RISCV: configs: Enable INPUT_UINPUT config
[platform/kernel/linux-starfive.git] / sound / x86 / intel_hdmi_audio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *              Ramesh Babu K V <ramesh.babu@intel.com>
8  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *              Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <sound/core.h>
26 #include <sound/asoundef.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/initval.h>
30 #include <sound/control.h>
31 #include <sound/jack.h>
32 #include <drm/drm_edid.h>
33 #include <drm/intel_lpe_audio.h>
34 #include "intel_hdmi_audio.h"
35
36 #define for_each_pipe(card_ctx, pipe) \
37         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
38 #define for_each_port(card_ctx, port) \
39         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
40
41 /*standard module options for ALSA. This module supports only one card*/
42 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
43 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
44 static bool single_port;
45
46 module_param_named(index, hdmi_card_index, int, 0444);
47 MODULE_PARM_DESC(index,
48                 "Index value for INTEL Intel HDMI Audio controller.");
49 module_param_named(id, hdmi_card_id, charp, 0444);
50 MODULE_PARM_DESC(id,
51                 "ID string for INTEL Intel HDMI Audio controller.");
52 module_param(single_port, bool, 0444);
53 MODULE_PARM_DESC(single_port,
54                 "Single-port mode (for compatibility)");
55
56 /*
57  * ELD SA bits in the CEA Speaker Allocation data block
58  */
59 static const int eld_speaker_allocation_bits[] = {
60         [0] = FL | FR,
61         [1] = LFE,
62         [2] = FC,
63         [3] = RL | RR,
64         [4] = RC,
65         [5] = FLC | FRC,
66         [6] = RLC | RRC,
67         /* the following are not defined in ELD yet */
68         [7] = 0,
69 };
70
71 /*
72  * This is an ordered list!
73  *
74  * The preceding ones have better chances to be selected by
75  * hdmi_channel_allocation().
76  */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /*                        channel:   7     6    5    4    3     2    1    0  */
79 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
80                                 /* 2.1 */
81 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
82                                 /* Dolby Surround */
83 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
84                                 /* surround40 */
85 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
86                                 /* surround41 */
87 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
88                                 /* surround50 */
89 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
90                                 /* surround51 */
91 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
92                                 /* 6.1 */
93 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
94                                 /* surround71 */
95 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96
97 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
98 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
99 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
100 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
101 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
103 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
106 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
107 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
108 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
109 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
110 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
111 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
112 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
113 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
117 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
120 };
121
122 static const struct channel_map_table map_tables[] = {
123         { SNDRV_CHMAP_FL,       0x00,   FL },
124         { SNDRV_CHMAP_FR,       0x01,   FR },
125         { SNDRV_CHMAP_RL,       0x04,   RL },
126         { SNDRV_CHMAP_RR,       0x05,   RR },
127         { SNDRV_CHMAP_LFE,      0x02,   LFE },
128         { SNDRV_CHMAP_FC,       0x03,   FC },
129         { SNDRV_CHMAP_RLC,      0x06,   RLC },
130         { SNDRV_CHMAP_RRC,      0x07,   RRC },
131         {} /* terminator */
132 };
133
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136         .info = (SNDRV_PCM_INFO_INTERLEAVED |
137                 SNDRV_PCM_INFO_MMAP |
138                 SNDRV_PCM_INFO_MMAP_VALID |
139                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
141                     SNDRV_PCM_FMTBIT_S24_LE |
142                     SNDRV_PCM_FMTBIT_S32_LE),
143         .rates = SNDRV_PCM_RATE_32000 |
144                 SNDRV_PCM_RATE_44100 |
145                 SNDRV_PCM_RATE_48000 |
146                 SNDRV_PCM_RATE_88200 |
147                 SNDRV_PCM_RATE_96000 |
148                 SNDRV_PCM_RATE_176400 |
149                 SNDRV_PCM_RATE_192000,
150         .rate_min = HAD_MIN_RATE,
151         .rate_max = HAD_MAX_RATE,
152         .channels_min = HAD_MIN_CHANNEL,
153         .channels_max = HAD_MAX_CHANNEL,
154         .buffer_bytes_max = HAD_MAX_BUFFER,
155         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
156         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
157         .periods_min = HAD_MIN_PERIODS,
158         .periods_max = HAD_MAX_PERIODS,
159         .fifo_size = HAD_FIFO_SIZE,
160 };
161
162 /* Get the active PCM substream;
163  * Call had_substream_put() for unreferecing.
164  * Don't call this inside had_spinlock, as it takes by itself
165  */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169         struct snd_pcm_substream *substream;
170         unsigned long flags;
171
172         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173         substream = intelhaddata->stream_info.substream;
174         if (substream)
175                 intelhaddata->stream_info.substream_refcount++;
176         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177         return substream;
178 }
179
180 /* Unref the active PCM substream;
181  * Don't call this inside had_spinlock, as it takes by itself
182  */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185         unsigned long flags;
186
187         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188         intelhaddata->stream_info.substream_refcount--;
189         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191
192 static u32 had_config_offset(int pipe)
193 {
194         switch (pipe) {
195         default:
196         case 0:
197                 return AUDIO_HDMI_CONFIG_A;
198         case 1:
199                 return AUDIO_HDMI_CONFIG_B;
200         case 2:
201                 return AUDIO_HDMI_CONFIG_C;
202         }
203 }
204
205 /* Register access functions */
206 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
207                                  int pipe, u32 reg)
208 {
209         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
210 }
211
212 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
213                                    int pipe, u32 reg, u32 val)
214 {
215         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
216 }
217
218 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
219 {
220         if (!ctx->connected)
221                 *val = 0;
222         else
223                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
224 }
225
226 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
227 {
228         if (ctx->connected)
229                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
230 }
231
232 /*
233  * enable / disable audio configuration
234  *
235  * The normal read/modify should not directly be used on VLV2 for
236  * updating AUD_CONFIG register.
237  * This is because:
238  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
239  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
240  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
241  * register. This field should be 1xy binary for configuration with 6 or
242  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
243  * causes the "channels" field to be updated as 0xy binary resulting in
244  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
245  * appropriate value when doing read-modify of AUD_CONFIG register.
