: Unicode
879    */
880
881     /*Fix for SPR#DJOE66JFN3 (Lotus)*/
882     ulmbcs_byte_t OldConverterIndex = 0;
883
884    while (args->source < args->sourceLimit && !U_FAILURE(*err))
885    {
886       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
887       OldConverterIndex = extraInfo->localeConverterIndex;
888
889       if (args->target >= args->targetLimit)
890       {
891          *err = U_BUFFER_OVERFLOW_ERROR;
892          break;
893       }
894       uniChar = *(args->source);
895       bytes_written = 0;
896       pLMBCS = LMBCS;
897
898       /* check cases in rough order of how common they are, for speed */
899
900       /* single byte matches: strategy 1 */
901       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
902       if((uniChar>=0x80) && (uniChar<=0xff)
903       /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
904         &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
905       {
906             extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
907       }
908       if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
909           uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR || 
910           uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE 
911           )
912       {
913          *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
914          bytes_written = 1;
915       }
916
917
918       if (!bytes_written) 
919       {
920          /* Check by UNICODE range (Strategy 2) */
921          ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
922          
923          if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */
924          {
925             pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
926             
927             bytes_written = (int32_t)(pLMBCS - LMBCS);
928          }
929          else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */
930          {
931             /* Handle control characters here */
932             if (uniChar <= ULMBCS_C0END)
933             {
934                *pLMBCS++ = ULMBCS_GRP_CTRL;
935                *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
936             }
937             else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
938             {
939                *pLMBCS++ = ULMBCS_GRP_CTRL;
940                *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
941             }
942             bytes_written = (int32_t)(pLMBCS - LMBCS);
943          }
944          else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */
945          {
946             /* a specific converter has been identified - use it */
947             bytes_written = (int32_t)LMBCSConversionWorker (
948                               extraInfo, group, pLMBCS, &uniChar, 
949                               &lastConverterIndex, groups_tried);
950          }
951          if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */
952          {
953             uprv_memset(groups_tried, 0, sizeof(groups_tried));
954
955             /* check for non-default optimization group (Strategy 3A )*/
956             if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
957             {
958                 /*zhujin: upgrade, merge #39299 here (Lotus) */
959                 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
960
961                 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
962                 {
963                   bytes_written = LMBCSConversionWorker (extraInfo,
964                      ULMBCS_GRP_L1, pLMBCS, &uniChar,
965                      &lastConverterIndex, groups_tried);
966
967                   if(!bytes_written)
968                   {
969                      bytes_written = LMBCSConversionWorker (extraInfo,
970                          ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
971                          &lastConverterIndex, groups_tried);
972                   }
973                   if(!bytes_written)
974                   {
975                       bytes_written = LMBCSConversionWorker (extraInfo,
976                           extraInfo->localeConverterIndex, pLMBCS, &uniChar,
977                           &lastConverterIndex, groups_tried);
978                   }
979                 }
980                 else
981                 {
982                      bytes_written = LMBCSConversionWorker (extraInfo,
983                          extraInfo->localeConverterIndex, pLMBCS, &uniChar,
984                          &lastConverterIndex, groups_tried);
985                 }
986             }
987             /* check for locale optimization group (Strategy 3B) */
988             if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
