Merge tag 'kvmarm-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmar...
[platform/kernel/linux-starfive.git] / sound / x86 / intel_hdmi_audio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *              Ramesh Babu K V <ramesh.babu@intel.com>
8  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *              Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
35
36 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
37
38 #define for_each_pipe(card_ctx, pipe) \
39         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
40 #define for_each_port(card_ctx, port) \
41         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
42
43 /*standard module options for ALSA. This module supports only one card*/
44 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
45 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
46 static bool single_port;
47
48 module_param_named(index, hdmi_card_index, int, 0444);
49 MODULE_PARM_DESC(index,
50                 "Index value for INTEL Intel HDMI Audio controller.");
51 module_param_named(id, hdmi_card_id, charp, 0444);
52 MODULE_PARM_DESC(id,
53                 "ID string for INTEL Intel HDMI Audio controller.");
54 module_param(single_port, bool, 0444);
55 MODULE_PARM_DESC(single_port,
56                 "Single-port mode (for compatibility)");
57
58 /*
59  * ELD SA bits in the CEA Speaker Allocation data block
60  */
61 static const int eld_speaker_allocation_bits[] = {
62         [0] = FL | FR,
63         [1] = LFE,
64         [2] = FC,
65         [3] = RL | RR,
66         [4] = RC,
67         [5] = FLC | FRC,
68         [6] = RLC | RRC,
69         /* the following are not defined in ELD yet */
70         [7] = 0,
71 };
72
73 /*
74  * This is an ordered list!
75  *
76  * The preceding ones have better chances to be selected by
77  * hdmi_channel_allocation().
78  */
79 static struct cea_channel_speaker_allocation channel_allocations[] = {
80 /*                        channel:   7     6    5    4    3     2    1    0  */
81 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
82                                 /* 2.1 */
83 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
84                                 /* Dolby Surround */
85 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
86                                 /* surround40 */
87 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
88                                 /* surround41 */
89 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
90                                 /* surround50 */
91 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
92                                 /* surround51 */
93 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
94                                 /* 6.1 */
95 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96                                 /* surround71 */
97 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
98
99 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
100 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
101 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
102 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
103 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
104 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
105 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
106 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
107 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
108 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
111 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
112 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
113 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
114 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
115 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
118 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
119 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
120 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
121 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
122 };
123
124 static const struct channel_map_table map_tables[] = {
125         { SNDRV_CHMAP_FL,       0x00,   FL },
126         { SNDRV_CHMAP_FR,       0x01,   FR },
127         { SNDRV_CHMAP_RL,       0x04,   RL },
128         { SNDRV_CHMAP_RR,       0x05,   RR },
129         { SNDRV_CHMAP_LFE,      0x02,   LFE },
130         { SNDRV_CHMAP_FC,       0x03,   FC },
131         { SNDRV_CHMAP_RLC,      0x06,   RLC },
132         { SNDRV_CHMAP_RRC,      0x07,   RRC },
133         {} /* terminator */
134 };
135
136 /* hardware capability structure */
137 static const struct snd_pcm_hardware had_pcm_hardware = {
138         .info = (SNDRV_PCM_INFO_INTERLEAVED |
139                 SNDRV_PCM_INFO_MMAP |
140                 SNDRV_PCM_INFO_MMAP_VALID |
141                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
142         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
143                     SNDRV_PCM_FMTBIT_S24_LE |
144                     SNDRV_PCM_FMTBIT_S32_LE),
145         .rates = SNDRV_PCM_RATE_32000 |
146                 SNDRV_PCM_RATE_44100 |
147                 SNDRV_PCM_RATE_48000 |
148                 SNDRV_PCM_RATE_88200 |
149                 SNDRV_PCM_RATE_96000 |
150                 SNDRV_PCM_RATE_176400 |
151                 SNDRV_PCM_RATE_192000,
152         .rate_min = HAD_MIN_RATE,
153         .rate_max = HAD_MAX_RATE,
154         .channels_min = HAD_MIN_CHANNEL,
155         .channels_max = HAD_MAX_CHANNEL,
156         .buffer_bytes_max = HAD_MAX_BUFFER,
157         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
158         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
159         .periods_min = HAD_MIN_PERIODS,
160         .periods_max = HAD_MAX_PERIODS,
161         .fifo_size = HAD_FIFO_SIZE,
162 };
163
164 /* Get the active PCM substream;
165  * Call had_substream_put() for unreferecing.
166  * Don't call this inside had_spinlock, as it takes by itself
167  */
168 static struct snd_pcm_substream *
169 had_substream_get(struct snd_intelhad *intelhaddata)
170 {
171         struct snd_pcm_substream *substream;
172         unsigned long flags;
173
174         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
175         substream = intelhaddata->stream_info.substream;
176         if (substream)
177                 intelhaddata->stream_info.substream_refcount++;
178         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
179         return substream;
180 }
181
182 /* Unref the active PCM substream;
183  * Don't call this inside had_spinlock, as it takes by itself
184  */
185 static void had_substream_put(struct snd_intelhad *intelhaddata)
186 {
187         unsigned long flags;
188
189         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
190         intelhaddata->stream_info.substream_refcount--;
191         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
192 }
193
194 static u32 had_config_offset(int pipe)
195 {
196         switch (pipe) {
197         default:
198         case 0:
199                 return AUDIO_HDMI_CONFIG_A;
200         case 1:
201                 return AUDIO_HDMI_CONFIG_B;
202         case 2:
203                 return AUDIO_HDMI_CONFIG_C;
204         }
205 }
206
207 /* Register access functions */
208 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
209                                  int pipe, u32 reg)
210 {
211         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
212 }
213
214 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
215                                    int pipe, u32 reg, u32 val)
216 {
217         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
218 }
219
220 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
221 {
222         if (!ctx->connected)
223                 *val = 0;
224         else
225                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
226 }
227
228 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
229 {
230         if (ctx->connected)
231                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
232 }
233
234 /*
235  * enable / disable audio configuration
236  *
237  * The normal read/modify should not directly be used on VLV2 for
238  * updating AUD_CONFIG register.
239  * This is because:
240  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
241  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
242  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
243  * register. This field should be 1xy binary for configuration with 6 or
244  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
245  * causes the "channels" field to be updated as 0xy binary resulting in
246  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
247  * appropriate value when doing read-modify of AUD_CONFIG register.