246  */
247 static void had_enable_audio(struct snd_intelhad *intelhaddata,
248                              bool enable)
249 {
250         /* update the cached value */
251         intelhaddata->aud_config.regx.aud_en = enable;
252         had_write_register(intelhaddata, AUD_CONFIG,
253                            intelhaddata->aud_config.regval);
254 }
255
256 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
257 static void had_ack_irqs(struct snd_intelhad *ctx)
258 {
259         u32 status_reg;
260
261         if (!ctx->connected)
262                 return;
263         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
264         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
265         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
266         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
267 }
268
269 /* Reset buffer pointers */
270 static void had_reset_audio(struct snd_intelhad *intelhaddata)
271 {
272         had_write_register(intelhaddata, AUD_HDMI_STATUS,
273                            AUD_HDMI_STATUSG_MASK_FUNCRST);
274         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
275 }
276
277 /*
278  * initialize audio channel status registers
279  * This function is called in the prepare callback
280  */
281 static int had_prog_status_reg(struct snd_pcm_substream *substream,
282                         struct snd_intelhad *intelhaddata)
283 {
284         union aud_ch_status_0 ch_stat0 = {.regval = 0};
285         union aud_ch_status_1 ch_stat1 = {.regval = 0};
286
287         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
288                                           IEC958_AES0_NONAUDIO) >> 1;
289         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
290                                           IEC958_AES3_CON_CLOCK) >> 4;
291
292         switch (substream->runtime->rate) {
293         case AUD_SAMPLE_RATE_32:
294                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
295                 break;
296
297         case AUD_SAMPLE_RATE_44_1:
298                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
299                 break;
300         case AUD_SAMPLE_RATE_48:
301                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
302                 break;
303         case AUD_SAMPLE_RATE_88_2:
304                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
305                 break;
306         case AUD_SAMPLE_RATE_96:
307                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
308                 break;
309         case AUD_SAMPLE_RATE_176_4:
310                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
311                 break;
312         case AUD_SAMPLE_RATE_192:
313                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
314                 break;
315
316         default:
317                 /* control should never come here */
318                 return -EINVAL;
319         }
320
321         had_write_register(intelhaddata,
322                            AUD_CH_STATUS_0, ch_stat0.regval);
323
324         switch (substream->runtime->format) {
325         case SNDRV_PCM_FORMAT_S16_LE:
326                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
327                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
328                 break;
329         case SNDRV_PCM_FORMAT_S24_LE:
330         case SNDRV_PCM_FORMAT_S32_LE:
331                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
332                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
333                 break;
334         default:
335                 return -EINVAL;
336         }
337
338         had_write_register(intelhaddata,
339                            AUD_CH_STATUS_1, ch_stat1.regval);
340         return 0;
341 }
342
343 /*
344  * function to initialize audio
345  * registers and buffer configuration registers
346  * This function is called in the prepare callback
347  */
348 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
349                                struct snd_intelhad *intelhaddata)
350 {
351         union aud_cfg cfg_val = {.regval = 0};
352         union aud_buf_config buf_cfg = {.regval = 0};
353         u8 channels;
354
355         had_prog_status_reg(substream, intelhaddata);
356
357         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
358         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
359         buf_cfg.regx.aud_delay = 0;
360         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
361
362         channels = substream->runtime->channels;
363         cfg_val.regx.num_ch = channels - 2;
364         if (channels <= 2)
365                 cfg_val.regx.layout = LAYOUT0;
366         else
367                 cfg_val.regx.layout = LAYOUT1;
368
369         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
370                 cfg_val.regx.packet_mode = 1;
371
372         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
373                 cfg_val.regx.left_align = 1;
374
375         cfg_val.regx.val_bit = 1;
376
377         /* fix up the DP bits */
378         if (intelhaddata->dp_output) {
379                 cfg_val.regx.dp_modei = 1;
380                 cfg_val.regx.set = 1;
381         }
382
383         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
384         intelhaddata->aud_config = cfg_val;
385         return 0;
386 }
387
388 /*
389  * Compute derived values in channel_allocations[].
390  */
391 static void init_channel_allocations(void)
392 {
393         int i, j;
394         struct cea_channel_speaker_allocation *p;
395
396         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
397                 p = channel_allocations + i;
398                 p->channels = 0;
399                 p->spk_mask = 0;
400                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
401                         if (p->speakers[j]) {
402                                 p->channels++;
403                                 p->spk_mask |= p->speakers[j];
404                         }
405         }
406 }
407
408 /*
409  * The transformation takes two steps:
410  *
411  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
412  *            spk_mask => (channel_allocations[])         => ai->CA
413  *
414  * TODO: it could select the wrong CA from multiple candidates.
415  */
416 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
417                                   int channels)
418 {
419         int i;
420         int ca = 0;
421         int spk_mask = 0;
422
423         /*
424          * CA defaults to 0 for basic stereo audio
425          */
426         if (channels <= 2)
427                 return 0;
428
429         /*
430          * expand ELD's speaker allocation mask
431          *
432          * ELD tells the speaker mask in a compact(paired) form,
433          * expand ELD's notions to match the ones used by Audio InfoFrame.
434          */
435
436         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
437                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
438                         spk_mask |= eld_speaker_allocation_bits[i];
439         }
440
441         /* search for the first working match in the CA table */
442         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
443                 if (channels == channel_allocations[i].channels &&
444                 (spk_mask & channel_allocations[i].spk_mask) ==
445                                 channel_allocations[i].spk_mask) {
446                         ca = channel_allocations[i].ca_index;
447                         break;
448                 }
449         }
450
451         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
452
453         return ca;
454 }
455
456 /* from speaker bit mask to ALSA API channel position */
457 static int spk_to_chmap(int spk)
458 {
459         const struct channel_map_table *t = map_tables;
460
461         for (; t->map; t++) {
462                 if (t->spk_mask == spk)
463                         return t->map;
464         }
465         return 0;
466 }
467
468 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
469 {
470         int i, c;
471         int spk_mask = 0;
472         struct snd_pcm_chmap_elem *chmap;
473         u8 eld_high, eld_high_mask = 0xF0;
474         u8 high_msb;
475
476         kfree(intelhaddata->chmap->chmap);
477         intelhaddata->chmap->chmap = NULL;
478
479         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
480         if (!chmap)
481                 return;
482
483         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
484                 intelhaddata->eld[DRM_ELD_SPEAKER]);
485
486         /* WA: Fix the max channel supported to 8 */
487
488         /*
489          * Sink may support more than 8 channels, if eld_high has more than
490          * one bit set. SOC supports max 8 channels.