989             {
990                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
991                         extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
992             }
993             /* check for last optimization group used for this string (Strategy 3C) */
994             if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
995             {
996                 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
997                         lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
998             }
999             if (!bytes_written)
1000             {
1001                /* just check every possible matching converter (Strategy 3D) */ 
1002                ulmbcs_byte_t grp_start;
1003                ulmbcs_byte_t grp_end;  
1004                ulmbcs_byte_t grp_ix;
1005                grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 
1006                         ? ULMBCS_DOUBLEOPTGROUP_START 
1007                         :  ULMBCS_GRP_L1);
1008                grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 
1009                         ? ULMBCS_GRP_LAST 
1010                         :  ULMBCS_GRP_TH);
1011                if(group == ULMBCS_AMBIGUOUS_ALL)
1012                {
1013                    grp_start = ULMBCS_GRP_L1;
1014                    grp_end = ULMBCS_GRP_LAST;
1015                }
1016                for (grp_ix = grp_start;
1017                    grp_ix <= grp_end && !bytes_written; 
1018                     grp_ix++)
1019                {
1020                   if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1021                   {
1022                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1023                        grp_ix, pLMBCS, &uniChar, 
1024                        &lastConverterIndex, groups_tried);
1025                   }
1026                }
1027                 /* a final conversion fallback to the exceptions group if its likely 
1028                      to be single byte  (Strategy 3E) */
1029                if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1030                {
1031                   bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1032                      ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 
1033                      &lastConverterIndex, groups_tried);
1034                }
1035             }
1036             /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1037             if (!bytes_written)
1038             {
1039
1040                pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1041                bytes_written = (int32_t)(pLMBCS - LMBCS);
1042             }
1043          }
1044       }
1045   
1046       /* we have a translation. increment source and write as much as posible to target */
1047       args->source++;
1048       pLMBCS = LMBCS;
1049       while (args->target < args->targetLimit && bytes_written--)
1050       {
1051          *(args->target)++ = *pLMBCS++;
1052          if (args->offsets)
1053          {
1054             *(args->offsets)++ = sourceIndex;
1055          }
1056       }
1057       sourceIndex++;
1058       if (bytes_written > 0)
1059       {
1060          /* write any bytes that didn't fit in target to the error buffer,
1061             common code will move this to target if we get called back with
1062             enough target room
1063          */
1064          uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1065          *err = U_BUFFER_OVERFLOW_ERROR;
1066          args->converter->charErrorBufferLength = (int8_t)bytes_written;
1067          while (bytes_written--)
1068          {
1069             *pErrorBuffer++ = *pLMBCS++;
1070          }
1071       }
1072       /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1073       extraInfo->localeConverterIndex = OldConverterIndex;
1074    }     
1075 }
1076
1077
1078 /* Now, the Unicode from LMBCS section */
1079
1080
1081 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1082 static UChar
1083 GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */
1084 {
1085    uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/
1086    uint8_t  LowCh  = *(*ppLMBCSin)++;
1087
1088    if (HighCh == ULMBCS_UNICOMPATZERO ) 
1089    {
1090       HighCh = LowCh;
1091       LowCh = 0; /* zero-byte in LSB special character */
1092    }
1093    return (UChar)((HighCh << 8) | LowCh);
1094 }
1095
1096
1097
1098 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index' 
1099    bytes left in source up to  sourceLimit.Errors appropriately if not.
1100    If we reach the limit, then update the source pointer to there to consume
1101    all input as required by ICU converter semantics.