248  */
249 static void had_enable_audio(struct snd_intelhad *intelhaddata,
250                              bool enable)
251 {
252         /* update the cached value */
253         intelhaddata->aud_config.regx.aud_en = enable;
254         had_write_register(intelhaddata, AUD_CONFIG,
255                            intelhaddata->aud_config.regval);
256 }
257
258 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
259 static void had_ack_irqs(struct snd_intelhad *ctx)
260 {
261         u32 status_reg;
262
263         if (!ctx->connected)
264                 return;
265         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
266         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
267         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
268         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269 }
270
271 /* Reset buffer pointers */
272 static void had_reset_audio(struct snd_intelhad *intelhaddata)
273 {
274         had_write_register(intelhaddata, AUD_HDMI_STATUS,
275                            AUD_HDMI_STATUSG_MASK_FUNCRST);
276         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
277 }
278
279 /*
280  * initialize audio channel status registers
281  * This function is called in the prepare callback
282  */
283 static int had_prog_status_reg(struct snd_pcm_substream *substream,
284                         struct snd_intelhad *intelhaddata)
285 {
286         union aud_ch_status_0 ch_stat0 = {.regval = 0};
287         union aud_ch_status_1 ch_stat1 = {.regval = 0};
288
289         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
290                                           IEC958_AES0_NONAUDIO) >> 1;
291         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
292                                           IEC958_AES3_CON_CLOCK) >> 4;
293
294         switch (substream->runtime->rate) {
295         case AUD_SAMPLE_RATE_32:
296                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
297                 break;
298
299         case AUD_SAMPLE_RATE_44_1:
300                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
301                 break;
302         case AUD_SAMPLE_RATE_48:
303                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
304                 break;
305         case AUD_SAMPLE_RATE_88_2:
306                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
307                 break;
308         case AUD_SAMPLE_RATE_96:
309                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
310                 break;
311         case AUD_SAMPLE_RATE_176_4:
312                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
313                 break;
314         case AUD_SAMPLE_RATE_192:
315                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
316                 break;
317
318         default:
319                 /* control should never come here */
320                 return -EINVAL;
321         }
322
323         had_write_register(intelhaddata,
324                            AUD_CH_STATUS_0, ch_stat0.regval);
325
326         switch (substream->runtime->format) {
327         case SNDRV_PCM_FORMAT_S16_LE:
328                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
329                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
330                 break;
331         case SNDRV_PCM_FORMAT_S24_LE:
332         case SNDRV_PCM_FORMAT_S32_LE:
333                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
334                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
335                 break;
336         default:
337                 return -EINVAL;
338         }
339
340         had_write_register(intelhaddata,
341                            AUD_CH_STATUS_1, ch_stat1.regval);
342         return 0;
343 }
344
345 /*
346  * function to initialize audio
347  * registers and buffer configuration registers
348  * This function is called in the prepare callback
349  */
350 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
351                                struct snd_intelhad *intelhaddata)
352 {
353         union aud_cfg cfg_val = {.regval = 0};
354         union aud_buf_config buf_cfg = {.regval = 0};
355         u8 channels;
356
357         had_prog_status_reg(substream, intelhaddata);
358
359         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
360         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
361         buf_cfg.regx.aud_delay = 0;
362         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
363
364         channels = substream->runtime->channels;
365         cfg_val.regx.num_ch = channels - 2;
366         if (channels <= 2)
367                 cfg_val.regx.layout = LAYOUT0;
368         else
369                 cfg_val.regx.layout = LAYOUT1;
370
371         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
372                 cfg_val.regx.packet_mode = 1;
373
374         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
375                 cfg_val.regx.left_align = 1;
376
377         cfg_val.regx.val_bit = 1;
378
379         /* fix up the DP bits */
380         if (intelhaddata->dp_output) {
381                 cfg_val.regx.dp_modei = 1;
382                 cfg_val.regx.set = 1;
383         }
384
385         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
386         intelhaddata->aud_config = cfg_val;
387         return 0;
388 }
389
390 /*
391  * Compute derived values in channel_allocations[].
392  */
393 static void init_channel_allocations(void)
394 {
395         int i, j;
396         struct cea_channel_speaker_allocation *p;
397
398         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
399                 p = channel_allocations + i;
400                 p->channels = 0;
401                 p->spk_mask = 0;
402                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
403                         if (p->speakers[j]) {
404                                 p->channels++;
405                                 p->spk_mask |= p->speakers[j];
406                         }
407         }
408 }
409
410 /*
411  * The transformation takes two steps:
412  *
413  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
414  *            spk_mask => (channel_allocations[])         => ai->CA
415  *
416  * TODO: it could select the wrong CA from multiple candidates.
417  */
418 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
419                                   int channels)
420 {
421         int i;
422         int ca = 0;
423         int spk_mask = 0;
424
425         /*
426          * CA defaults to 0 for basic stereo audio
427          */
428         if (channels <= 2)
429                 return 0;
430
431         /*
432          * expand ELD's speaker allocation mask
433          *
434          * ELD tells the speaker mask in a compact(paired) form,
435          * expand ELD's notions to match the ones used by Audio InfoFrame.
436          */
437
438         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
439                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
440                         spk_mask |= eld_speaker_allocation_bits[i];
441         }
442
443         /* search for the first working match in the CA table */
444         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
445                 if (channels == channel_allocations[i].channels &&
446                 (spk_mask & channel_allocations[i].spk_mask) ==
447                                 channel_allocations[i].spk_mask) {
448                         ca = channel_allocations[i].ca_index;
449                         break;
450                 }
451         }
452
453         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
454
455         return ca;
456 }
457
458 /* from speaker bit mask to ALSA API channel position */
459 static int spk_to_chmap(int spk)
460 {
461         const struct channel_map_table *t = map_tables;
462
463         for (; t->map; t++) {
464                 if (t->spk_mask == spk)
465                         return t->map;
466         }
467         return 0;
468 }
469
470 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
471 {
472         int i, c;
473         int spk_mask = 0;
474         struct snd_pcm_chmap_elem *chmap;
475         u8 eld_high, eld_high_mask = 0xF0;
476         u8 high_msb;
477
478         kfree(intelhaddata->chmap->chmap);
479         intelhaddata->chmap->chmap = NULL;
480
481         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
482         if (!chmap)
483                 return;
484
485         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
486                 intelhaddata->eld[DRM_ELD_SPEAKER]);
487
488         /* WA: Fix the max channel supported to 8 */
489
490         /*
491          * Sink may support more than 8 channels, if eld_high has more than
492          * one bit set. SOC supports max 8 channels.