491          * Refer eld_speaker_allocation_bits, for sink speaker allocation
492          */
493
494         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
495         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
496         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
497                 /* eld_high & (eld_high-1): if more than 1 bit set */
498                 /* 0x1F: 7 channels */
499                 for (i = 1; i < 4; i++) {
500                         high_msb = eld_high & (0x80 >> i);
501                         if (high_msb) {
502                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
503                                         high_msb | 0xF;
504                                 break;
505                         }
506                 }
507         }
508
509         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
510                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
511                         spk_mask |= eld_speaker_allocation_bits[i];
512         }
513
514         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
515                 if (spk_mask == channel_allocations[i].spk_mask) {
516                         for (c = 0; c < channel_allocations[i].channels; c++) {
517                                 chmap->map[c] = spk_to_chmap(
518                                         channel_allocations[i].speakers[
519                                                 (MAX_SPEAKERS - 1) - c]);
520                         }
521                         chmap->channels = channel_allocations[i].channels;
522                         intelhaddata->chmap->chmap = chmap;
523                         break;
524                 }
525         }
526         if (i >= ARRAY_SIZE(channel_allocations))
527                 kfree(chmap);
528 }
529
530 /*
531  * ALSA API channel-map control callbacks
532  */
533 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
534                                 struct snd_ctl_elem_info *uinfo)
535 {
536         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
537         uinfo->count = HAD_MAX_CHANNEL;
538         uinfo->value.integer.min = 0;
539         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
540         return 0;
541 }
542
543 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
544                                 struct snd_ctl_elem_value *ucontrol)
545 {
546         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
547         struct snd_intelhad *intelhaddata = info->private_data;
548         int i;
549         const struct snd_pcm_chmap_elem *chmap;
550
551         memset(ucontrol->value.integer.value, 0,
552                sizeof(long) * HAD_MAX_CHANNEL);
553         mutex_lock(&intelhaddata->mutex);
554         if (!intelhaddata->chmap->chmap) {
555                 mutex_unlock(&intelhaddata->mutex);
556                 return 0;
557         }
558
559         chmap = intelhaddata->chmap->chmap;
560         for (i = 0; i < chmap->channels; i++)
561                 ucontrol->value.integer.value[i] = chmap->map[i];
562         mutex_unlock(&intelhaddata->mutex);
563
564         return 0;
565 }
566
567 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
568                                                 struct snd_pcm *pcm)
569 {
570         int err;
571
572         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
573                         NULL, 0, (unsigned long)intelhaddata,
574                         &intelhaddata->chmap);
575         if (err < 0)
576                 return err;
577
578         intelhaddata->chmap->private_data = intelhaddata;
579         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
580         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
581         intelhaddata->chmap->chmap = NULL;
582         return 0;
583 }
584
585 /*
586  * Initialize Data Island Packets registers
587  * This function is called in the prepare callback
588  */
589 static void had_prog_dip(struct snd_pcm_substream *substream,
590                          struct snd_intelhad *intelhaddata)
591 {
592         int i;
593         union aud_ctrl_st ctrl_state = {.regval = 0};
594         union aud_info_frame2 frame2 = {.regval = 0};
595         union aud_info_frame3 frame3 = {.regval = 0};
596         u8 checksum = 0;
597         u32 info_frame;
598         int channels;
599         int ca;
600
601         channels = substream->runtime->channels;
602
603         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
604
605         ca = had_channel_allocation(intelhaddata, channels);
606         if (intelhaddata->dp_output) {
607                 info_frame = DP_INFO_FRAME_WORD1;
608                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
609         } else {
610                 info_frame = HDMI_INFO_FRAME_WORD1;
611                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
612                 frame3.regx.chnl_alloc = ca;
613
614                 /* Calculte the byte wide checksum for all valid DIP words */
615                 for (i = 0; i < BYTES_PER_WORD; i++)
616                         checksum += (info_frame >> (i * 8)) & 0xff;
617                 for (i = 0; i < BYTES_PER_WORD; i++)
618                         checksum += (frame2.regval >> (i * 8)) & 0xff;
619                 for (i = 0; i < BYTES_PER_WORD; i++)
620                         checksum += (frame3.regval >> (i * 8)) & 0xff;
621
622                 frame2.regx.chksum = -(checksum);
623         }
624
625         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
626         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
627         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
628
629         /* program remaining DIP words with zero */
630         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
631                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
632
633         ctrl_state.regx.dip_freq = 1;
634         ctrl_state.regx.dip_en_sta = 1;
635         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
636 }
637
638 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
639 {
640         u32 maud_val;
641
642         /* Select maud according to DP 1.2 spec */
643         if (link_rate == DP_2_7_GHZ) {
644                 switch (aud_samp_freq) {
645                 case AUD_SAMPLE_RATE_32:
646                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
647                         break;
648
649                 case AUD_SAMPLE_RATE_44_1:
650                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
651                         break;
652
653                 case AUD_SAMPLE_RATE_48:
654                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
655                         break;
656
657                 case AUD_SAMPLE_RATE_88_2:
658                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
659                         break;
660
661                 case AUD_SAMPLE_RATE_96:
662                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
663                         break;
664
665                 case AUD_SAMPLE_RATE_176_4:
666                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
667                         break;
668
669                 case HAD_MAX_RATE:
670                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
671                         break;
672
673                 default:
674                         maud_val = -EINVAL;
675                         break;
676                 }
677         } else if (link_rate == DP_1_62_GHZ) {
678                 switch (aud_samp_freq) {
679                 case AUD_SAMPLE_RATE_32:
680                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
681                         break;
682
683                 case AUD_SAMPLE_RATE_44_1:
684                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
685                         break;
686
687                 case AUD_SAMPLE_RATE_48:
688                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
689                         break;
690
691                 case AUD_SAMPLE_RATE_88_2:
692                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
693                         break;
694
695                 case AUD_SAMPLE_RATE_96:
696                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
697                         break;
698
699                 case AUD_SAMPLE_RATE_176_4:
700                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
701                         break;
702
703                 case HAD_MAX_RATE:
704                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
705                         break;
706
707                 default:
708                         maud_val = -EINVAL;
709                         break;
710                 }
711         } else
712                 maud_val = -EINVAL;
713
714         return maud_val;
715 }
716
717 /*
718  * Program HDMI audio CTS value
719  *
720  * @aud_samp_freq: sampling frequency of audio data
721  * @tmds: sampling frequency of the display data
722  * @link_rate: DP link rate
723  * @n_param: N value, depends on aud_samp_freq
724  * @intelhaddata: substream private data
725  *
726  * Program CTS register based on the audio and display sampling frequency
727  */
728 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
729                          u32 n_param, struct snd_intelhad *intelhaddata)
730 {
731         u32 cts_val;
732         u64 dividend, divisor;
733
734         if (intelhaddata->dp_output) {
735                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
736                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
737         } else {
738                 /* Calculate CTS according to HDMI 1.3a spec*/
739                 dividend = (u64)tmds * n_param*1000;
740                 divisor = 128 * aud_samp_freq;
741                 cts_val = div64_u64(dividend, divisor);
742         }
743         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
744                  tmds, n_param, cts_val);
745         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
746 }
747
748 static int had_calculate_n_value(u32 aud_samp_freq)
749 {
750         int n_val;
751
752         /* Select N according to HDMI 1.3a spec*/
753         switch (aud_samp_freq) {
754         case AUD_SAMPLE_RATE_32:
755                 n_val = 4096;
756                 break;
757
758         case AUD_SAMPLE_RATE_44_1:
759                 n_val = 6272;
760                 break;
761
762         case AUD_SAMPLE_RATE_48:
763                 n_val = 6144;
764                 break;
765
766         case AUD_SAMPLE_RATE_88_2:
767                 n_val = 12544;
768                 break;
769
770         case AUD_SAMPLE_RATE_96:
771                 n_val = 12288;
772                 break;
773
774         case AUD_SAMPLE_RATE_176_4:
775                 n_val = 25088;
776                 break;
777
778         case HAD_MAX_RATE:
779                 n_val = 24576;
780                 break;
781
782         default:
783                 n_val = -EINVAL;
784                 break;
785         }
786         return n_val;
787 }
788
789 /*
790  * Program HDMI audio N value
791  *
792  * @aud_samp_freq: sampling frequency of audio data
793  * @n_param: N value, depends on aud_samp_freq
794  * @intelhaddata: substream private data
795  *
796  * This function is called in the prepare callback.
797  * It programs based on the audio and display sampling frequency
798  */
799 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
800                       struct snd_intelhad *intelhaddata)
801 {
802         int n_val;
803
804         if (intelhaddata->dp_output) {
805                 /*
806                  * According to DP specs, Maud and Naud values hold
807                  * a relationship, which is stated as:
808                  * Maud/Naud = 512 * fs / f_LS_Clk
809                  * where, fs is the sampling frequency of the audio stream
810                  * and Naud is 32768 for Async clock.
811                  */
812
813                 n_val = DP_NAUD_VAL;
814         } else
815                 n_val = had_calculate_n_value(aud_samp_freq);
816
817         if (n_val < 0)
818                 return n_val;
819
820         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
821         *n_param = n_val;
822         return 0;
823 }
824
825 /*
826  * PCM ring buffer handling
827  *
828  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
829  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
830  * moves at each period elapsed.  The below illustrates how it works:
831  *
832  * At time=0
833  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
834  *  BD  | 0 | 1 | 2 | 3 |
835  *
836  * At time=1 (period elapsed)
837  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838  *  BD      | 1 | 2 | 3 | 0 |
839  *
840  * At time=2 (second period elapsed)
841  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842  *  BD          | 2 | 3 | 0 | 1 |
843  *
844  * The bd_head field points to the index of the BD to be read.  It's also the
845  * position to be filled at next.  The pcm_head and the pcm_filled fields
846  * point to the indices of the current position and of the next position to
847  * be filled, respectively.  For PCM buffer there are both _head and _filled
848  * because they may be difference when nperiods > 4.  For example, in the
849  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
850  *
851  * pcm_head (=1) --v               v-- pcm_filled (=5)
852  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853  *       BD      | 1 | 2 | 3 | 0 |
854  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
855  *
856  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
857  * the hardware skips those BDs in the loop.
858  *
859  * An exceptional setup is the case with nperiods=1.  Since we have to update
860  * BDs after finishing one BD processing, we'd need at least two BDs, where
861  * both BDs point to the same content, the same address, the same size of the
862  * whole PCM buffer.
863  */
864
865 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
866 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
867
868 /* Set up a buffer descriptor at the "filled" position */
869 static void had_prog_bd(struct snd_pcm_substream *substream,
870                         struct snd_intelhad *intelhaddata)
871 {
872         int idx = intelhaddata->bd_head;
873         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
874         u32 addr = substream->runtime->dma_addr + ofs;
875
876         addr |= AUD_BUF_VALID;
877         if (!substream->runtime->no_period_wakeup)
878                 addr |= AUD_BUF_INTR_EN;
879         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
880         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
881                            intelhaddata->period_bytes);
882
883         /* advance the indices to the next */
884         intelhaddata->bd_head++;
885         intelhaddata->bd_head %= intelhaddata->num_bds;
886         intelhaddata->pcmbuf_filled++;
887         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
888 }
889
890 /* invalidate a buffer descriptor with the given index */
891 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
892                               int idx)
893 {
894         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
895         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
896 }
897
898 /* Initial programming of ring buffer */
899 static void had_init_ringbuf(struct snd_pcm_substream *substream,
900                              struct snd_intelhad *intelhaddata)
901 {
902         struct snd_pcm_runtime *runtime = substream->runtime;
903         int i, num_periods;
904
905         num_periods = runtime->periods;
906         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
907         /* set the minimum 2 BDs for num_periods=1 */
908         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
909         intelhaddata->period_bytes =
910                 frames_to_bytes(runtime, runtime->period_size);
911         WARN_ON(intelhaddata->period_bytes & 0x3f);
912
913         intelhaddata->bd_head = 0;
914         intelhaddata->pcmbuf_head = 0;
915         intelhaddata->pcmbuf_filled = 0;
916
917         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
918                 if (i < intelhaddata->num_bds)
919                         had_prog_bd(substream, intelhaddata);
920                 else /* invalidate the rest */
921                         had_invalidate_bd(intelhaddata, i);
922         }
923
924         intelhaddata->bd_head = 0; /* reset at head again before starting */
925 }
926
927 /* process a bd, advance to the next */
928 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
929                                 struct snd_intelhad *intelhaddata)
930 {
931         int num_periods = substream->runtime->periods;
932
933         /* reprogram the next buffer */
934         had_prog_bd(substream, intelhaddata);
935
936         /* proceed to next */
937         intelhaddata->pcmbuf_head++;
938         intelhaddata->pcmbuf_head %= num_periods;
939 }
940
941 /* process the current BD(s);
942  * returns the current PCM buffer byte position, or -EPIPE for underrun.
943  */
944 static int had_process_ringbuf(struct snd_pcm_substream *substream,
945                                struct snd_intelhad *intelhaddata)
946 {
947         int len, processed;
948         unsigned long flags;
949
950         processed = 0;
951         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
952         for (;;) {
953                 /* get the remaining bytes on the buffer */
954                 had_read_register(intelhaddata,
955                                   AUD_BUF_LEN(intelhaddata->bd_head),
956                                   &len);
957                 if (len < 0 || len > intelhaddata->period_bytes) {
958                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
959                                 len);
960                         len = -EPIPE;
961                         goto out;
962                 }
963
964                 if (len > 0) /* OK, this is the current buffer */
965                         break;
966
967                 /* len=0 => already empty, check the next buffer */
968                 if (++processed >= intelhaddata->num_bds) {
969                         len = -EPIPE; /* all empty? - report underrun */
970                         goto out;
971                 }
972                 had_advance_ringbuf(substream, intelhaddata);
973         }
974
975         len = intelhaddata->period_bytes - len;
976         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
977  out:
978         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
979         return len;
980 }
981
982 /* called from irq handler */
983 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
984 {
985         struct snd_pcm_substream *substream;
986
987         substream = had_substream_get(intelhaddata);
988         if (!substream)
989                 return; /* no stream? - bail out */
990
991         if (!intelhaddata->connected) {
992                 snd_pcm_stop_xrun(substream);
993                 goto out; /* disconnected? - bail out */
994         }
995
996         /* process or stop the stream */
997         if (had_process_ringbuf(substream, intelhaddata) < 0)
998                 snd_pcm_stop_xrun(substream);
999         else
1000                 snd_pcm_period_elapsed(substream);
1001
1002  out:
1003         had_substream_put(intelhaddata);
1004 }
1005
1006 /*
1007  * The interrupt status 'sticky' bits might not be cleared by
1008  * setting '1' to that bit once...
1009  */
1010 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011 {
1012         int i;
1013         u32 val;
1014
1015         for (i = 0; i < 100; i++) {
1016                 /* clear bit30, 31 AUD_HDMI_STATUS */
1017                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019                         return;
1020                 udelay(100);
1021                 cond_resched();
1022                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023         }
1024         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025 }
1026
1027 /* Perform some reset procedure after stopping the stream;
1028  * this is called from prepare or hw_free callbacks once after trigger STOP
1029  * or underrun has been processed in order to settle down the h/w state.
1030  */
1031 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1032 {
1033         struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1034
1035         if (!intelhaddata->connected)
1036                 return 0;
1037
1038         /* Reset buffer pointers */
1039         had_reset_audio(intelhaddata);
1040         wait_clear_underrun_bit(intelhaddata);
1041         return 0;
1042 }
1043
1044 /* called from irq handler */
1045 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1046 {
1047         struct snd_pcm_substream *substream;
1048
1049         /* Report UNDERRUN error to above layers */
1050         substream = had_substream_get(intelhaddata);
1051         if (substream) {
1052                 snd_pcm_stop_xrun(substream);
1053                 had_substream_put(intelhaddata);
1054         }
1055 }
1056
1057 /*
1058  * ALSA PCM open callback
1059  */
1060 static int had_pcm_open(struct snd_pcm_substream *substream)
1061 {
1062         struct snd_intelhad *intelhaddata;
1063         struct snd_pcm_runtime *runtime;
1064         int retval;
1065
1066         intelhaddata = snd_pcm_substream_chip(substream);
1067         runtime = substream->runtime;
1068
1069         pm_runtime_get_sync(intelhaddata->dev);
1070
1071         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1072         runtime->hw = had_pcm_hardware;
1073
1074         retval = snd_pcm_hw_constraint_integer(runtime,
1075                          SNDRV_PCM_HW_PARAM_PERIODS);
1076         if (retval < 0)
1077                 goto error;
1078
1079         /* Make sure, that the period size is always aligned
1080          * 64byte boundary
1081          */
1082         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1083                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1084         if (retval < 0)
1085                 goto error;
1086
1087         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1088         if (retval < 0)
1089                 goto error;
1090
1091         /* expose PCM substream */
1092         spin_lock_irq(&intelhaddata->had_spinlock);
1093         intelhaddata->stream_info.substream = substream;
1094         intelhaddata->stream_info.substream_refcount++;
1095         spin_unlock_irq(&intelhaddata->had_spinlock);
1096
1097         return retval;
1098  error:
1099         pm_runtime_mark_last_busy(intelhaddata->dev);
1100         pm_runtime_put_autosuspend(intelhaddata->dev);
1101         return retval;
1102 }
1103
1104 /*
1105  * ALSA PCM close callback
1106  */
1107 static int had_pcm_close(struct snd_pcm_substream *substream)
1108 {
1109         struct snd_intelhad *intelhaddata;
1110
1111         intelhaddata = snd_pcm_substream_chip(substream);
1112
1113         /* unreference and sync with the pending PCM accesses */
1114         spin_lock_irq(&intelhaddata->had_spinlock);
1115         intelhaddata->stream_info.substream = NULL;
1116         intelhaddata->stream_info.substream_refcount--;
1117         while (intelhaddata->stream_info.substream_refcount > 0) {
1118                 spin_unlock_irq(&intelhaddata->had_spinlock);
1119                 cpu_relax();
1120                 spin_lock_irq(&intelhaddata->had_spinlock);
1121         }
1122         spin_unlock_irq(&intelhaddata->had_spinlock);
1123
1124         pm_runtime_mark_last_busy(intelhaddata->dev);
1125         pm_runtime_put_autosuspend(intelhaddata->dev);
1126         return 0;
1127 }
1128
1129 /*
1130  * ALSA PCM hw_params callback
1131  */
1132 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1133                              struct snd_pcm_hw_params *hw_params)
1134 {
1135         struct snd_intelhad *intelhaddata;
1136         int buf_size;
1137
1138         intelhaddata = snd_pcm_substream_chip(substream);
1139         buf_size = params_buffer_bytes(hw_params);
1140         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1141                 __func__, buf_size);
1142         return 0;
1143 }
1144
1145 /*
1146  * ALSA PCM trigger callback
1147  */
1148 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1149 {
1150         int retval = 0;
1151         struct snd_intelhad *intelhaddata;
1152
1153         intelhaddata = snd_pcm_substream_chip(substream);
1154
1155         spin_lock(&intelhaddata->had_spinlock);
1156         switch (cmd) {
1157         case SNDRV_PCM_TRIGGER_START:
1158         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1159         case SNDRV_PCM_TRIGGER_RESUME:
1160                 /* Enable Audio */
1161                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1162                 had_enable_audio(intelhaddata, true);
1163                 break;
1164
1165         case SNDRV_PCM_TRIGGER_STOP:
1166         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1167                 /* Disable Audio */
1168                 had_enable_audio(intelhaddata, false);
1169                 break;
1170
1171         default:
1172                 retval = -EINVAL;
1173         }
1174         spin_unlock(&intelhaddata->had_spinlock);
1175         return retval;
1176 }
1177
1178 /*
1179  * ALSA PCM prepare callback
1180  */
1181 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1182 {
1183         int retval;
1184         u32 disp_samp_freq, n_param;
1185         u32 link_rate = 0;
1186         struct snd_intelhad *intelhaddata;
1187         struct snd_pcm_runtime *runtime;
1188
1189         intelhaddata = snd_pcm_substream_chip(substream);
1190         runtime = substream->runtime;
1191
1192         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1193                 (int)frames_to_bytes(runtime, runtime->period_size));
1194         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1195         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1196                 (int)snd_pcm_lib_buffer_bytes(substream));
1197         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1198         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1199
1200         /* Get N value in KHz */
1201         disp_samp_freq = intelhaddata->tmds_clock_speed;
1202
1203         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1204         if (retval) {
1205                 dev_err(intelhaddata->dev,
1206                         "programming N value failed %#x\n", retval);
1207                 goto prep_end;
1208         }
1209
1210         if (intelhaddata->dp_output)
1211                 link_rate = intelhaddata->link_rate;
1212
1213         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1214                      n_param, intelhaddata);
1215
1216         had_prog_dip(substream, intelhaddata);
1217
1218         retval = had_init_audio_ctrl(substream, intelhaddata);
1219
1220         /* Prog buffer address */
1221         had_init_ringbuf(substream, intelhaddata);
1222
1223         /*
1224          * Program channel mapping in following order:
1225          * FL, FR, C, LFE, RL, RR
1226          */
1227
1228         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1229
1230 prep_end:
1231         return retval;
1232 }
1233
1234 /*
1235  * ALSA PCM pointer callback
1236  */
1237 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1238 {
1239         struct snd_intelhad *intelhaddata;
1240         int len;
1241
1242         intelhaddata = snd_pcm_substream_chip(substream);
1243
1244         if (!intelhaddata->connected)
1245                 return SNDRV_PCM_POS_XRUN;
1246
1247         len = had_process_ringbuf(substream, intelhaddata);
1248         if (len < 0)
1249                 return SNDRV_PCM_POS_XRUN;
1250         len = bytes_to_frames(substream->runtime, len);
1251         /* wrapping may happen when periods=1 */
1252         len %= substream->runtime->buffer_size;
1253         return len;
1254 }
1255
1256 /*
1257  * ALSA PCM mmap callback
1258  */
1259 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1260                         struct vm_area_struct *vma)
1261 {
1262         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1263         return remap_pfn_range(vma, vma->vm_start,
1264                         substream->dma_buffer.addr >> PAGE_SHIFT,
1265                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1266 }
1267
1268 /*
1269  * ALSA PCM ops
1270  */
1271 static const struct snd_pcm_ops had_pcm_ops = {
1272         .open =         had_pcm_open,
1273         .close =        had_pcm_close,
1274         .hw_params =    had_pcm_hw_params,
1275         .prepare =      had_pcm_prepare,
1276         .trigger =      had_pcm_trigger,
1277         .sync_stop =    had_pcm_sync_stop,
1278         .pointer =      had_pcm_pointer,
1279         .mmap =         had_pcm_mmap,
1280 };
1281
1282 /* process mode change of the running stream; called in mutex */
1283 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1284 {
1285         struct snd_pcm_substream *substream;
1286         int retval = 0;
1287         u32 disp_samp_freq, n_param;
1288         u32 link_rate = 0;
1289
1290         substream = had_substream_get(intelhaddata);
1291         if (!substream)
1292                 return 0;
1293
1294         /* Disable Audio */
1295         had_enable_audio(intelhaddata, false);
1296
1297         /* Update CTS value */
1298         disp_samp_freq = intelhaddata->tmds_clock_speed;
1299
1300         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1301         if (retval) {
1302                 dev_err(intelhaddata->dev,
1303                         "programming N value failed %#x\n", retval);
1304                 goto out;
1305         }
1306
1307         if (intelhaddata->dp_output)
1308                 link_rate = intelhaddata->link_rate;
1309
1310         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1311                      n_param, intelhaddata);
1312
1313         /* Enable Audio */
1314         had_enable_audio(intelhaddata, true);
1315
1316 out:
1317         had_substream_put(intelhaddata);
1318         return retval;
1319 }
1320
1321 /* process hot plug, called from wq with mutex locked */
1322 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1323 {
1324         struct snd_pcm_substream *substream;
1325
1326         spin_lock_irq(&intelhaddata->had_spinlock);
1327         if (intelhaddata->connected) {
1328                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1329                 spin_unlock_irq(&intelhaddata->had_spinlock);
1330                 return;
1331         }
1332
1333         /* Disable Audio */
1334         had_enable_audio(intelhaddata, false);
1335
1336         intelhaddata->connected = true;
1337         dev_dbg(intelhaddata->dev,
1338                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1339                         __func__, __LINE__);
1340         spin_unlock_irq(&intelhaddata->had_spinlock);
1341
1342         had_build_channel_allocation_map(intelhaddata);
1343
1344         /* Report to above ALSA layer */
1345         substream = had_substream_get(intelhaddata);
1346         if (substream) {
1347                 snd_pcm_stop_xrun(substream);
1348                 had_substream_put(intelhaddata);
1349         }
1350
1351         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1352 }
1353
1354 /* process hot unplug, called from wq with mutex locked */
1355 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1356 {
1357         struct snd_pcm_substream *substream;
1358
1359         spin_lock_irq(&intelhaddata->had_spinlock);
1360         if (!intelhaddata->connected) {
1361                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1362                 spin_unlock_irq(&intelhaddata->had_spinlock);
1363                 return;
1364
1365         }
1366
1367         /* Disable Audio */
1368         had_enable_audio(intelhaddata, false);
1369
1370         intelhaddata->connected = false;
1371         dev_dbg(intelhaddata->dev,
1372                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1373                         __func__, __LINE__);
1374         spin_unlock_irq(&intelhaddata->had_spinlock);
1375
1376         kfree(intelhaddata->chmap->chmap);
1377         intelhaddata->chmap->chmap = NULL;
1378
1379         /* Report to above ALSA layer */
1380         substream = had_substream_get(intelhaddata);
1381         if (substream) {
1382                 snd_pcm_stop_xrun(substream);
1383                 had_substream_put(intelhaddata);
1384         }
1385
1386         snd_jack_report(intelhaddata->jack, 0);
1387 }
1388
1389 /*
1390  * ALSA iec958 and ELD controls
1391  */
1392
1393 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1394                                 struct snd_ctl_elem_info *uinfo)
1395 {
1396         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1397         uinfo->count = 1;
1398         return 0;
1399 }
1400
1401 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1402                                 struct snd_ctl_elem_value *ucontrol)
1403 {
1404         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1405
1406         mutex_lock(&intelhaddata->mutex);
1407         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1408         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1409         ucontrol->value.iec958.status[2] =
1410                                         (intelhaddata->aes_bits >> 16) & 0xff;
1411         ucontrol->value.iec958.status[3] =
1412                                         (intelhaddata->aes_bits >> 24) & 0xff;
1413         mutex_unlock(&intelhaddata->mutex);
1414         return 0;
1415 }
1416
1417 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1418                                 struct snd_ctl_elem_value *ucontrol)
1419 {
1420         ucontrol->value.iec958.status[0] = 0xff;
1421         ucontrol->value.iec958.status[1] = 0xff;
1422         ucontrol->value.iec958.status[2] = 0xff;
1423         ucontrol->value.iec958.status[3] = 0xff;
1424         return 0;
1425 }
1426
1427 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1428                                 struct snd_ctl_elem_value *ucontrol)
1429 {
1430         unsigned int val;
1431         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1432         int changed = 0;
1433
1434         val = (ucontrol->value.iec958.status[0] << 0) |
1435                 (ucontrol->value.iec958.status[1] << 8) |
1436                 (ucontrol->value.iec958.status[2] << 16) |
1437                 (ucontrol->value.iec958.status[3] << 24);
1438         mutex_lock(&intelhaddata->mutex);
1439         if (intelhaddata->aes_bits != val) {
1440                 intelhaddata->aes_bits = val;
1441                 changed = 1;
1442         }
1443         mutex_unlock(&intelhaddata->mutex);
1444         return changed;
1445 }
1446
1447 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1448                             struct snd_ctl_elem_info *uinfo)
1449 {
1450         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1451         uinfo->count = HDMI_MAX_ELD_BYTES;
1452         return 0;
1453 }
1454
1455 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1456                            struct snd_ctl_elem_value *ucontrol)
1457 {
1458         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1459
1460         mutex_lock(&intelhaddata->mutex);
1461         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1462                HDMI_MAX_ELD_BYTES);
1463         mutex_unlock(&intelhaddata->mutex);
1464         return 0;
1465 }
1466
1467 static const struct snd_kcontrol_new had_controls[] = {
1468         {
1469                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1470                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1471                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1472                 .info = had_iec958_info, /* shared */
1473                 .get = had_iec958_mask_get,
1474         },
1475         {
1476                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1478                 .info = had_iec958_info,
1479                 .get = had_iec958_get,
1480                 .put = had_iec958_put,
1481         },
1482         {
1483                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1484                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1485                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1486                 .name = "ELD",
1487                 .info = had_ctl_eld_info,
1488                 .get = had_ctl_eld_get,
1489         },
1490 };
1491
1492 /*
1493  * audio interrupt handler
1494  */
1495 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1496 {
1497         struct snd_intelhad_card *card_ctx = dev_id;
1498         u32 audio_stat[3] = {};
1499         int pipe, port;
1500
1501         for_each_pipe(card_ctx, pipe) {
1502                 /* use raw register access to ack IRQs even while disconnected */
1503                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1504                                                          AUD_HDMI_STATUS) &
1505                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1506
1507                 if (audio_stat[pipe])
1508                         had_write_register_raw(card_ctx, pipe,
1509                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1510         }
1511
1512         for_each_port(card_ctx, port) {
1513                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1514                 int pipe = ctx->pipe;
1515
1516                 if (pipe < 0)
1517                         continue;
1518
1519                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1520                         had_process_buffer_done(ctx);
1521                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1522                         had_process_buffer_underrun(ctx);
1523         }
1524
1525         return IRQ_HANDLED;
1526 }
1527
1528 /*
1529  * monitor plug/unplug notification from i915; just kick off the work
1530  */
1531 static void notify_audio_lpe(struct platform_device *pdev, int port)
1532 {
1533         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1534         struct snd_intelhad *ctx;
1535
1536         ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1537         if (single_port)
1538                 ctx->port = port;
1539
1540         schedule_work(&ctx->hdmi_audio_wq);
1541 }
1542
1543 /* the work to handle monitor hot plug/unplug */
1544 static void had_audio_wq(struct work_struct *work)
1545 {
1546         struct snd_intelhad *ctx =
1547                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1548         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1549         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1550
1551         pm_runtime_get_sync(ctx->dev);
1552         mutex_lock(&ctx->mutex);
1553         if (ppdata->pipe < 0) {
1554                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1555                         __func__, ctx->port);
1556
1557                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1558
1559                 ctx->dp_output = false;
1560                 ctx->tmds_clock_speed = 0;
1561                 ctx->link_rate = 0;
1562
1563                 /* Shut down the stream */
1564                 had_process_hot_unplug(ctx);
1565
1566                 ctx->pipe = -1;
1567         } else {
1568                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1569                         __func__, ctx->port, ppdata->ls_clock);
1570
1571                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1572
1573                 ctx->dp_output = ppdata->dp_output;
1574                 if (ctx->dp_output) {
1575                         ctx->tmds_clock_speed = 0;
1576                         ctx->link_rate = ppdata->ls_clock;
1577                 } else {
1578                         ctx->tmds_clock_speed = ppdata->ls_clock;
1579                         ctx->link_rate = 0;
1580                 }
1581
1582                 /*
1583                  * Shut down the stream before we change
1584                  * the pipe assignment for this pcm device
1585                  */
1586                 had_process_hot_plug(ctx);
1587
1588                 ctx->pipe = ppdata->pipe;
1589
1590                 /* Restart the stream if necessary */
1591                 had_process_mode_change(ctx);
1592         }
1593
1594         mutex_unlock(&ctx->mutex);
1595         pm_runtime_mark_last_busy(ctx->dev);
1596         pm_runtime_put_autosuspend(ctx->dev);
1597 }
1598
1599 /*
1600  * Jack interface
1601  */
1602 static int had_create_jack(struct snd_intelhad *ctx,
1603                            struct snd_pcm *pcm)
1604 {
1605         char hdmi_str[32];
1606         int err;
1607
1608         snprintf(hdmi_str, sizeof(hdmi_str),
1609                  "HDMI/DP,pcm=%d", pcm->device);
1610
1611         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1612                            SND_JACK_AVOUT, &ctx->jack,
1613                            true, false);
1614         if (err < 0)
1615                 return err;
1616         ctx->jack->private_data = ctx;
1617         return 0;
1618 }
1619
1620 /*
1621  * PM callbacks
1622  */
1623
1624 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1625 {
1626         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1627
1628         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1629
1630         return 0;
1631 }
1632
1633 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1634 {
1635         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1636
1637         pm_runtime_mark_last_busy(dev);
1638
1639         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1640
1641         return 0;
1642 }
1643
1644 /* release resources */
1645 static void hdmi_lpe_audio_free(struct snd_card *card)
1646 {
1647         struct snd_intelhad_card *card_ctx = card->private_data;
1648         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1649         int port;
1650
1651         spin_lock_irq(&pdata->lpe_audio_slock);
1652         pdata->notify_audio_lpe = NULL;
1653         spin_unlock_irq(&pdata->lpe_audio_slock);
1654
1655         for_each_port(card_ctx, port) {
1656                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1657
1658                 cancel_work_sync(&ctx->hdmi_audio_wq);
1659         }
1660 }
1661
1662 /*
1663  * hdmi_lpe_audio_probe - start bridge with i915
1664  *
1665  * This function is called when the i915 driver creates the
1666  * hdmi-lpe-audio platform device.
1667  */
1668 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1669 {
1670         struct snd_card *card;
1671         struct snd_intelhad_card *card_ctx;
1672         struct snd_intelhad *ctx;
1673         struct snd_pcm *pcm;
1674         struct intel_hdmi_lpe_audio_pdata *pdata;
1675         int irq;
1676         struct resource *res_mmio;
1677         int port, ret;
1678
1679         pdata = pdev->dev.platform_data;
1680         if (!pdata) {
1681                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1682                 return -EINVAL;
1683         }
1684
1685         /* get resources */
1686         irq = platform_get_irq(pdev, 0);
1687         if (irq < 0)
1688                 return irq;
1689
1690         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1691         if (!res_mmio) {
1692                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1693                 return -ENXIO;
1694         }
1695
1696         /* create a card instance with ALSA framework */
1697         ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1698                                 THIS_MODULE, sizeof(*card_ctx), &card);
1699         if (ret)
1700                 return ret;
1701
1702         card_ctx = card->private_data;
1703         card_ctx->dev = &pdev->dev;
1704         card_ctx->card = card;
1705         strcpy(card->driver, INTEL_HAD);
1706         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1707         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1708
1709         card_ctx->irq = -1;
1710
1711         card->private_free = hdmi_lpe_audio_free;
1712
1713         platform_set_drvdata(pdev, card_ctx);
1714
1715         card_ctx->num_pipes = pdata->num_pipes;
1716         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1717
1718         for_each_port(card_ctx, port) {
1719                 ctx = &card_ctx->pcm_ctx[port];
1720                 ctx->card_ctx = card_ctx;
1721                 ctx->dev = card_ctx->dev;
1722                 ctx->port = single_port ? -1 : port;
1723                 ctx->pipe = -1;
1724
1725                 spin_lock_init(&ctx->had_spinlock);
1726                 mutex_init(&ctx->mutex);
1727                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1728         }
1729
1730         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1731                 __func__, (unsigned int)res_mmio->start,
1732                 (unsigned int)res_mmio->end);
1733
1734         card_ctx->mmio_start =
1735                 devm_ioremap(&pdev->dev, res_mmio->start,
1736                              (size_t)(resource_size(res_mmio)));
1737         if (!card_ctx->mmio_start) {
1738                 dev_err(&pdev->dev, "Could not get ioremap\n");
1739                 return -EACCES;
1740         }
1741
1742         /* setup interrupt handler */
1743         ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1744                                0, pdev->name, card_ctx);
1745         if (ret < 0) {
1746                 dev_err(&pdev->dev, "request_irq failed\n");
1747                 return ret;
1748         }
1749
1750         card_ctx->irq = irq;
1751
1752         /* only 32bit addressable */
1753         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1754
1755         init_channel_allocations();
1756
1757         card_ctx->num_pipes = pdata->num_pipes;
1758         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1759
1760         for_each_port(card_ctx, port) {
1761                 int i;
1762
1763                 ctx = &card_ctx->pcm_ctx[port];
1764                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1765                                   MAX_CAP_STREAMS, &pcm);
1766                 if (ret)
1767                         return ret;
1768
1769                 /* setup private data which can be retrieved when required */
1770                 pcm->private_data = ctx;
1771                 pcm->info_flags = 0;
1772                 strscpy(pcm->name, card->shortname, strlen(card->shortname));
1773                 /* setup the ops for playback */
1774                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1775
1776                 /* allocate dma pages;
1777                  * try to allocate 600k buffer as default which is large enough
1778                  */
1779                 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1780                                                card->dev, HAD_DEFAULT_BUFFER,
1781                                                HAD_MAX_BUFFER);
1782
1783                 /* create controls */
1784                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1785                         struct snd_kcontrol *kctl;
1786
1787                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1788                         if (!kctl)
1789                                 return -ENOMEM;
1790
1791                         kctl->id.device = pcm->device;
1792
1793                         ret = snd_ctl_add(card, kctl);
1794                         if (ret < 0)
1795                                 return ret;
1796                 }
1797
1798                 /* Register channel map controls */
1799                 ret = had_register_chmap_ctls(ctx, pcm);
1800                 if (ret < 0)
1801                         return ret;
1802
1803                 ret = had_create_jack(ctx, pcm);
1804                 if (ret < 0)
1805                         return ret;
1806         }
1807
1808         ret = snd_card_register(card);
1809         if (ret)
1810                 return ret;
1811
1812         spin_lock_irq(&pdata->lpe_audio_slock);
1813         pdata->notify_audio_lpe = notify_audio_lpe;
1814         spin_unlock_irq(&pdata->lpe_audio_slock);
1815
1816         pm_runtime_use_autosuspend(&pdev->dev);
1817         pm_runtime_mark_last_busy(&pdev->dev);
1818
1819         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1820         for_each_port(card_ctx, port) {
1821                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1822
1823                 schedule_work(&ctx->hdmi_audio_wq);
1824         }
1825
1826         return 0;
1827 }
1828
1829 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1830         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1831 };
1832
1833 static struct platform_driver hdmi_lpe_audio_driver = {
1834         .driver         = {
1835                 .name  = "hdmi-lpe-audio",
1836                 .pm = &hdmi_lpe_audio_pm,
1837         },
1838         .probe          = hdmi_lpe_audio_probe,
1839 };
1840
1841 module_platform_driver(hdmi_lpe_audio_driver);
1842 MODULE_ALIAS("platform:hdmi_lpe_audio");
1843
1844 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1845 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1846 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1847 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1848 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1849 MODULE_LICENSE("GPL v2");