1102 */
1103
1104 #define CHECK_SOURCE_LIMIT(index) \
1105      if (args->source+index > args->sourceLimit){\
1106          *err = U_TRUNCATED_CHAR_FOUND;\
1107          args->source = args->sourceLimit;\
1108          return 0xffff;}
1109
1110 /* Return the Unicode representation for the current LMBCS character */
1111
1112 static UChar32 
1113 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args,
1114                          UErrorCode*   err)
1115 {
1116     UChar32 uniChar = 0;    /* an output UNICODE char */
1117     ulmbcs_byte_t   CurByte; /* A byte from the input stream */
1118
1119     /* error check */
1120     if (args->source >= args->sourceLimit)
1121     {
1122         *err = U_ILLEGAL_ARGUMENT_ERROR;
1123         return 0xffff;
1124     }
1125     /* Grab first byte & save address for error recovery */
1126     CurByte = *((ulmbcs_byte_t  *) (args->source++));
1127    
1128     /*
1129     * at entry of each if clause:
1130     * 1. 'CurByte' points at the first byte of a LMBCS character
1131     * 2. '*source'points to the next byte of the source stream after 'CurByte' 
1132     *
1133     * the job of each if clause is:
1134     * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1135     * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1136     */
1137    
1138     /* First lets check the simple fixed values. */
1139
1140     if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1141     ||  (CurByte == 0) 
1142     ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR 
1143     ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1144     {
1145         uniChar = CurByte;
1146     }
1147     else  
1148     {
1149         UConverterDataLMBCS * extraInfo;
1150         ulmbcs_byte_t group; 
1151         UConverterSharedData *cnv; 
1152         
1153         if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */
1154         {
1155             ulmbcs_byte_t  C0C1byte;
1156             CHECK_SOURCE_LIMIT(1);
1157             C0C1byte = *(args->source)++;
1158             uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1159         }
1160         else 
1161         if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1162         {
1163             CHECK_SOURCE_LIMIT(2);
1164      
1165             /* don't check for error indicators fffe/ffff below */
1166             return GetUniFromLMBCSUni(&(args->source));
1167         }
1168         else if (CurByte <= ULMBCS_CTRLOFFSET)  
1169         {
1170             group = CurByte;                   /* group byte is in the source */
1171             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1172             if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1173             {
1174                 /* this is not a valid group byte - no converter*/
1175                 *err = U_INVALID_CHAR_FOUND;
1176             }      
1177             else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1178             {
1179
1180                 CHECK_SOURCE_LIMIT(2);
1181
1182                 /* check for LMBCS doubled-group-byte case */
1183                 if (*args->source == group) {
1184                     /* single byte */
1185                     ++args->source;
1186                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1187                     ++args->source;
1188                 } else {
1189                     /* double byte */
1190                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1191                     args->source += 2;
1192                 }
1193             }
1194             else {                                  /* single byte conversion */
1195                 CHECK_SOURCE_LIMIT(1);
1196                 CurByte = *(args->source)++;
1197         
1198                 if (CurByte >= ULMBCS_C1START)
1199                 {
1200                     uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1201                 }
1202                 else
1203                 {
1204                     /* The non-optimizable oddballs where there is an explicit byte 
1205                     * AND the second byte is not in the upper ascii range
1206                     */
1207                     char bytes[2];
1208
1209                     extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1210                     cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];  
1211         
1212                     /* Lookup value must include opt group */
1213                     bytes[0] = group;
1214                     bytes[1] = CurByte;
1215                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1216                 }
1217             }
1218         }
1219         else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1220         {
1221             extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1222             group = extraInfo->OptGroup;
1223             cnv = extraInfo->OptGrpConverter[group];
1224             if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */
1225             {
1226                 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1227                 {
1228                     CHECK_SOURCE_LIMIT(0);
1229
1230                     /* let the MBCS conversion consume CurByte again */