493          * Refer eld_speaker_allocation_bits, for sink speaker allocation
494          */
495
496         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
497         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
498         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
499                 /* eld_high & (eld_high-1): if more than 1 bit set */
500                 /* 0x1F: 7 channels */
501                 for (i = 1; i < 4; i++) {
502                         high_msb = eld_high & (0x80 >> i);
503                         if (high_msb) {
504                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
505                                         high_msb | 0xF;
506                                 break;
507                         }
508                 }
509         }
510
511         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
512                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
513                         spk_mask |= eld_speaker_allocation_bits[i];
514         }
515
516         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
517                 if (spk_mask == channel_allocations[i].spk_mask) {
518                         for (c = 0; c < channel_allocations[i].channels; c++) {
519                                 chmap->map[c] = spk_to_chmap(
520                                         channel_allocations[i].speakers[
521                                                 (MAX_SPEAKERS - 1) - c]);
522                         }
523                         chmap->channels = channel_allocations[i].channels;
524                         intelhaddata->chmap->chmap = chmap;
525                         break;
526                 }
527         }
528         if (i >= ARRAY_SIZE(channel_allocations))
529                 kfree(chmap);
530 }
531
532 /*
533  * ALSA API channel-map control callbacks
534  */
535 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
536                                 struct snd_ctl_elem_info *uinfo)
537 {
538         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
539         uinfo->count = HAD_MAX_CHANNEL;
540         uinfo->value.integer.min = 0;
541         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
542         return 0;
543 }
544
545 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
546                                 struct snd_ctl_elem_value *ucontrol)
547 {
548         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
549         struct snd_intelhad *intelhaddata = info->private_data;
550         int i;
551         const struct snd_pcm_chmap_elem *chmap;
552
553         memset(ucontrol->value.integer.value, 0,
554                sizeof(long) * HAD_MAX_CHANNEL);
555         mutex_lock(&intelhaddata->mutex);
556         if (!intelhaddata->chmap->chmap) {
557                 mutex_unlock(&intelhaddata->mutex);
558                 return 0;
559         }
560
561         chmap = intelhaddata->chmap->chmap;
562         for (i = 0; i < chmap->channels; i++)
563                 ucontrol->value.integer.value[i] = chmap->map[i];
564         mutex_unlock(&intelhaddata->mutex);
565
566         return 0;
567 }
568
569 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
570                                                 struct snd_pcm *pcm)
571 {
572         int err;
573
574         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
575                         NULL, 0, (unsigned long)intelhaddata,
576                         &intelhaddata->chmap);
577         if (err < 0)
578                 return err;
579
580         intelhaddata->chmap->private_data = intelhaddata;
581         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
582         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
583         intelhaddata->chmap->chmap = NULL;
584         return 0;
585 }
586
587 /*
588  * Initialize Data Island Packets registers
589  * This function is called in the prepare callback
590  */
591 static void had_prog_dip(struct snd_pcm_substream *substream,
592                          struct snd_intelhad *intelhaddata)
593 {
594         int i;
595         union aud_ctrl_st ctrl_state = {.regval = 0};
596         union aud_info_frame2 frame2 = {.regval = 0};
597         union aud_info_frame3 frame3 = {.regval = 0};
598         u8 checksum = 0;
599         u32 info_frame;
600         int channels;
601         int ca;
602
603         channels = substream->runtime->channels;
604
605         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
606
607         ca = had_channel_allocation(intelhaddata, channels);
608         if (intelhaddata->dp_output) {
609                 info_frame = DP_INFO_FRAME_WORD1;
610                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
611         } else {
612                 info_frame = HDMI_INFO_FRAME_WORD1;
613                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
614                 frame3.regx.chnl_alloc = ca;
615
616                 /* Calculte the byte wide checksum for all valid DIP words */
617                 for (i = 0; i < BYTES_PER_WORD; i++)
618                         checksum += (info_frame >> (i * 8)) & 0xff;
619                 for (i = 0; i < BYTES_PER_WORD; i++)
620                         checksum += (frame2.regval >> (i * 8)) & 0xff;
621                 for (i = 0; i < BYTES_PER_WORD; i++)
622                         checksum += (frame3.regval >> (i * 8)) & 0xff;
623
624                 frame2.regx.chksum = -(checksum);
625         }
626
627         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
628         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
629         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
630
631         /* program remaining DIP words with zero */
632         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
633                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
634
635         ctrl_state.regx.dip_freq = 1;
636         ctrl_state.regx.dip_en_sta = 1;
637         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
638 }
639
640 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
641 {
642         u32 maud_val;
643
644         /* Select maud according to DP 1.2 spec */
645         if (link_rate == DP_2_7_GHZ) {
646                 switch (aud_samp_freq) {
647                 case AUD_SAMPLE_RATE_32:
648                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
649                         break;
650
651                 case AUD_SAMPLE_RATE_44_1:
652                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
653                         break;
654
655                 case AUD_SAMPLE_RATE_48:
656                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
657                         break;
658
659                 case AUD_SAMPLE_RATE_88_2:
660                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
661                         break;
662
663                 case AUD_SAMPLE_RATE_96:
664                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
665                         break;
666
667                 case AUD_SAMPLE_RATE_176_4:
668                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
669                         break;
670
671                 case HAD_MAX_RATE:
672                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
673                         break;
674
675                 default:
676                         maud_val = -EINVAL;
677                         break;
678                 }
679         } else if (link_rate == DP_1_62_GHZ) {
680                 switch (aud_samp_freq) {
681                 case AUD_SAMPLE_RATE_32:
682                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
683                         break;
684
685                 case AUD_SAMPLE_RATE_44_1:
686                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
687                         break;
688
689                 case AUD_SAMPLE_RATE_48:
690                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
691                         break;
692
693                 case AUD_SAMPLE_RATE_88_2:
694                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
695                         break;
696
697                 case AUD_SAMPLE_RATE_96:
698                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
699                         break;
700
701                 case AUD_SAMPLE_RATE_176_4:
702                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
703                         break;
704
705                 case HAD_MAX_RATE:
706                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
707                         break;
708
709                 default:
710                         maud_val = -EINVAL;
711                         break;
712                 }
713         } else
714                 maud_val = -EINVAL;
715
716         return maud_val;
717 }
718
719 /*
720  * Program HDMI audio CTS value
721  *
722  * @aud_samp_freq: sampling frequency of audio data
723  * @tmds: sampling frequency of the display data
724  * @link_rate: DP link rate
725  * @n_param: N value, depends on aud_samp_freq
726  * @intelhaddata: substream private data
727  *
728  * Program CTS register based on the audio and display sampling frequency
729  */
730 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
731                          u32 n_param, struct snd_intelhad *intelhaddata)
732 {
733         u32 cts_val;
734         u64 dividend, divisor;
735
736         if (intelhaddata->dp_output) {
737                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
738                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
739         } else {
740                 /* Calculate CTS according to HDMI 1.3a spec*/
741                 dividend = (u64)tmds * n_param*1000;
742                 divisor = 128 * aud_samp_freq;
743                 cts_val = div64_u64(dividend, divisor);
744         }
745         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
746                  tmds, n_param, cts_val);
747         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
748 }
749
750 static int had_calculate_n_value(u32 aud_samp_freq)
751 {
752         int n_val;
753
754         /* Select N according to HDMI 1.3a spec*/
755         switch (aud_samp_freq) {
756         case AUD_SAMPLE_RATE_32:
757                 n_val = 4096;
758                 break;
759
760         case AUD_SAMPLE_RATE_44_1:
761                 n_val = 6272;
762                 break;
763
764         case AUD_SAMPLE_RATE_48:
765                 n_val = 6144;
766                 break;
767
768         case AUD_SAMPLE_RATE_88_2:
769                 n_val = 12544;
770                 break;
771
772         case AUD_SAMPLE_RATE_96:
773                 n_val = 12288;
774                 break;
775
776         case AUD_SAMPLE_RATE_176_4:
777                 n_val = 25088;
778                 break;
779
780         case HAD_MAX_RATE:
781                 n_val = 24576;
782                 break;
783
784         default:
785                 n_val = -EINVAL;
786                 break;
787         }
788         return n_val;
789 }
790
791 /*
792  * Program HDMI audio N value
793  *
794  * @aud_samp_freq: sampling frequency of audio data
795  * @n_param: N value, depends on aud_samp_freq
796  * @intelhaddata: substream private data
797  *
798  * This function is called in the prepare callback.
799  * It programs based on the audio and display sampling frequency
800  */
801 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
802                       struct snd_intelhad *intelhaddata)
803 {
804         int n_val;
805
806         if (intelhaddata->dp_output) {
807                 /*
808                  * According to DP specs, Maud and Naud values hold
809                  * a relationship, which is stated as:
810                  * Maud/Naud = 512 * fs / f_LS_Clk
811                  * where, fs is the sampling frequency of the audio stream
812                  * and Naud is 32768 for Async clock.
813                  */
814
815                 n_val = DP_NAUD_VAL;
816         } else
817                 n_val = had_calculate_n_value(aud_samp_freq);
818
819         if (n_val < 0)
820                 return n_val;
821
822         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
823         *n_param = n_val;
824         return 0;
825 }
826
827 /*
828  * PCM ring buffer handling
829  *
830  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
831  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
832  * moves at each period elapsed.  The below illustrates how it works:
833  *
834  * At time=0
835  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
836  *  BD  | 0 | 1 | 2 | 3 |
837  *
838  * At time=1 (period elapsed)
839  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840  *  BD      | 1 | 2 | 3 | 0 |
841  *
842  * At time=2 (second period elapsed)
843  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
844  *  BD          | 2 | 3 | 0 | 1 |
845  *
846  * The bd_head field points to the index of the BD to be read.  It's also the
847  * position to be filled at next.  The pcm_head and the pcm_filled fields
848  * point to the indices of the current position and of the next position to
849  * be filled, respectively.  For PCM buffer there are both _head and _filled
850  * because they may be difference when nperiods > 4.  For example, in the
851  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
852  *
853  * pcm_head (=1) --v               v-- pcm_filled (=5)
854  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
855  *       BD      | 1 | 2 | 3 | 0 |
856  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
857  *
858  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
859  * the hardware skips those BDs in the loop.
860  *
861  * An exceptional setup is the case with nperiods=1.  Since we have to update
862  * BDs after finishing one BD processing, we'd need at least two BDs, where
863  * both BDs point to the same content, the same address, the same size of the
864  * whole PCM buffer.
865  */
866
867 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
868 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
869
870 /* Set up a buffer descriptor at the "filled" position */
871 static void had_prog_bd(struct snd_pcm_substream *substream,
872                         struct snd_intelhad *intelhaddata)
873 {
874         int idx = intelhaddata->bd_head;
875         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
876         u32 addr = substream->runtime->dma_addr + ofs;
877
878         addr |= AUD_BUF_VALID;
879         if (!substream->runtime->no_period_wakeup)
880                 addr |= AUD_BUF_INTR_EN;
881         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
882         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
883                            intelhaddata->period_bytes);
884
885         /* advance the indices to the next */
886         intelhaddata->bd_head++;
887         intelhaddata->bd_head %= intelhaddata->num_bds;
888         intelhaddata->pcmbuf_filled++;
889         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
890 }
891
892 /* invalidate a buffer descriptor with the given index */
893 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
894                               int idx)
895 {
896         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
897         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
898 }
899
900 /* Initial programming of ring buffer */
901 static void had_init_ringbuf(struct snd_pcm_substream *substream,
902                              struct snd_intelhad *intelhaddata)
903 {
904         struct snd_pcm_runtime *runtime = substream->runtime;
905         int i, num_periods;
906
907         num_periods = runtime->periods;
908         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
909         /* set the minimum 2 BDs for num_periods=1 */
910         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
911         intelhaddata->period_bytes =
912                 frames_to_bytes(runtime, runtime->period_size);
913         WARN_ON(intelhaddata->period_bytes & 0x3f);
914
915         intelhaddata->bd_head = 0;
916         intelhaddata->pcmbuf_head = 0;
917         intelhaddata->pcmbuf_filled = 0;
918
919         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
920                 if (i < intelhaddata->num_bds)
921                         had_prog_bd(substream, intelhaddata);
922                 else /* invalidate the rest */
923                         had_invalidate_bd(intelhaddata, i);
924         }
925
926         intelhaddata->bd_head = 0; /* reset at head again before starting */
927 }
928
929 /* process a bd, advance to the next */
930 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
931                                 struct snd_intelhad *intelhaddata)
932 {
933         int num_periods = substream->runtime->periods;
934
935         /* reprogram the next buffer */
936         had_prog_bd(substream, intelhaddata);
937
938         /* proceed to next */
939         intelhaddata->pcmbuf_head++;
940         intelhaddata->pcmbuf_head %= num_periods;
941 }
942
943 /* process the current BD(s);
944  * returns the current PCM buffer byte position, or -EPIPE for underrun.
945  */
946 static int had_process_ringbuf(struct snd_pcm_substream *substream,
947                                struct snd_intelhad *intelhaddata)
948 {
949         int len, processed;
950         unsigned long flags;
951
952         processed = 0;
953         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
954         for (;;) {
955                 /* get the remaining bytes on the buffer */
956                 had_read_register(intelhaddata,
957                                   AUD_BUF_LEN(intelhaddata->bd_head),
958                                   &len);
959                 if (len < 0 || len > intelhaddata->period_bytes) {
960                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
961                                 len);
962                         len = -EPIPE;
963                         goto out;
964                 }
965
966                 if (len > 0) /* OK, this is the current buffer */
967                         break;
968
969                 /* len=0 => already empty, check the next buffer */
970                 if (++processed >= intelhaddata->num_bds) {
971                         len = -EPIPE; /* all empty? - report underrun */
972                         goto out;
973                 }
974                 had_advance_ringbuf(substream, intelhaddata);
975         }
976
977         len = intelhaddata->period_bytes - len;
978         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
979  out:
980         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
981         return len;
982 }
983
984 /* called from irq handler */
985 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
986 {
987         struct snd_pcm_substream *substream;
988
989         substream = had_substream_get(intelhaddata);
990         if (!substream)
991                 return; /* no stream? - bail out */
992
993         if (!intelhaddata->connected) {
994                 snd_pcm_stop_xrun(substream);
995                 goto out; /* disconnected? - bail out */
996         }
997
998         /* process or stop the stream */
999         if (had_process_ringbuf(substream, intelhaddata) < 0)
1000                 snd_pcm_stop_xrun(substream);
1001         else
1002                 snd_pcm_period_elapsed(substream);
1003
1004  out:
1005         had_substream_put(intelhaddata);
1006 }
1007
1008 /*
1009  * The interrupt status 'sticky' bits might not be cleared by
1010  * setting '1' to that bit once...
1011  */
1012 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1013 {
1014         int i;
1015         u32 val;
1016
1017         for (i = 0; i < 100; i++) {
1018                 /* clear bit30, 31 AUD_HDMI_STATUS */
1019                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1020                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1021                         return;
1022                 udelay(100);
1023                 cond_resched();
1024                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1025         }
1026         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1027 }
1028
1029 /* Perform some reset procedure after stopping the stream;
1030  * this is called from prepare or hw_free callbacks once after trigger STOP
1031  * or underrun has been processed in order to settle down the h/w state.
1032  */
1033 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1034 {
1035         struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1036
1037         if (!intelhaddata->connected)
1038                 return 0;
1039
1040         /* Reset buffer pointers */
1041         had_reset_audio(intelhaddata);
1042         wait_clear_underrun_bit(intelhaddata);
1043         return 0;
1044 }
1045
1046 /* called from irq handler */
1047 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1048 {
1049         struct snd_pcm_substream *substream;
1050
1051         /* Report UNDERRUN error to above layers */
1052         substream = had_substream_get(intelhaddata);
1053         if (substream) {
1054                 snd_pcm_stop_xrun(substream);
1055                 had_substream_put(intelhaddata);
1056         }
1057 }
1058
1059 /*
1060  * ALSA PCM open callback
1061  */
1062 static int had_pcm_open(struct snd_pcm_substream *substream)
1063 {
1064         struct snd_intelhad *intelhaddata;
1065         struct snd_pcm_runtime *runtime;
1066         int retval;
1067
1068         intelhaddata = snd_pcm_substream_chip(substream);
1069         runtime = substream->runtime;
1070
1071         retval = pm_runtime_resume_and_get(intelhaddata->dev);
1072         if (retval < 0)
1073                 return retval;
1074
1075         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1076         runtime->hw = had_pcm_hardware;
1077
1078         retval = snd_pcm_hw_constraint_integer(runtime,
1079                          SNDRV_PCM_HW_PARAM_PERIODS);
1080         if (retval < 0)
1081                 goto error;
1082
1083         /* Make sure, that the period size is always aligned
1084          * 64byte boundary
1085          */
1086         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1087                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1088         if (retval < 0)
1089                 goto error;
1090
1091         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1092         if (retval < 0)
1093                 goto error;
1094
1095         /* expose PCM substream */
1096         spin_lock_irq(&intelhaddata->had_spinlock);
1097         intelhaddata->stream_info.substream = substream;
1098         intelhaddata->stream_info.substream_refcount++;
1099         spin_unlock_irq(&intelhaddata->had_spinlock);
1100
1101         return retval;
1102  error:
1103         pm_runtime_mark_last_busy(intelhaddata->dev);
1104         pm_runtime_put_autosuspend(intelhaddata->dev);
1105         return retval;
1106 }
1107
1108 /*
1109  * ALSA PCM close callback
1110  */
1111 static int had_pcm_close(struct snd_pcm_substream *substream)
1112 {
1113         struct snd_intelhad *intelhaddata;
1114
1115         intelhaddata = snd_pcm_substream_chip(substream);
1116
1117         /* unreference and sync with the pending PCM accesses */
1118         spin_lock_irq(&intelhaddata->had_spinlock);
1119         intelhaddata->stream_info.substream = NULL;
1120         intelhaddata->stream_info.substream_refcount--;
1121         while (intelhaddata->stream_info.substream_refcount > 0) {
1122                 spin_unlock_irq(&intelhaddata->had_spinlock);
1123                 cpu_relax();
1124                 spin_lock_irq(&intelhaddata->had_spinlock);
1125         }
1126         spin_unlock_irq(&intelhaddata->had_spinlock);
1127
1128         pm_runtime_mark_last_busy(intelhaddata->dev);
1129         pm_runtime_put_autosuspend(intelhaddata->dev);
1130         return 0;
1131 }
1132
1133 /*
1134  * ALSA PCM hw_params callback
1135  */
1136 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1137                              struct snd_pcm_hw_params *hw_params)
1138 {
1139         struct snd_intelhad *intelhaddata;
1140         int buf_size;
1141
1142         intelhaddata = snd_pcm_substream_chip(substream);
1143         buf_size = params_buffer_bytes(hw_params);
1144         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1145                 __func__, buf_size);
1146         return 0;
1147 }
1148
1149 /*
1150  * ALSA PCM trigger callback
1151  */
1152 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1153 {
1154         int retval = 0;
1155         struct snd_intelhad *intelhaddata;
1156
1157         intelhaddata = snd_pcm_substream_chip(substream);
1158
1159         spin_lock(&intelhaddata->had_spinlock);
1160         switch (cmd) {
1161         case SNDRV_PCM_TRIGGER_START:
1162         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1163         case SNDRV_PCM_TRIGGER_RESUME:
1164                 /* Enable Audio */
1165                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1166                 had_enable_audio(intelhaddata, true);
1167                 break;
1168
1169         case SNDRV_PCM_TRIGGER_STOP:
1170         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1171                 /* Disable Audio */
1172                 had_enable_audio(intelhaddata, false);
1173                 break;
1174
1175         default:
1176                 retval = -EINVAL;
1177         }
1178         spin_unlock(&intelhaddata->had_spinlock);
1179         return retval;
1180 }
1181
1182 /*
1183  * ALSA PCM prepare callback
1184  */
1185 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1186 {
1187         int retval;
1188         u32 disp_samp_freq, n_param;
1189         u32 link_rate = 0;
1190         struct snd_intelhad *intelhaddata;
1191         struct snd_pcm_runtime *runtime;
1192
1193         intelhaddata = snd_pcm_substream_chip(substream);
1194         runtime = substream->runtime;
1195
1196         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1197                 (int)frames_to_bytes(runtime, runtime->period_size));
1198         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1199         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1200                 (int)snd_pcm_lib_buffer_bytes(substream));
1201         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1202         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1203
1204         /* Get N value in KHz */
1205         disp_samp_freq = intelhaddata->tmds_clock_speed;
1206
1207         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1208         if (retval) {
1209                 dev_err(intelhaddata->dev,
1210                         "programming N value failed %#x\n", retval);
1211                 goto prep_end;
1212         }
1213
1214         if (intelhaddata->dp_output)
1215                 link_rate = intelhaddata->link_rate;
1216
1217         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1218                      n_param, intelhaddata);
1219
1220         had_prog_dip(substream, intelhaddata);
1221
1222         retval = had_init_audio_ctrl(substream, intelhaddata);
1223
1224         /* Prog buffer address */
1225         had_init_ringbuf(substream, intelhaddata);
1226
1227         /*
1228          * Program channel mapping in following order:
1229          * FL, FR, C, LFE, RL, RR
1230          */
1231
1232         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1233
1234 prep_end:
1235         return retval;
1236 }
1237
1238 /*
1239  * ALSA PCM pointer callback
1240  */
1241 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1242 {
1243         struct snd_intelhad *intelhaddata;
1244         int len;
1245
1246         intelhaddata = snd_pcm_substream_chip(substream);
1247
1248         if (!intelhaddata->connected)
1249                 return SNDRV_PCM_POS_XRUN;
1250
1251         len = had_process_ringbuf(substream, intelhaddata);
1252         if (len < 0)
1253                 return SNDRV_PCM_POS_XRUN;
1254         len = bytes_to_frames(substream->runtime, len);
1255         /* wrapping may happen when periods=1 */
1256         len %= substream->runtime->buffer_size;
1257         return len;
1258 }
1259
1260 /*
1261  * ALSA PCM ops
1262  */
1263 static const struct snd_pcm_ops had_pcm_ops = {
1264         .open =         had_pcm_open,
1265         .close =        had_pcm_close,
1266         .hw_params =    had_pcm_hw_params,
1267         .prepare =      had_pcm_prepare,
1268         .trigger =      had_pcm_trigger,
1269         .sync_stop =    had_pcm_sync_stop,
1270         .pointer =      had_pcm_pointer,
1271 };
1272
1273 /* process mode change of the running stream; called in mutex */
1274 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1275 {
1276         struct snd_pcm_substream *substream;
1277         int retval = 0;
1278         u32 disp_samp_freq, n_param;
1279         u32 link_rate = 0;
1280
1281         substream = had_substream_get(intelhaddata);
1282         if (!substream)
1283                 return 0;
1284
1285         /* Disable Audio */
1286         had_enable_audio(intelhaddata, false);
1287
1288         /* Update CTS value */
1289         disp_samp_freq = intelhaddata->tmds_clock_speed;
1290
1291         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1292         if (retval) {
1293                 dev_err(intelhaddata->dev,
1294                         "programming N value failed %#x\n", retval);
1295                 goto out;
1296         }
1297
1298         if (intelhaddata->dp_output)
1299                 link_rate = intelhaddata->link_rate;
1300
1301         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1302                      n_param, intelhaddata);
1303
1304         /* Enable Audio */
1305         had_enable_audio(intelhaddata, true);
1306
1307 out:
1308         had_substream_put(intelhaddata);
1309         return retval;
1310 }
1311
1312 /* process hot plug, called from wq with mutex locked */
1313 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1314 {
1315         struct snd_pcm_substream *substream;
1316
1317         spin_lock_irq(&intelhaddata->had_spinlock);
1318         if (intelhaddata->connected) {
1319                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1320                 spin_unlock_irq(&intelhaddata->had_spinlock);
1321                 return;
1322         }
1323
1324         /* Disable Audio */
1325         had_enable_audio(intelhaddata, false);
1326
1327         intelhaddata->connected = true;
1328         dev_dbg(intelhaddata->dev,
1329                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1330                         __func__, __LINE__);
1331         spin_unlock_irq(&intelhaddata->had_spinlock);
1332
1333         had_build_channel_allocation_map(intelhaddata);
1334
1335         /* Report to above ALSA layer */
1336         substream = had_substream_get(intelhaddata);
1337         if (substream) {
1338                 snd_pcm_stop_xrun(substream);
1339                 had_substream_put(intelhaddata);
1340         }
1341
1342         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1343 }
1344
1345 /* process hot unplug, called from wq with mutex locked */
1346 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1347 {
1348         struct snd_pcm_substream *substream;
1349
1350         spin_lock_irq(&intelhaddata->had_spinlock);
1351         if (!intelhaddata->connected) {
1352                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1353                 spin_unlock_irq(&intelhaddata->had_spinlock);
1354                 return;
1355
1356         }
1357
1358         /* Disable Audio */
1359         had_enable_audio(intelhaddata, false);
1360
1361         intelhaddata->connected = false;
1362         dev_dbg(intelhaddata->dev,
1363                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1364                         __func__, __LINE__);
1365         spin_unlock_irq(&intelhaddata->had_spinlock);
1366
1367         kfree(intelhaddata->chmap->chmap);
1368         intelhaddata->chmap->chmap = NULL;
1369
1370         /* Report to above ALSA layer */
1371         substream = had_substream_get(intelhaddata);
1372         if (substream) {
1373                 snd_pcm_stop_xrun(substream);
1374                 had_substream_put(intelhaddata);
1375         }
1376
1377         snd_jack_report(intelhaddata->jack, 0);
1378 }
1379
1380 /*
1381  * ALSA iec958 and ELD controls
1382  */
1383
1384 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1385                                 struct snd_ctl_elem_info *uinfo)
1386 {
1387         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1388         uinfo->count = 1;
1389         return 0;
1390 }
1391
1392 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1393                                 struct snd_ctl_elem_value *ucontrol)
1394 {
1395         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1396
1397         mutex_lock(&intelhaddata->mutex);
1398         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1399         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1400         ucontrol->value.iec958.status[2] =
1401                                         (intelhaddata->aes_bits >> 16) & 0xff;
1402         ucontrol->value.iec958.status[3] =
1403                                         (intelhaddata->aes_bits >> 24) & 0xff;
1404         mutex_unlock(&intelhaddata->mutex);
1405         return 0;
1406 }
1407
1408 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1409                                 struct snd_ctl_elem_value *ucontrol)
1410 {
1411         ucontrol->value.iec958.status[0] = 0xff;
1412         ucontrol->value.iec958.status[1] = 0xff;
1413         ucontrol->value.iec958.status[2] = 0xff;
1414         ucontrol->value.iec958.status[3] = 0xff;
1415         return 0;
1416 }
1417
1418 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1419                                 struct snd_ctl_elem_value *ucontrol)
1420 {
1421         unsigned int val;
1422         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1423         int changed = 0;
1424
1425         val = (ucontrol->value.iec958.status[0] << 0) |
1426                 (ucontrol->value.iec958.status[1] << 8) |
1427                 (ucontrol->value.iec958.status[2] << 16) |
1428                 (ucontrol->value.iec958.status[3] << 24);
1429         mutex_lock(&intelhaddata->mutex);
1430         if (intelhaddata->aes_bits != val) {
1431                 intelhaddata->aes_bits = val;
1432                 changed = 1;
1433         }
1434         mutex_unlock(&intelhaddata->mutex);
1435         return changed;
1436 }
1437
1438 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1439                             struct snd_ctl_elem_info *uinfo)
1440 {
1441         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1442         uinfo->count = HDMI_MAX_ELD_BYTES;
1443         return 0;
1444 }
1445
1446 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1447                            struct snd_ctl_elem_value *ucontrol)
1448 {
1449         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1450
1451         mutex_lock(&intelhaddata->mutex);
1452         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1453                HDMI_MAX_ELD_BYTES);
1454         mutex_unlock(&intelhaddata->mutex);
1455         return 0;
1456 }
1457
1458 static const struct snd_kcontrol_new had_controls[] = {
1459         {
1460                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1461                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1462                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1463                 .info = had_iec958_info, /* shared */
1464                 .get = had_iec958_mask_get,
1465         },
1466         {
1467                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1468                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1469                 .info = had_iec958_info,
1470                 .get = had_iec958_get,
1471                 .put = had_iec958_put,
1472         },
1473         {
1474                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1475                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1476                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477                 .name = "ELD",
1478                 .info = had_ctl_eld_info,
1479                 .get = had_ctl_eld_get,
1480         },
1481 };
1482
1483 /*
1484  * audio interrupt handler
1485  */
1486 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1487 {
1488         struct snd_intelhad_card *card_ctx = dev_id;
1489         u32 audio_stat[3] = {};
1490         int pipe, port;
1491
1492         for_each_pipe(card_ctx, pipe) {
1493                 /* use raw register access to ack IRQs even while disconnected */
1494                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1495                                                          AUD_HDMI_STATUS) &
1496                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1497
1498                 if (audio_stat[pipe])
1499                         had_write_register_raw(card_ctx, pipe,
1500                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1501         }
1502
1503         for_each_port(card_ctx, port) {
1504                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1505                 int pipe = ctx->pipe;
1506
1507                 if (pipe < 0)
1508                         continue;
1509
1510                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1511                         had_process_buffer_done(ctx);
1512                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1513                         had_process_buffer_underrun(ctx);
1514         }
1515
1516         return IRQ_HANDLED;
1517 }
1518
1519 /*
1520  * monitor plug/unplug notification from i915; just kick off the work
1521  */
1522 static void notify_audio_lpe(struct platform_device *pdev, int port)
1523 {
1524         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1525         struct snd_intelhad *ctx;
1526
1527         ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1528         if (single_port)
1529                 ctx->port = port;
1530
1531         schedule_work(&ctx->hdmi_audio_wq);
1532 }
1533
1534 /* the work to handle monitor hot plug/unplug */
1535 static void had_audio_wq(struct work_struct *work)
1536 {
1537         struct snd_intelhad *ctx =
1538                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1539         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1540         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1541         int ret;
1542
1543         ret = pm_runtime_resume_and_get(ctx->dev);
1544         if (ret < 0)
1545                 return;
1546
1547         mutex_lock(&ctx->mutex);
1548         if (ppdata->pipe < 0) {
1549                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1550                         __func__, ctx->port);
1551
1552                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1553
1554                 ctx->dp_output = false;
1555                 ctx->tmds_clock_speed = 0;
1556                 ctx->link_rate = 0;
1557
1558                 /* Shut down the stream */
1559                 had_process_hot_unplug(ctx);
1560
1561                 ctx->pipe = -1;
1562         } else {
1563                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1564                         __func__, ctx->port, ppdata->ls_clock);
1565
1566                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1567
1568                 ctx->dp_output = ppdata->dp_output;
1569                 if (ctx->dp_output) {
1570                         ctx->tmds_clock_speed = 0;
1571                         ctx->link_rate = ppdata->ls_clock;
1572                 } else {
1573                         ctx->tmds_clock_speed = ppdata->ls_clock;
1574                         ctx->link_rate = 0;
1575                 }
1576
1577                 /*
1578                  * Shut down the stream before we change
1579                  * the pipe assignment for this pcm device
1580                  */
1581                 had_process_hot_plug(ctx);
1582
1583                 ctx->pipe = ppdata->pipe;
1584
1585                 /* Restart the stream if necessary */
1586                 had_process_mode_change(ctx);
1587         }
1588
1589         mutex_unlock(&ctx->mutex);
1590         pm_runtime_mark_last_busy(ctx->dev);
1591         pm_runtime_put_autosuspend(ctx->dev);
1592 }
1593
1594 /*
1595  * Jack interface
1596  */
1597 static int had_create_jack(struct snd_intelhad *ctx,
1598                            struct snd_pcm *pcm)
1599 {
1600         char hdmi_str[32];
1601         int err;
1602
1603         snprintf(hdmi_str, sizeof(hdmi_str),
1604                  "HDMI/DP,pcm=%d", pcm->device);
1605
1606         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1607                            SND_JACK_AVOUT, &ctx->jack,
1608                            true, false);
1609         if (err < 0)
1610                 return err;
1611         ctx->jack->private_data = ctx;
1612         return 0;
1613 }
1614
1615 /*
1616  * PM callbacks
1617  */
1618
1619 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1620 {
1621         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1622
1623         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1624
1625         return 0;
1626 }
1627
1628 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1629 {
1630         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1631
1632         pm_runtime_mark_last_busy(dev);
1633
1634         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1635
1636         return 0;
1637 }
1638
1639 /* release resources */
1640 static void hdmi_lpe_audio_free(struct snd_card *card)
1641 {
1642         struct snd_intelhad_card *card_ctx = card->private_data;
1643         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1644         int port;
1645
1646         spin_lock_irq(&pdata->lpe_audio_slock);
1647         pdata->notify_audio_lpe = NULL;
1648         spin_unlock_irq(&pdata->lpe_audio_slock);
1649
1650         for_each_port(card_ctx, port) {
1651                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1652
1653                 cancel_work_sync(&ctx->hdmi_audio_wq);
1654         }
1655 }
1656
1657 /*
1658  * hdmi_lpe_audio_probe - start bridge with i915
1659  *
1660  * This function is called when the i915 driver creates the
1661  * hdmi-lpe-audio platform device.
1662  */
1663 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1664 {
1665         struct snd_card *card;
1666         struct snd_intelhad_card *card_ctx;
1667         struct snd_intelhad *ctx;
1668         struct snd_pcm *pcm;
1669         struct intel_hdmi_lpe_audio_pdata *pdata;
1670         int irq;
1671         struct resource *res_mmio;
1672         int port, ret;
1673
1674         pdata = pdev->dev.platform_data;
1675         if (!pdata) {
1676                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1677                 return -EINVAL;
1678         }
1679
1680         /* get resources */
1681         irq = platform_get_irq(pdev, 0);
1682         if (irq < 0)
1683                 return irq;
1684
1685         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1686         if (!res_mmio) {
1687                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1688                 return -ENXIO;
1689         }
1690
1691         /* create a card instance with ALSA framework */
1692         ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1693                                 THIS_MODULE, sizeof(*card_ctx), &card);
1694         if (ret)
1695                 return ret;
1696
1697         card_ctx = card->private_data;
1698         card_ctx->dev = &pdev->dev;
1699         card_ctx->card = card;
1700         strcpy(card->driver, INTEL_HAD);
1701         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1702         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1703
1704         card_ctx->irq = -1;
1705
1706         card->private_free = hdmi_lpe_audio_free;
1707
1708         platform_set_drvdata(pdev, card_ctx);
1709
1710         card_ctx->num_pipes = pdata->num_pipes;
1711         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1712
1713         for_each_port(card_ctx, port) {
1714                 ctx = &card_ctx->pcm_ctx[port];
1715                 ctx->card_ctx = card_ctx;
1716                 ctx->dev = card_ctx->dev;
1717                 ctx->port = single_port ? -1 : port;
1718                 ctx->pipe = -1;
1719
1720                 spin_lock_init(&ctx->had_spinlock);
1721                 mutex_init(&ctx->mutex);
1722                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1723         }
1724
1725         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1726                 __func__, (unsigned int)res_mmio->start,
1727                 (unsigned int)res_mmio->end);
1728
1729         card_ctx->mmio_start =
1730                 devm_ioremap(&pdev->dev, res_mmio->start,
1731                              (size_t)(resource_size(res_mmio)));
1732         if (!card_ctx->mmio_start) {
1733                 dev_err(&pdev->dev, "Could not get ioremap\n");
1734                 return -EACCES;
1735         }
1736
1737         /* setup interrupt handler */
1738         ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1739                                0, pdev->name, card_ctx);
1740         if (ret < 0) {
1741                 dev_err(&pdev->dev, "request_irq failed\n");
1742                 return ret;
1743         }
1744
1745         card_ctx->irq = irq;
1746
1747         /* only 32bit addressable */
1748         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1749         if (ret)
1750                 return ret;
1751
1752         init_channel_allocations();
1753
1754         card_ctx->num_pipes = pdata->num_pipes;
1755         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1756
1757         for_each_port(card_ctx, port) {
1758                 int i;
1759
1760                 ctx = &card_ctx->pcm_ctx[port];
1761                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1762                                   MAX_CAP_STREAMS, &pcm);
1763                 if (ret)
1764                         return ret;
1765
1766                 /* setup private data which can be retrieved when required */
1767                 pcm->private_data = ctx;
1768                 pcm->info_flags = 0;
1769                 strscpy(pcm->name, card->shortname, strlen(card->shortname));
1770                 /* setup the ops for playback */
1771                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1772
1773                 /* allocate dma pages;
1774                  * try to allocate 600k buffer as default which is large enough
1775                  */
1776                 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1777                                                card->dev, HAD_DEFAULT_BUFFER,
1778                                                HAD_MAX_BUFFER);
1779
1780                 /* create controls */
1781                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1782                         struct snd_kcontrol *kctl;
1783
1784                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1785                         if (!kctl)
1786                                 return -ENOMEM;
1787
1788                         kctl->id.device = pcm->device;
1789
1790                         ret = snd_ctl_add(card, kctl);
1791                         if (ret < 0)
1792                                 return ret;
1793                 }
1794
1795                 /* Register channel map controls */
1796                 ret = had_register_chmap_ctls(ctx, pcm);
1797                 if (ret < 0)
1798                         return ret;
1799
1800                 ret = had_create_jack(ctx, pcm);
1801                 if (ret < 0)
1802                         return ret;
1803         }
1804
1805         ret = snd_card_register(card);
1806         if (ret)
1807                 return ret;
1808
1809         spin_lock_irq(&pdata->lpe_audio_slock);
1810         pdata->notify_audio_lpe = notify_audio_lpe;
1811         spin_unlock_irq(&pdata->lpe_audio_slock);
1812
1813         pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1814         pm_runtime_use_autosuspend(&pdev->dev);
1815         pm_runtime_enable(&pdev->dev);
1816         pm_runtime_mark_last_busy(&pdev->dev);
1817         pm_runtime_idle(&pdev->dev);
1818
1819         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1820         for_each_port(card_ctx, port) {
1821                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1822
1823                 schedule_work(&ctx->hdmi_audio_wq);
1824         }
1825
1826         return 0;
1827 }
1828
1829 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1830 {
1831         return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1832 }
1833
1834 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1835         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1836 };
1837
1838 static struct platform_driver hdmi_lpe_audio_driver = {
1839         .driver         = {
1840                 .name  = "hdmi-lpe-audio",
1841                 .pm = &hdmi_lpe_audio_pm,
1842         },
1843         .probe          = hdmi_lpe_audio_probe,
1844 };
1845
1846 module_platform_driver(hdmi_lpe_audio_driver);
1847 MODULE_ALIAS("platform:hdmi_lpe_audio");
1848
1849 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1850 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1851 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1852 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1853 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1854 MODULE_LICENSE("GPL v2");