1231                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1232                 }
1233                 else
1234                 {
1235                     CHECK_SOURCE_LIMIT(1);
1236                     /* let the MBCS conversion consume CurByte again */
1237                     uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1238                     ++args->source;
1239                 }
1240             }
1241             else                                   /* single byte conversion */
1242             {
1243                 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1244             }
1245         }
1246     }
1247     return uniChar;
1248 }
1249
1250
1251 /* The exported function that converts lmbcs to one or more
1252    UChars - currently UTF-16
1253 */
1254 static void 
1255 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args,
1256                      UErrorCode*    err)
1257 {
1258    char LMBCS [ULMBCS_CHARSIZE_MAX];
1259    UChar uniChar;    /* one output UNICODE char */
1260    const char * saveSource; /* beginning of current code point */
1261    const char * pStartLMBCS = args->source;  /* beginning of whole string */
1262    const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1263    int8_t savebytes = 0;
1264
1265    /* Process from source to limit, or until error */
1266    while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1267    {
1268       saveSource = args->source; /* beginning of current code point */
1269
1270       if (args->converter->toULength) /* reassemble char from previous call */
1271       {
1272         const char *saveSourceLimit; 
1273         size_t size_old = args->converter->toULength;
1274
1275          /* limit from source is either remainder of temp buffer, or user limit on source */
1276         size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1277         size_t size_new_maybe_2 = args->sourceLimit - args->source;
1278         size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1279          
1280       
1281         uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1282         uprv_memcpy(LMBCS + size_old, args->source, size_new);
1283         saveSourceLimit = args->sourceLimit;
1284         args->source = errSource = LMBCS;
1285         args->sourceLimit = LMBCS+size_old+size_new;
1286         savebytes = (int8_t)(size_old+size_new);
1287         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1288         args->source = saveSource + ((args->source - LMBCS) - size_old);
1289         args->sourceLimit = saveSourceLimit;
1290
1291         if (*err == U_TRUNCATED_CHAR_FOUND)
1292         {
1293             /* evil special case: source buffers so small a char spans more than 2 buffers */
1294             args->converter->toULength = savebytes;
1295             uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1296             args->source = args->sourceLimit;
1297             *err = U_ZERO_ERROR;
1298             return;
1299          }
1300          else
1301          {
1302             /* clear the partial-char marker */
1303             args->converter->toULength = 0;
1304          }
1305       }
1306       else
1307       {
1308          errSource = saveSource;
1309          uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1310          savebytes = (int8_t)(args->source - saveSource);
1311       }
1312       if (U_SUCCESS(*err))
1313       {
1314          if (uniChar < 0xfffe)
1315          {
1316             *(args->target)++ = uniChar;
1317             if(args->offsets)
1318             {
1319                *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1320             }
1321          }
1322          else if (uniChar == 0xfffe)
1323          {
1324             *err = U_INVALID_CHAR_FOUND;
1325          }
1326          else /* if (uniChar == 0xffff) */
1327          {
1328             *err = U_ILLEGAL_CHAR_FOUND;
1329          }
1330       }
1331    }
1332    /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1333    if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1334    {
1335       *err = U_BUFFER_OVERFLOW_ERROR;
1336    }
1337    else if (U_FAILURE(*err)) 
1338    {
1339       /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1340       args->converter->toULength = savebytes;
1341       if (savebytes > 0) {
1342          uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1343       }
1344       if (*err == U_TRUNCATED_CHAR_FOUND) {
1345          *err = U_ZERO_ERROR;
1346       }
1347    }
1348 }
1349
1350 /* And now, the macroized declarations of data & functions: */
1351 DEFINE_LMBCS_OPEN(1)
1352 DEFINE_LMBCS_OPEN(2)
1353 DEFINE_LMBCS_OPEN(3)
1354 DEFINE_LMBCS_OPEN(4)
1355 DEFINE_LMBCS_OPEN(5)
1356 DEFINE_LMBCS_OPEN(6)
1357 DEFINE_LMBCS_OPEN(8)
1358 DEFINE_LMBCS_OPEN(11)
1359 DEFINE_LMBCS_OPEN(16)
1360 DEFINE_LMBCS_OPEN(17)
1361 DEFINE_LMBCS_OPEN(18)
1362 DEFINE_LMBCS_OPEN(19)
1363
1364
1365 DECLARE_LMBCS_DATA(1)
1366 DECLARE_LMBCS_DATA(2)
1367 DECLARE_LMBCS_DATA(3)
1368 DECLARE_LMBCS_DATA(4)
1369 DECLARE_LMBCS_DATA(5)
1370 DECLARE_LMBCS_DATA(6)
1371 DECLARE_LMBCS_DATA(8)
1372 DECLARE_LMBCS_DATA(11)
1373 DECLARE_LMBCS_DATA(16)
1374 DECLARE_LMBCS_DATA(17)
1375 DECLARE_LMBCS_DATA(18)
1376 DECLARE_LMBCS_DATA(19)
1377
1378 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */