Merge tag 'perf_urgent_for_v5.18_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / sound / sparc / dbri.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for DBRI sound chip found on Sparcs.
4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5  *
6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7  *
8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11  *
12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13  * on Sun SPARCStation 10, 20, LX and Voyager models.
14  *
15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16  *   data time multiplexer with ISDN support (aka T7259)
17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19  *   Documentation:
20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21  *     Sparc Technology Business (courtesy of Sun Support)
22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23  *     available from the Lucent (formerly AT&T microelectronics) home
24  *     page.
25  *   - https://www.freesoft.org/Linux/DBRI/
26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28  *   Documentation: from the Crystal Semiconductor home page.
29  *
30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31  * memory and a serial device (long pipes, no. 0-15) or between two serial
32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33  * device (short pipes).
34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
35  * The timeslots are linked to 6 circular lists, one for each direction for
36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37  * (the second one is a monitor/tee pipe, valid only for serial input).
38  *
39  * The mmcodec is connected via the CHI bus and needs the data & some
40  * parameters (volume, output selection) time multiplexed in 8 byte
41  * chunks. It also has a control mode, which serves for audio format setting.
42  *
43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46  * audio devices. But the SUN HW group decided against it, at least on my
47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48  * connected.
49  *
50  * I've tried to stick to the following function naming conventions:
51  * snd_*        ALSA stuff
52  * cs4215_*     CS4215 codec specific stuff
53  * dbri_*       DBRI high-level stuff
54  * other        DBRI low-level stuff
55  */
56
57 #include <linux/interrupt.h>
58 #include <linux/delay.h>
59 #include <linux/irq.h>
60 #include <linux/io.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/gfp.h>
63
64 #include <sound/core.h>
65 #include <sound/pcm.h>
66 #include <sound/pcm_params.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/initval.h>
70
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 #include <linux/atomic.h>
74 #include <linux/module.h>
75
76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77 MODULE_DESCRIPTION("Sun DBRI");
78 MODULE_LICENSE("GPL");
79
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
82 /* Enable this card */
83 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91
92 #undef DBRI_DEBUG
93
94 #define D_INT   (1<<0)
95 #define D_GEN   (1<<1)
96 #define D_CMD   (1<<2)
97 #define D_MM    (1<<3)
98 #define D_USR   (1<<4)
99 #define D_DESC  (1<<5)
100
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104
105 #ifdef DBRI_DEBUG
106 static const char * const cmds[] = {
107         "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108         "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112
113 #else
114 #define dprintk(a, x...) do { } while (0)
115
116 #endif                          /* DBRI_DEBUG */
117
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
119                                     (intr << 27) |      \
120                                     value)
121
122 /***************************************************************************
123         CS4215 specific definitions and structures
124 ****************************************************************************/
125
126 struct cs4215 {
127         __u8 data[4];           /* Data mode: Time slots 5-8 */
128         __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
129         __u8 onboard;
130         __u8 offset;            /* Bit offset from frame sync to time slot 1 */
131         volatile __u32 status;
132         volatile __u32 version;
133         __u8 precision;         /* In bits, either 8 or 16 */
134         __u8 channels;          /* 1 or 2 */
135 };
136
137 /*
138  * Control mode first
139  */
140
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB      (1<<2)  /* Control Latch Bit */
143 #define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
144                                 /* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16     0
150 #define CS4215_DFR_ULAW         1
151 #define CS4215_DFR_ALAW         2
152 #define CS4215_DFR_LINEAR8      3
153 #define CS4215_DFR_STEREO       (1<<2)
154 static struct {
155         unsigned short freq;
156         unsigned char xtal;
157         unsigned char csval;
158 } CS4215_FREQ[] = {
159         {  8000, (1 << 4), (0 << 3) },
160         { 16000, (1 << 4), (1 << 3) },
161         { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
162         { 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165         { 48000, (1 << 4), (6 << 3) },
166         {  9600, (1 << 4), (7 << 3) },
167         {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
168         { 11025, (2 << 4), (1 << 3) },
169         { 18900, (2 << 4), (2 << 3) },
170         { 22050, (2 << 4), (3 << 3) },
171         { 37800, (2 << 4), (4 << 3) },
172         { 44100, (2 << 4), (5 << 3) },
173         { 33075, (2 << 4), (6 << 3) },
174         {  6615, (2 << 4), (7 << 3) },
175         { 0, 0, 0}
176 };
177
178 #define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
179
180 #define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
181
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
184 #define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128 (1<<2)
187 #define CS4215_BSEL_256 (2<<2)
188 #define CS4215_MCK_MAST (0<<4)  /* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
193
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
197
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200
201 /* Time Slot 6, Reserved  */
202
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205
206 /* Time Slot 8, Reserved  */
207
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE       (1<<6)  /* Line Out Enable */
216 #define CS4215_HE       (1<<7)  /* Headphone Enable */
217
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE       (1<<6)  /* Speaker Enable */
221 #define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
222
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
227 #define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
228 #define CS4215_PIO1     (1<<7)
229
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
233
234 /***************************************************************************
235                 DBRI specific definitions and structures
236 ****************************************************************************/
237
238 /* DBRI main registers */
239 #define REG0    0x00            /* Status and Control */
240 #define REG1    0x04            /* Mode and Interrupt */
241 #define REG2    0x08            /* Parallel IO */
242 #define REG3    0x0c            /* Test */
243 #define REG8    0x20            /* Command Queue Pointer */
244 #define REG9    0x24            /* Interrupt Queue Pointer */
245
246 #define DBRI_NO_CMDS    64
247 #define DBRI_INT_BLK    64
248 #define DBRI_NO_DESCS   64
249 #define DBRI_NO_PIPES   32
250 #define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
251
252 #define DBRI_REC        0
253 #define DBRI_PLAY       1
254 #define DBRI_NO_STREAMS 2
255
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259         volatile __u32 word1;
260         __u32 ba;       /* Transmit/Receive Buffer Address */
261         __u32 nda;      /* Next Descriptor Address */
262         volatile __u32 word4;
263 };
264
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269         s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
270         volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
271         struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
272 };
273
274 #define dbri_dma_off(member, elem)      \
275         ((u32)(unsigned long)           \
276          (&(((struct dbri_dma *)0)->member[elem])))
277
278 enum in_or_out { PIPEinput, PIPEoutput };
279
280 struct dbri_pipe {
281         u32 sdp;                /* SDP command word */
282         int nextpipe;           /* Next pipe in linked list */
283         int length;             /* Length of timeslot (bits) */
284         int first_desc;         /* Index of first descriptor */
285         int desc;               /* Index of active descriptor */
286         volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
287 };
288
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291         struct snd_pcm_substream *substream;
292         u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
293         int size;               /* Size of DMA buffer             */
294         size_t offset;          /* offset in user buffer          */
295         int pipe;               /* Data pipe used                 */
296         int left_gain;          /* mixer elements                 */
297         int right_gain;
298 };
299
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302         int regs_size, irq;     /* Needed for unload */
303         struct platform_device *op;     /* OF device info */
304         spinlock_t lock;
305
306         struct dbri_dma *dma;   /* Pointer to our DMA block */
307         dma_addr_t dma_dvma;    /* DBRI visible DMA address */
308
309         void __iomem *regs;     /* dbri HW regs */
310         int dbri_irqp;          /* intr queue pointer */
311
312         struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
313         int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
314         spinlock_t cmdlock;     /* Protects cmd queue accesses */
315         s32 *cmdptr;            /* Pointer to the last queued cmd */
316
317         int chi_bpf;
318
319         struct cs4215 mm;       /* mmcodec special info */
320                                 /* per stream (playback/record) info */
321         struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323
324 #define DBRI_MAX_VOLUME         63      /* Output volume */
325 #define DBRI_MAX_GAIN           15      /* Input gain */
326
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P             (1<<15) /* Program command & queue pointer valid */
329 #define D_G             (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S             (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E             (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X             (1<<7)  /* Sanity Timer Disable */
333 #define D_T             (1<<6)  /* Permit activation of the TE interface */
334 #define D_N             (1<<5)  /* Permit activation of the NT interface */
335 #define D_C             (1<<4)  /* Permit activation of the CHI interface */
336 #define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
337 #define D_D             (1<<2)  /* Disable Master Mode */
338 #define D_H             (1<<1)  /* Halt for Analysis */
339 #define D_R             (1<<0)  /* Soft Reset */
340
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END    (1<<8)  /* Byte Order */
343 #define D_BIG_END       (0<<8)  /* Byte Order */
344 #define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
345 #define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
346 #define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
347 #define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
348 #define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
349
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
352 #define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
353 #define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
354 #define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
355 #define D_ENPIO         (0xf0)  /* Enable all the pins */
356 #define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
359 #define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
360
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT          0x0     /* Stop execution */
363 #define D_PAUSE         0x1     /* Flush long pipes */
364 #define D_JUMP          0x2     /* New command queue */
365 #define D_IIQ           0x3     /* Initialize Interrupt Queue */
366 #define D_REX           0x4     /* Report command execution via interrupt */
367 #define D_SDP           0x5     /* Setup Data Pipe */
368 #define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS           0x7     /* Define Time Slot */
370 #define D_SSP           0x8     /* Set short Data Pipe */
371 #define D_CHI           0x9     /* Set CHI Global Mode */
372 #define D_NT            0xa     /* NT Command */
373 #define D_TE            0xb     /* TE Command */
374 #define D_CDEC          0xc     /* Codec setup */
375 #define D_TEST          0xd     /* No comment */
376 #define D_CDM           0xe     /* CHI Data mode command */
377
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE    (2<<18) /* Report any changes */
385 #define D_SDP_EVERY     (3<<18) /* Report any changes */
386 #define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
388
389 /* Pipe data MODE */
390 #define D_SDP_MEM       (0<<13) /* To/from memory */
391 #define D_SDP_HDLC      (2<<13)
392 #define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER       (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED     (6<<13) /* Short only */
395 #define D_SDP_MODE(v)   ((v)&(7<<13))
396
397 #define D_SDP_TO_SER    (1<<12) /* Direction */
398 #define D_SDP_FROM_SER  (0<<12) /* Direction */
399 #define D_SDP_MSB       (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB       (0<<11) /* Bit order within Byte */
401 #define D_SDP_P         (1<<10) /* Pointer Valid */
402 #define D_SDP_A         (1<<8)  /* Abort */
403 #define D_SDP_C         (1<<7)  /* Clear */
404
405 /* Define Time Slot */
406 #define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS       (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL       (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
412
413 /* Time Slot defines */
414 #define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
416 #define D_TS_DI         (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR    (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
426 #define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD        (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD        (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
432
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT       (1<<17) /* Frame Bit */
435 #define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT       (1<<13) /* Configure interface as NT */
439 #define D_NT_FT         (1<<12) /* Fixed Timing */
440 #define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT        (1<<9)  /* Activate Interface */
443 #define D_NT_MFE        (1<<8)  /* Multiframe Enable */
444 #define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
445 #define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
446 #define D_NT_FACT       (1<<1)  /* Force Activation */
447 #define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
448
449 /* Codec Setup */
450 #define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
451 #define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
453
454 /* Test */
455 #define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
456 #define D_TEST_SIZE(v)  ((v)<<11)       /* */
457 #define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC     0x6     /* Microprocessor test */
459 #define D_TEST_SER      0x7     /* Serial-Controller test */
460 #define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP     0xe     /* ROM Dump */
465
466 /* CHI Data Mode */
467 #define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
472 #define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
473
474 /* The Interrupts */
475 #define D_INTR_BRDY     1       /* Buffer Ready for processing */
476 #define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL      5       /* End of List */
480 #define D_INTR_CMDI     6       /* Command has bean read */
481 #define D_INTR_XCMP     8       /* Transmission of frame complete */
482 #define D_INTR_SBRI     9       /* BRI status change info */
483 #define D_INTR_FXDT     10      /* Fixed data change */
484 #define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT     12      /* Dropped by frame slip */
487 #define D_INTR_RBYT     13      /* Repeated by frame slip */
488 #define D_INTR_LINT     14      /* Lost Interrupt */
489 #define D_INTR_UNDR     15      /* DMA underrun */
490
491 #define D_INTR_TE       32
492 #define D_INTR_NT       34
493 #define D_INTR_CHI      36
494 #define D_INTR_CMD      38
495
496 #define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)        ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
501
502 #define D_P_0           0       /* TE receive anchor */
503 #define D_P_1           1       /* TE transmit anchor */
504 #define D_P_2           2       /* NT transmit anchor */
505 #define D_P_3           3       /* NT receive anchor */
506 #define D_P_4           4       /* CHI send data */
507 #define D_P_5           5       /* CHI receive data */
508 #define D_P_6           6       /* */
509 #define D_P_7           7       /* */
510 #define D_P_8           8       /* */
511 #define D_P_9           9       /* */
512 #define D_P_10          10      /* */
513 #define D_P_11          11      /* */
514 #define D_P_12          12      /* */
515 #define D_P_13          13      /* */
516 #define D_P_14          14      /* */
517 #define D_P_15          15      /* */
518 #define D_P_16          16      /* CHI anchor pipe */
519 #define D_P_17          17      /* CHI send */
520 #define D_P_18          18      /* CHI receive */
521 #define D_P_19          19      /* CHI receive */
522 #define D_P_20          20      /* CHI receive */
523 #define D_P_21          21      /* */
524 #define D_P_22          22      /* */
525 #define D_P_23          23      /* */
526 #define D_P_24          24      /* */
527 #define D_P_25          25      /* */
528 #define D_P_26          26      /* */
529 #define D_P_27          27      /* */
530 #define D_P_28          28      /* */
531 #define D_P_29          29      /* */
532 #define D_P_30          30      /* */
533 #define D_P_31          31      /* */
534
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F       (1 << 31)       /* End of Frame */
537 #define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
538 #define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B       (1 << 15)       /* Final interrupt */
540 #define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
541 #define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v)             /* Flag Count */
543 #define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
545 #define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
547                         /* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT  ((1 << 13) - 4)
549
550 /* Receive descriptor defines */
551 #define DBRI_RD_F       (1 << 31)       /* End of Frame */
552 #define DBRI_RD_C       (1 << 30)       /* Completed buffer */
553 #define DBRI_RD_B       (1 << 15)       /* Final interrupt */
554 #define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v)             /* Buffer size */
556 #define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
557 #define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
558 #define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
559 #define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
562
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)                                \
566                 (substream->stream ==                           \
567                  SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)    \
571                 &dbri->stream_info[DBRI_STREAMNO(substream)]
572
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579         switch (len) {
580         case 32:
581                 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582                 fallthrough;
583         case 16:
584                 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585                 fallthrough;
586         case 8:
587                 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588                 fallthrough;
589         case 4:
590                 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591                 fallthrough;
592         case 2:
593                 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
594         case 1:
595         case 0:
596                 break;
597         default:
598                 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
599         }
600
601         return b;
602 }
603
604 /*
605 ****************************************************************************
606 ************** DBRI initialization and command synchronization *************
607 ****************************************************************************
608
609 Commands are sent to the DBRI by building a list of them in memory,
610 then writing the address of the first list item to DBRI register 8.
611 The list is terminated with a WAIT command, which generates a
612 CPU interrupt to signal completion.
613
614 Since the DBRI can run in parallel with the CPU, several means of
615 synchronization present themselves. The method implemented here uses
616 the dbri_cmdwait() to wait for execution of batch of sent commands.
617
618 A circular command buffer is used here. A new command is being added
619 while another can be executed. The scheme works by adding two WAIT commands
620 after each sent batch of commands. When the next batch is prepared it is
621 added after the WAIT commands then the WAITs are replaced with single JUMP
622 command to the new batch. Then the DBRI is forced to reread the last WAIT
623 command (replaced by the JUMP by then). If the DBRI is still executing
624 previous commands the request to reread the WAIT command is ignored.
625
626 Every time a routine wants to write commands to the DBRI, it must
627 first call dbri_cmdlock() and get pointer to a free space in
628 dbri->dma->cmd buffer. After this, the commands can be written to
629 the buffer, and dbri_cmdsend() is called with the final pointer value
630 to send them to the DBRI.
631
632 */
633
634 #define MAXLOOPS 20
635 /*
636  * Wait for the current command string to execute
637  */
638 static void dbri_cmdwait(struct snd_dbri *dbri)
639 {
640         int maxloops = MAXLOOPS;
641         unsigned long flags;
642
643         /* Delay if previous commands are still being processed */
644         spin_lock_irqsave(&dbri->lock, flags);
645         while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
646                 spin_unlock_irqrestore(&dbri->lock, flags);
647                 msleep_interruptible(1);
648                 spin_lock_irqsave(&dbri->lock, flags);
649         }
650         spin_unlock_irqrestore(&dbri->lock, flags);
651
652         if (maxloops == 0)
653                 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
654         else
655                 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
656                         MAXLOOPS - maxloops - 1);
657 }
658 /*
659  * Lock the command queue and return pointer to space for len cmd words
660  * It locks the cmdlock spinlock.
661  */
662 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
663 {
664         u32 dvma_addr = (u32)dbri->dma_dvma;
665
666         /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
667         len += 2;
668         spin_lock(&dbri->cmdlock);
669         if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
670                 return dbri->cmdptr + 2;
671         else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
672                 return dbri->dma->cmd;
673         else
674                 printk(KERN_ERR "DBRI: no space for commands.");
675
676         return NULL;
677 }
678
679 /*
680  * Send prepared cmd string. It works by writing a JUMP cmd into
681  * the last WAIT cmd and force DBRI to reread the cmd.
682  * The JUMP cmd points to the new cmd string.
683  * It also releases the cmdlock spinlock.
684  *
685  * Lock must be held before calling this.
686  */
687 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
688 {
689         u32 dvma_addr = (u32)dbri->dma_dvma;
690         s32 tmp, addr;
691         static int wait_id;
692
693         wait_id++;
694         wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
695         *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
696         *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
697
698         /* Replace the last command with JUMP */
699         addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
700         *(dbri->cmdptr+1) = addr;
701         *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
702
703 #ifdef DBRI_DEBUG
704         if (cmd > dbri->cmdptr) {
705                 s32 *ptr;
706
707                 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
708                         dprintk(D_CMD, "cmd: %lx:%08x\n",
709                                 (unsigned long)ptr, *ptr);
710         } else {
711                 s32 *ptr = dbri->cmdptr;
712
713                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
714                 ptr++;
715                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
716                 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
717                         dprintk(D_CMD, "cmd: %lx:%08x\n",
718                                 (unsigned long)ptr, *ptr);
719         }
720 #endif
721
722         /* Reread the last command */
723         tmp = sbus_readl(dbri->regs + REG0);
724         tmp |= D_P;
725         sbus_writel(tmp, dbri->regs + REG0);
726
727         dbri->cmdptr = cmd;
728         spin_unlock(&dbri->cmdlock);
729 }
730
731 /* Lock must be held when calling this */
732 static void dbri_reset(struct snd_dbri *dbri)
733 {
734         int i;
735         u32 tmp;
736
737         dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
738                 sbus_readl(dbri->regs + REG0),
739                 sbus_readl(dbri->regs + REG2),
740                 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
741
742         sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
743         for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
744                 udelay(10);
745
746         /* A brute approach - DBRI falls back to working burst size by itself
747          * On SS20 D_S does not work, so do not try so high. */
748         tmp = sbus_readl(dbri->regs + REG0);
749         tmp |= D_G | D_E;
750         tmp &= ~D_S;
751         sbus_writel(tmp, dbri->regs + REG0);
752 }
753
754 /* Lock must not be held before calling this */
755 static void dbri_initialize(struct snd_dbri *dbri)
756 {
757         u32 dvma_addr = (u32)dbri->dma_dvma;
758         s32 *cmd;
759         u32 dma_addr;
760         unsigned long flags;
761         int n;
762
763         spin_lock_irqsave(&dbri->lock, flags);
764
765         dbri_reset(dbri);
766
767         /* Initialize pipes */
768         for (n = 0; n < DBRI_NO_PIPES; n++)
769                 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
770
771         spin_lock_init(&dbri->cmdlock);
772         /*
773          * Initialize the interrupt ring buffer.
774          */
775         dma_addr = dvma_addr + dbri_dma_off(intr, 0);
776         dbri->dma->intr[0] = dma_addr;
777         dbri->dbri_irqp = 1;
778         /*
779          * Set up the interrupt queue
780          */
781         spin_lock(&dbri->cmdlock);
782         cmd = dbri->cmdptr = dbri->dma->cmd;
783         *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
784         *(cmd++) = dma_addr;
785         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
786         dbri->cmdptr = cmd;
787         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
788         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789         dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
790         sbus_writel(dma_addr, dbri->regs + REG8);
791         spin_unlock(&dbri->cmdlock);
792
793         spin_unlock_irqrestore(&dbri->lock, flags);
794         dbri_cmdwait(dbri);
795 }
796
797 /*
798 ****************************************************************************
799 ************************** DBRI data pipe management ***********************
800 ****************************************************************************
801
802 While DBRI control functions use the command and interrupt buffers, the
803 main data path takes the form of data pipes, which can be short (command
804 and interrupt driven), or long (attached to DMA buffers).  These functions
805 provide a rudimentary means of setting up and managing the DBRI's pipes,
806 but the calling functions have to make sure they respect the pipes' linked
807 list ordering, among other things.  The transmit and receive functions
808 here interface closely with the transmit and receive interrupt code.
809
810 */
811 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
812 {
813         return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
814 }
815
816 /* reset_pipe(dbri, pipe)
817  *
818  * Called on an in-use pipe to clear anything being transmitted or received
819  * Lock must be held before calling this.
820  */
821 static void reset_pipe(struct snd_dbri *dbri, int pipe)
822 {
823         int sdp;
824         int desc;
825         s32 *cmd;
826
827         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
828                 printk(KERN_ERR "DBRI: reset_pipe called with "
829                         "illegal pipe number\n");
830                 return;
831         }
832
833         sdp = dbri->pipes[pipe].sdp;
834         if (sdp == 0) {
835                 printk(KERN_ERR "DBRI: reset_pipe called "
836                         "on uninitialized pipe\n");
837                 return;
838         }
839
840         cmd = dbri_cmdlock(dbri, 3);
841         *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
842         *(cmd++) = 0;
843         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
844         dbri_cmdsend(dbri, cmd, 3);
845
846         desc = dbri->pipes[pipe].first_desc;
847         if (desc >= 0)
848                 do {
849                         dbri->dma->desc[desc].ba = 0;
850                         dbri->dma->desc[desc].nda = 0;
851                         desc = dbri->next_desc[desc];
852                 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
853
854         dbri->pipes[pipe].desc = -1;
855         dbri->pipes[pipe].first_desc = -1;
856 }
857
858 /*
859  * Lock must be held before calling this.
860  */
861 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
862 {
863         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
864                 printk(KERN_ERR "DBRI: setup_pipe called "
865                         "with illegal pipe number\n");
866                 return;
867         }
868
869         if ((sdp & 0xf800) != sdp) {
870                 printk(KERN_ERR "DBRI: setup_pipe called "
871                         "with strange SDP value\n");
872                 /* sdp &= 0xf800; */
873         }
874
875         /* If this is a fixed receive pipe, arrange for an interrupt
876          * every time its data changes
877          */
878         if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
879                 sdp |= D_SDP_CHANGE;
880
881         sdp |= D_PIPE(pipe);
882         dbri->pipes[pipe].sdp = sdp;
883         dbri->pipes[pipe].desc = -1;
884         dbri->pipes[pipe].first_desc = -1;
885
886         reset_pipe(dbri, pipe);
887 }
888
889 /*
890  * Lock must be held before calling this.
891  */
892 static void link_time_slot(struct snd_dbri *dbri, int pipe,
893                            int prevpipe, int nextpipe,
894                            int length, int cycle)
895 {
896         s32 *cmd;
897         int val;
898
899         if (pipe < 0 || pipe > DBRI_MAX_PIPE
900                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
901                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
902                 printk(KERN_ERR
903                     "DBRI: link_time_slot called with illegal pipe number\n");
904                 return;
905         }
906
907         if (dbri->pipes[pipe].sdp == 0
908                         || dbri->pipes[prevpipe].sdp == 0
909                         || dbri->pipes[nextpipe].sdp == 0) {
910                 printk(KERN_ERR "DBRI: link_time_slot called "
911                         "on uninitialized pipe\n");
912                 return;
913         }
914
915         dbri->pipes[prevpipe].nextpipe = pipe;
916         dbri->pipes[pipe].nextpipe = nextpipe;
917         dbri->pipes[pipe].length = length;
918
919         cmd = dbri_cmdlock(dbri, 4);
920
921         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
922                 /* Deal with CHI special case:
923                  * "If transmission on edges 0 or 1 is desired, then cycle n
924                  *  (where n = # of bit times per frame...) must be used."
925                  *                  - DBRI data sheet, page 11
926                  */
927                 if (prevpipe == 16 && cycle == 0)
928                         cycle = dbri->chi_bpf;
929
930                 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
931                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
932                 *(cmd++) = 0;
933                 *(cmd++) =
934                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
935         } else {
936                 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
937                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
938                 *(cmd++) =
939                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
940                 *(cmd++) = 0;
941         }
942         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
943
944         dbri_cmdsend(dbri, cmd, 4);
945 }
946
947 #if 0
948 /*
949  * Lock must be held before calling this.
950  */
951 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
952                              enum in_or_out direction, int prevpipe,
953                              int nextpipe)
954 {
955         s32 *cmd;
956         int val;
957
958         if (pipe < 0 || pipe > DBRI_MAX_PIPE
959                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
960                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
961                 printk(KERN_ERR
962                     "DBRI: unlink_time_slot called with illegal pipe number\n");
963                 return;
964         }
965
966         cmd = dbri_cmdlock(dbri, 4);
967
968         if (direction == PIPEinput) {
969                 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
970                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
971                 *(cmd++) = D_TS_NEXT(nextpipe);
972                 *(cmd++) = 0;
973         } else {
974                 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
975                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
976                 *(cmd++) = 0;
977                 *(cmd++) = D_TS_NEXT(nextpipe);
978         }
979         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
980
981         dbri_cmdsend(dbri, cmd, 4);
982 }
983 #endif
984
985 /* xmit_fixed() / recv_fixed()
986  *
987  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988  * expected to change much, and which we don't need to buffer.
989  * The DBRI only interrupts us when the data changes (receive pipes),
990  * or only changes the data when this function is called (transmit pipes).
991  * Only short pipes (numbers 16-31) can be used in fixed data mode.
992  *
993  * These function operate on a 32-bit field, no matter how large
994  * the actual time slot is.  The interrupt handler takes care of bit
995  * ordering and alignment.  An 8-bit time slot will always end up
996  * in the low-order 8 bits, filled either MSB-first or LSB-first,
997  * depending on the settings passed to setup_pipe().
998  *
999  * Lock must not be held before calling it.
1000  */
1001 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002 {
1003         s32 *cmd;
1004         unsigned long flags;
1005
1006         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007                 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008                 return;
1009         }
1010
1011         if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012                 printk(KERN_ERR "DBRI: xmit_fixed: "
1013                         "Uninitialized pipe %d\n", pipe);
1014                 return;
1015         }
1016
1017         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018                 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019                 return;
1020         }
1021
1022         if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023                 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024                         pipe);
1025                 return;
1026         }
1027
1028         /* DBRI short pipes always transmit LSB first */
1029
1030         if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031                 data = reverse_bytes(data, dbri->pipes[pipe].length);
1032
1033         cmd = dbri_cmdlock(dbri, 3);
1034
1035         *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036         *(cmd++) = data;
1037         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038
1039         spin_lock_irqsave(&dbri->lock, flags);
1040         dbri_cmdsend(dbri, cmd, 3);
1041         spin_unlock_irqrestore(&dbri->lock, flags);
1042         dbri_cmdwait(dbri);
1043
1044 }
1045
1046 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047 {
1048         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049                 printk(KERN_ERR "DBRI: recv_fixed called with "
1050                         "illegal pipe number\n");
1051                 return;
1052         }
1053
1054         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055                 printk(KERN_ERR "DBRI: recv_fixed called on "
1056                         "non-fixed pipe %d\n", pipe);
1057                 return;
1058         }
1059
1060         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061                 printk(KERN_ERR "DBRI: recv_fixed called on "
1062                         "transmit pipe %d\n", pipe);
1063                 return;
1064         }
1065
1066         dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067 }
1068
1069 /* setup_descs()
1070  *
1071  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072  * with a DMA buffer.
1073  *
1074  * Only pipe numbers 0-15 can be used in this mode.
1075  *
1076  * This function takes a stream number pointing to a data buffer,
1077  * and work by building chains of descriptors which identify the
1078  * data buffers.  Buffers too large for a single descriptor will
1079  * be spread across multiple descriptors.
1080  *
1081  * All descriptors create a ring buffer.
1082  *
1083  * Lock must be held before calling this.
1084  */
1085 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086 {
1087         struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088         u32 dvma_addr = (u32)dbri->dma_dvma;
1089         __u32 dvma_buffer;
1090         int desc;
1091         int len;
1092         int first_desc = -1;
1093         int last_desc = -1;
1094
1095         if (info->pipe < 0 || info->pipe > 15) {
1096                 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097                 return -2;
1098         }
1099
1100         if (dbri->pipes[info->pipe].sdp == 0) {
1101                 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102                        info->pipe);
1103                 return -2;
1104         }
1105
1106         dvma_buffer = info->dvma_buffer;
1107         len = info->size;
1108
1109         if (streamno == DBRI_PLAY) {
1110                 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111                         printk(KERN_ERR "DBRI: setup_descs: "
1112                                 "Called on receive pipe %d\n", info->pipe);
1113                         return -2;
1114                 }
1115         } else {
1116                 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117                         printk(KERN_ERR
1118                             "DBRI: setup_descs: Called on transmit pipe %d\n",
1119                              info->pipe);
1120                         return -2;
1121                 }
1122                 /* Should be able to queue multiple buffers
1123                  * to receive on a pipe
1124                  */
1125                 if (pipe_active(dbri, info->pipe)) {
1126                         printk(KERN_ERR "DBRI: recv_on_pipe: "
1127                                 "Called on active pipe %d\n", info->pipe);
1128                         return -2;
1129                 }
1130
1131                 /* Make sure buffer size is multiple of four */
1132                 len &= ~3;
1133         }
1134
1135         /* Free descriptors if pipe has any */
1136         desc = dbri->pipes[info->pipe].first_desc;
1137         if (desc >= 0)
1138                 do {
1139                         dbri->dma->desc[desc].ba = 0;
1140                         dbri->dma->desc[desc].nda = 0;
1141                         desc = dbri->next_desc[desc];
1142                 } while (desc != -1 &&
1143                          desc != dbri->pipes[info->pipe].first_desc);
1144
1145         dbri->pipes[info->pipe].desc = -1;
1146         dbri->pipes[info->pipe].first_desc = -1;
1147
1148         desc = 0;
1149         while (len > 0) {
1150                 int mylen;
1151
1152                 for (; desc < DBRI_NO_DESCS; desc++) {
1153                         if (!dbri->dma->desc[desc].ba)
1154                                 break;
1155                 }
1156
1157                 if (desc == DBRI_NO_DESCS) {
1158                         printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159                         return -1;
1160                 }
1161
1162                 if (len > DBRI_TD_MAXCNT)
1163                         mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1164                 else
1165                         mylen = len;
1166
1167                 if (mylen > period)
1168                         mylen = period;
1169
1170                 dbri->next_desc[desc] = -1;
1171                 dbri->dma->desc[desc].ba = dvma_buffer;
1172                 dbri->dma->desc[desc].nda = 0;
1173
1174                 if (streamno == DBRI_PLAY) {
1175                         dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176                         dbri->dma->desc[desc].word4 = 0;
1177                         dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178                 } else {
1179                         dbri->dma->desc[desc].word1 = 0;
1180                         dbri->dma->desc[desc].word4 =
1181                             DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182                 }
1183
1184                 if (first_desc == -1)
1185                         first_desc = desc;
1186                 else {
1187                         dbri->next_desc[last_desc] = desc;
1188                         dbri->dma->desc[last_desc].nda =
1189                             dvma_addr + dbri_dma_off(desc, desc);
1190                 }
1191
1192                 last_desc = desc;
1193                 dvma_buffer += mylen;
1194                 len -= mylen;
1195         }
1196
1197         if (first_desc == -1 || last_desc == -1) {
1198                 printk(KERN_ERR "DBRI: setup_descs: "
1199                         " Not enough descriptors available\n");
1200                 return -1;
1201         }
1202
1203         dbri->dma->desc[last_desc].nda =
1204             dvma_addr + dbri_dma_off(desc, first_desc);
1205         dbri->next_desc[last_desc] = first_desc;
1206         dbri->pipes[info->pipe].first_desc = first_desc;
1207         dbri->pipes[info->pipe].desc = first_desc;
1208
1209 #ifdef DBRI_DEBUG
1210         for (desc = first_desc; desc != -1;) {
1211                 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212                         desc,
1213                         dbri->dma->desc[desc].word1,
1214                         dbri->dma->desc[desc].ba,
1215                         dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216                         desc = dbri->next_desc[desc];
1217                         if (desc == first_desc)
1218                                 break;
1219         }
1220 #endif
1221         return 0;
1222 }
1223
1224 /*
1225 ****************************************************************************
1226 ************************** DBRI - CHI interface ****************************
1227 ****************************************************************************
1228
1229 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230 multiplexed serial interface which the DBRI can operate in either master
1231 (give clock/frame sync) or slave (take clock/frame sync) mode.
1232
1233 */
1234
1235 enum master_or_slave { CHImaster, CHIslave };
1236
1237 /*
1238  * Lock must not be held before calling it.
1239  */
1240 static void reset_chi(struct snd_dbri *dbri,
1241                       enum master_or_slave master_or_slave,
1242                       int bits_per_frame)
1243 {
1244         s32 *cmd;
1245         int val;
1246
1247         /* Set CHI Anchor: Pipe 16 */
1248
1249         cmd = dbri_cmdlock(dbri, 4);
1250         val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251                 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252         *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256         dbri_cmdsend(dbri, cmd, 4);
1257
1258         dbri->pipes[16].sdp = 1;
1259         dbri->pipes[16].nextpipe = 16;
1260
1261         cmd = dbri_cmdlock(dbri, 4);
1262
1263         if (master_or_slave == CHIslave) {
1264                 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265                  *
1266                  * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267                  * IR     = give immediate CHI status interrupt
1268                  * EN     = give CHI status interrupt upon change
1269                  */
1270                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271         } else {
1272                 /* Setup DBRI for CHI Master - generate clock, FS
1273                  *
1274                  * BPF                          =  bits per 8 kHz frame
1275                  * 12.288 MHz / CHICM_divisor   = clock rate
1276                  * FD = 1 - drive CHIFS on rising edge of CHICK
1277                  */
1278                 int clockrate = bits_per_frame * 8;
1279                 int divisor = 12288 / clockrate;
1280
1281                 if (divisor > 255 || divisor * clockrate != 12288)
1282                         printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283                                 "in setup_chi\n");
1284
1285                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286                                     | D_CHI_BPF(bits_per_frame));
1287         }
1288
1289         dbri->chi_bpf = bits_per_frame;
1290
1291         /* CHI Data Mode
1292          *
1293          * RCE   =  0 - receive on falling edge of CHICK
1294          * XCE   =  1 - transmit on rising edge of CHICK
1295          * XEN   =  1 - enable transmitter
1296          * REN   =  1 - enable receiver
1297          */
1298
1299         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300         *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302
1303         dbri_cmdsend(dbri, cmd, 4);
1304 }
1305
1306 /*
1307 ****************************************************************************
1308 *********************** CS4215 audio codec management **********************
1309 ****************************************************************************
1310
1311 In the standard SPARC audio configuration, the CS4215 codec is attached
1312 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313
1314  * Lock must not be held before calling it.
1315
1316 */
1317 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318 {
1319         unsigned long flags;
1320
1321         spin_lock_irqsave(&dbri->lock, flags);
1322         /*
1323          * Data mode:
1324          * Pipe  4: Send timeslots 1-4 (audio data)
1325          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326          * Pipe  6: Receive timeslots 1-4 (audio data)
1327          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328          *          interrupt, and the rest of the data (slot 5 and 8) is
1329          *          not relevant for us (only for doublechecking).
1330          *
1331          * Control mode:
1332          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333          * Pipe 18: Receive timeslot 1 (clb).
1334          * Pipe 19: Receive timeslot 7 (version).
1335          */
1336
1337         setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338         setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339         setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340         setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341
1342         setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343         setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344         setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345         spin_unlock_irqrestore(&dbri->lock, flags);
1346
1347         dbri_cmdwait(dbri);
1348 }
1349
1350 static int cs4215_init_data(struct cs4215 *mm)
1351 {
1352         /*
1353          * No action, memory resetting only.
1354          *
1355          * Data Time Slot 5-8
1356          * Speaker,Line and Headphone enable. Gain set to the half.
1357          * Input is mike.
1358          */
1359         mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360         mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361         mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362         mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363
1364         /*
1365          * Control Time Slot 1-4
1366          * 0: Default I/O voltage scale
1367          * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368          * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369          * 3: Tests disabled
1370          */
1371         mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372         mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373         mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374         mm->ctrl[3] = 0;
1375
1376         mm->status = 0;
1377         mm->version = 0xff;
1378         mm->precision = 8;      /* For ULAW */
1379         mm->channels = 1;
1380
1381         return 0;
1382 }
1383
1384 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385 {
1386         if (muted) {
1387                 dbri->mm.data[0] |= 63;
1388                 dbri->mm.data[1] |= 63;
1389                 dbri->mm.data[2] &= ~15;
1390                 dbri->mm.data[3] &= ~15;
1391         } else {
1392                 /* Start by setting the playback attenuation. */
1393                 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394                 int left_gain = info->left_gain & 0x3f;
1395                 int right_gain = info->right_gain & 0x3f;
1396
1397                 dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1398                 dbri->mm.data[1] &= ~0x3f;
1399                 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400                 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401
1402                 /* Now set the recording gain. */
1403                 info = &dbri->stream_info[DBRI_REC];
1404                 left_gain = info->left_gain & 0xf;
1405                 right_gain = info->right_gain & 0xf;
1406                 dbri->mm.data[2] |= CS4215_LG(left_gain);
1407                 dbri->mm.data[3] |= CS4215_RG(right_gain);
1408         }
1409
1410         xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411 }
1412
1413 /*
1414  * Set the CS4215 to data mode.
1415  */
1416 static void cs4215_open(struct snd_dbri *dbri)
1417 {
1418         int data_width;
1419         u32 tmp;
1420         unsigned long flags;
1421
1422         dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423                 dbri->mm.channels, dbri->mm.precision);
1424
1425         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426          * to make sure this takes.  This avoids clicking noises.
1427          */
1428
1429         cs4215_setdata(dbri, 1);
1430         udelay(125);
1431
1432         /*
1433          * Data mode:
1434          * Pipe  4: Send timeslots 1-4 (audio data)
1435          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436          * Pipe  6: Receive timeslots 1-4 (audio data)
1437          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438          *          interrupt, and the rest of the data (slot 5 and 8) is
1439          *          not relevant for us (only for doublechecking).
1440          *
1441          * Just like in control mode, the time slots are all offset by eight
1442          * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443          * even if it's the CHI master.  Don't ask me...
1444          */
1445         spin_lock_irqsave(&dbri->lock, flags);
1446         tmp = sbus_readl(dbri->regs + REG0);
1447         tmp &= ~(D_C);          /* Disable CHI */
1448         sbus_writel(tmp, dbri->regs + REG0);
1449
1450         /* Switch CS4215 to data mode - set PIO3 to 1 */
1451         sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452                     (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453
1454         reset_chi(dbri, CHIslave, 128);
1455
1456         /* Note: this next doesn't work for 8-bit stereo, because the two
1457          * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458          * (See CS4215 datasheet Fig 15)
1459          *
1460          * DBRI non-contiguous mode would be required to make this work.
1461          */
1462         data_width = dbri->mm.channels * dbri->mm.precision;
1463
1464         link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465         link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466         link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467         link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468
1469         /* FIXME: enable CHI after _setdata? */
1470         tmp = sbus_readl(dbri->regs + REG0);
1471         tmp |= D_C;             /* Enable CHI */
1472         sbus_writel(tmp, dbri->regs + REG0);
1473         spin_unlock_irqrestore(&dbri->lock, flags);
1474
1475         cs4215_setdata(dbri, 0);
1476 }
1477
1478 /*
1479  * Send the control information (i.e. audio format)
1480  */
1481 static int cs4215_setctrl(struct snd_dbri *dbri)
1482 {
1483         int i, val;
1484         u32 tmp;
1485         unsigned long flags;
1486
1487         /* FIXME - let the CPU do something useful during these delays */
1488
1489         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490          * to make sure this takes.  This avoids clicking noises.
1491          */
1492         cs4215_setdata(dbri, 1);
1493         udelay(125);
1494
1495         /*
1496          * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497          * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498          */
1499         val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500         sbus_writel(val, dbri->regs + REG2);
1501         dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502         udelay(34);
1503
1504         /* In Control mode, the CS4215 is a slave device, so the DBRI must
1505          * operate as CHI master, supplying clocking and frame synchronization.
1506          *
1507          * In Data mode, however, the CS4215 must be CHI master to insure
1508          * that its data stream is synchronous with its codec.
1509          *
1510          * The upshot of all this?  We start by putting the DBRI into master
1511          * mode, program the CS4215 in Control mode, then switch the CS4215
1512          * into Data mode and put the DBRI into slave mode.  Various timing
1513          * requirements must be observed along the way.
1514          *
1515          * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516          * others?), the addressing of the CS4215's time slots is
1517          * offset by eight bits, so we add eight to all the "cycle"
1518          * values in the Define Time Slot (DTS) commands.  This is
1519          * done in hardware by a TI 248 that delays the DBRI->4215
1520          * frame sync signal by eight clock cycles.  Anybody know why?
1521          */
1522         spin_lock_irqsave(&dbri->lock, flags);
1523         tmp = sbus_readl(dbri->regs + REG0);
1524         tmp &= ~D_C;            /* Disable CHI */
1525         sbus_writel(tmp, dbri->regs + REG0);
1526
1527         reset_chi(dbri, CHImaster, 128);
1528
1529         /*
1530          * Control mode:
1531          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532          * Pipe 18: Receive timeslot 1 (clb).
1533          * Pipe 19: Receive timeslot 7 (version).
1534          */
1535
1536         link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537         link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538         link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539         spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541         /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542         dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544
1545         spin_lock_irqsave(&dbri->lock, flags);
1546         tmp = sbus_readl(dbri->regs + REG0);
1547         tmp |= D_C;             /* Enable CHI */
1548         sbus_writel(tmp, dbri->regs + REG0);
1549         spin_unlock_irqrestore(&dbri->lock, flags);
1550
1551         for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552                 msleep_interruptible(1);
1553
1554         if (i == 0) {
1555                 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556                         dbri->mm.status);
1557                 return -1;
1558         }
1559
1560         /* Disable changes to our copy of the version number, as we are about
1561          * to leave control mode.
1562          */
1563         recv_fixed(dbri, 19, NULL);
1564
1565         /* Terminate CS4215 control mode - data sheet says
1566          * "Set CLB=1 and send two more frames of valid control info"
1567          */
1568         dbri->mm.ctrl[0] |= CS4215_CLB;
1569         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570
1571         /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572         udelay(250);
1573
1574         cs4215_setdata(dbri, 0);
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * Setup the codec with the sampling rate, audio format and number of
1581  * channels.
1582  * As part of the process we resend the settings for the data
1583  * timeslots as well.
1584  */
1585 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586                           snd_pcm_format_t format, unsigned int channels)
1587 {
1588         int freq_idx;
1589         int ret = 0;
1590
1591         /* Lookup index for this rate */
1592         for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593                 if (CS4215_FREQ[freq_idx].freq == rate)
1594                         break;
1595         }
1596         if (CS4215_FREQ[freq_idx].freq != rate) {
1597                 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598                 return -1;
1599         }
1600
1601         switch (format) {
1602         case SNDRV_PCM_FORMAT_MU_LAW:
1603                 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604                 dbri->mm.precision = 8;
1605                 break;
1606         case SNDRV_PCM_FORMAT_A_LAW:
1607                 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608                 dbri->mm.precision = 8;
1609                 break;
1610         case SNDRV_PCM_FORMAT_U8:
1611                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612                 dbri->mm.precision = 8;
1613                 break;
1614         case SNDRV_PCM_FORMAT_S16_BE:
1615                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616                 dbri->mm.precision = 16;
1617                 break;
1618         default:
1619                 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620                 return -1;
1621         }
1622
1623         /* Add rate parameters */
1624         dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625         dbri->mm.ctrl[2] = CS4215_XCLK |
1626             CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627
1628         dbri->mm.channels = channels;
1629         if (channels == 2)
1630                 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631
1632         ret = cs4215_setctrl(dbri);
1633         if (ret == 0)
1634                 cs4215_open(dbri);      /* set codec to data mode */
1635
1636         return ret;
1637 }
1638
1639 /*
1640  *
1641  */
1642 static int cs4215_init(struct snd_dbri *dbri)
1643 {
1644         u32 reg2 = sbus_readl(dbri->regs + REG2);
1645         dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646
1647         /* Look for the cs4215 chips */
1648         if (reg2 & D_PIO2) {
1649                 dprintk(D_MM, "Onboard CS4215 detected\n");
1650                 dbri->mm.onboard = 1;
1651         }
1652         if (reg2 & D_PIO0) {
1653                 dprintk(D_MM, "Speakerbox detected\n");
1654                 dbri->mm.onboard = 0;
1655
1656                 if (reg2 & D_PIO2) {
1657                         printk(KERN_INFO "DBRI: Using speakerbox / "
1658                                "ignoring onboard mmcodec.\n");
1659                         sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660                 }
1661         }
1662
1663         if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664                 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665                 return -EIO;
1666         }
1667
1668         cs4215_setup_pipes(dbri);
1669         cs4215_init_data(&dbri->mm);
1670
1671         /* Enable capture of the status & version timeslots. */
1672         recv_fixed(dbri, 18, &dbri->mm.status);
1673         recv_fixed(dbri, 19, &dbri->mm.version);
1674
1675         dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676         if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677                 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678                         dbri->mm.offset);
1679                 return -EIO;
1680         }
1681         dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682
1683         return 0;
1684 }
1685
1686 /*
1687 ****************************************************************************
1688 *************************** DBRI interrupt handler *************************
1689 ****************************************************************************
1690
1691 The DBRI communicates with the CPU mainly via a circular interrupt
1692 buffer.  When an interrupt is signaled, the CPU walks through the
1693 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694 Complicated interrupts are handled by dedicated functions (which
1695 appear first in this file).  Any pending interrupts can be serviced by
1696 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697 interrupts are disabled.
1698
1699 */
1700
1701 /* xmit_descs()
1702  *
1703  * Starts transmitting the current TD's for recording/playing.
1704  * For playback, ALSA has filled the DMA memory with new data (we hope).
1705  */
1706 static void xmit_descs(struct snd_dbri *dbri)
1707 {
1708         struct dbri_streaminfo *info;
1709         u32 dvma_addr;
1710         s32 *cmd;
1711         unsigned long flags;
1712         int first_td;
1713
1714         if (dbri == NULL)
1715                 return;         /* Disabled */
1716
1717         dvma_addr = (u32)dbri->dma_dvma;
1718         info = &dbri->stream_info[DBRI_REC];
1719         spin_lock_irqsave(&dbri->lock, flags);
1720
1721         if (info->pipe >= 0) {
1722                 first_td = dbri->pipes[info->pipe].first_desc;
1723
1724                 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725
1726                 /* Stream could be closed by the time we run. */
1727                 if (first_td >= 0) {
1728                         cmd = dbri_cmdlock(dbri, 2);
1729                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1730                                             dbri->pipes[info->pipe].sdp
1731                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732                         *(cmd++) = dvma_addr +
1733                                    dbri_dma_off(desc, first_td);
1734                         dbri_cmdsend(dbri, cmd, 2);
1735
1736                         /* Reset our admin of the pipe. */
1737                         dbri->pipes[info->pipe].desc = first_td;
1738                 }
1739         }
1740
1741         info = &dbri->stream_info[DBRI_PLAY];
1742
1743         if (info->pipe >= 0) {
1744                 first_td = dbri->pipes[info->pipe].first_desc;
1745
1746                 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747
1748                 /* Stream could be closed by the time we run. */
1749                 if (first_td >= 0) {
1750                         cmd = dbri_cmdlock(dbri, 2);
1751                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1752                                             dbri->pipes[info->pipe].sdp
1753                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754                         *(cmd++) = dvma_addr +
1755                                    dbri_dma_off(desc, first_td);
1756                         dbri_cmdsend(dbri, cmd, 2);
1757
1758                         /* Reset our admin of the pipe. */
1759                         dbri->pipes[info->pipe].desc = first_td;
1760                 }
1761         }
1762
1763         spin_unlock_irqrestore(&dbri->lock, flags);
1764 }
1765
1766 /* transmission_complete_intr()
1767  *
1768  * Called by main interrupt handler when DBRI signals transmission complete
1769  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770  *
1771  * Walks through the pipe's list of transmit buffer descriptors and marks
1772  * them as available. Stops when the first descriptor is found without
1773  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774  *
1775  * The DMA buffers are not released. They form a ring buffer and
1776  * they are filled by ALSA while others are transmitted by DMA.
1777  *
1778  */
1779
1780 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781 {
1782         struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783         int td = dbri->pipes[pipe].desc;
1784         int status;
1785
1786         while (td >= 0) {
1787                 if (td >= DBRI_NO_DESCS) {
1788                         printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789                         return;
1790                 }
1791
1792                 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793                 if (!(status & DBRI_TD_TBC))
1794                         break;
1795
1796                 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797
1798                 dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1799                 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800
1801                 td = dbri->next_desc[td];
1802                 dbri->pipes[pipe].desc = td;
1803         }
1804
1805         /* Notify ALSA */
1806         spin_unlock(&dbri->lock);
1807         snd_pcm_period_elapsed(info->substream);
1808         spin_lock(&dbri->lock);
1809 }
1810
1811 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812 {
1813         struct dbri_streaminfo *info;
1814         int rd = dbri->pipes[pipe].desc;
1815         s32 status;
1816
1817         if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818                 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819                 return;
1820         }
1821
1822         dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823         status = dbri->dma->desc[rd].word1;
1824         dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1825
1826         info = &dbri->stream_info[DBRI_REC];
1827         info->offset += DBRI_RD_CNT(status);
1828
1829         /* FIXME: Check status */
1830
1831         dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832                 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833
1834         /* Notify ALSA */
1835         spin_unlock(&dbri->lock);
1836         snd_pcm_period_elapsed(info->substream);
1837         spin_lock(&dbri->lock);
1838 }
1839
1840 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841 {
1842         int val = D_INTR_GETVAL(x);
1843         int channel = D_INTR_GETCHAN(x);
1844         int command = D_INTR_GETCMD(x);
1845         int code = D_INTR_GETCODE(x);
1846 #ifdef DBRI_DEBUG
1847         int rval = D_INTR_GETRVAL(x);
1848 #endif
1849
1850         if (channel == D_INTR_CMD) {
1851                 dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852                         cmds[command], val);
1853         } else {
1854                 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855                         channel, code, rval);
1856         }
1857
1858         switch (code) {
1859         case D_INTR_CMDI:
1860                 if (command != D_WAIT)
1861                         printk(KERN_ERR "DBRI: Command read interrupt\n");
1862                 break;
1863         case D_INTR_BRDY:
1864                 reception_complete_intr(dbri, channel);
1865                 break;
1866         case D_INTR_XCMP:
1867         case D_INTR_MINT:
1868                 transmission_complete_intr(dbri, channel);
1869                 break;
1870         case D_INTR_UNDR:
1871                 /* UNDR - Transmission underrun
1872                  * resend SDP command with clear pipe bit (C) set
1873                  */
1874                 {
1875         /* FIXME: do something useful in case of underrun */
1876                         printk(KERN_ERR "DBRI: Underrun error\n");
1877 #if 0
1878                         s32 *cmd;
1879                         int pipe = channel;
1880                         int td = dbri->pipes[pipe].desc;
1881
1882                         dbri->dma->desc[td].word4 = 0;
1883                         cmd = dbri_cmdlock(dbri, NoGetLock);
1884                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1885                                             dbri->pipes[pipe].sdp
1886                                             | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887                         *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888                         dbri_cmdsend(dbri, cmd);
1889 #endif
1890                 }
1891                 break;
1892         case D_INTR_FXDT:
1893                 /* FXDT - Fixed data change */
1894                 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895                         val = reverse_bytes(val, dbri->pipes[channel].length);
1896
1897                 if (dbri->pipes[channel].recv_fixed_ptr)
1898                         *(dbri->pipes[channel].recv_fixed_ptr) = val;
1899                 break;
1900         default:
1901                 if (channel != D_INTR_CMD)
1902                         printk(KERN_WARNING
1903                                "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904         }
1905 }
1906
1907 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908  * buffer until it finds a zero word (indicating nothing more to do
1909  * right now).  Non-zero words require processing and are handed off
1910  * to dbri_process_one_interrupt AFTER advancing the pointer.
1911  */
1912 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913 {
1914         s32 x;
1915
1916         while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917                 dbri->dma->intr[dbri->dbri_irqp] = 0;
1918                 dbri->dbri_irqp++;
1919                 if (dbri->dbri_irqp == DBRI_INT_BLK)
1920                         dbri->dbri_irqp = 1;
1921
1922                 dbri_process_one_interrupt(dbri, x);
1923         }
1924 }
1925
1926 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927 {
1928         struct snd_dbri *dbri = dev_id;
1929         static int errcnt;
1930         int x;
1931
1932         if (dbri == NULL)
1933                 return IRQ_NONE;
1934         spin_lock(&dbri->lock);
1935
1936         /*
1937          * Read it, so the interrupt goes away.
1938          */
1939         x = sbus_readl(dbri->regs + REG1);
1940
1941         if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942                 u32 tmp;
1943
1944                 if (x & D_MRR)
1945                         printk(KERN_ERR
1946                                "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947                                x);
1948                 if (x & D_MLE)
1949                         printk(KERN_ERR
1950                                "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951                                x);
1952                 if (x & D_LBG)
1953                         printk(KERN_ERR
1954                                "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955                 if (x & D_MBE)
1956                         printk(KERN_ERR
1957                                "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958
1959                 /* Some of these SBus errors cause the chip's SBus circuitry
1960                  * to be disabled, so just re-enable and try to keep going.
1961                  *
1962                  * The only one I've seen is MRR, which will be triggered
1963                  * if you let a transmit pipe underrun, then try to CDP it.
1964                  *
1965                  * If these things persist, we reset the chip.
1966                  */
1967                 if ((++errcnt) % 10 == 0) {
1968                         dprintk(D_INT, "Interrupt errors exceeded.\n");
1969                         dbri_reset(dbri);
1970                 } else {
1971                         tmp = sbus_readl(dbri->regs + REG0);
1972                         tmp &= ~(D_D);
1973                         sbus_writel(tmp, dbri->regs + REG0);
1974                 }
1975         }
1976
1977         dbri_process_interrupt_buffer(dbri);
1978
1979         spin_unlock(&dbri->lock);
1980
1981         return IRQ_HANDLED;
1982 }
1983
1984 /****************************************************************************
1985                 PCM Interface
1986 ****************************************************************************/
1987 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988         .info           = SNDRV_PCM_INFO_MMAP |
1989                           SNDRV_PCM_INFO_INTERLEAVED |
1990                           SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991                           SNDRV_PCM_INFO_MMAP_VALID |
1992                           SNDRV_PCM_INFO_BATCH,
1993         .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1994                           SNDRV_PCM_FMTBIT_A_LAW |
1995                           SNDRV_PCM_FMTBIT_U8 |
1996                           SNDRV_PCM_FMTBIT_S16_BE,
1997         .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998         .rate_min               = 5512,
1999         .rate_max               = 48000,
2000         .channels_min           = 1,
2001         .channels_max           = 2,
2002         .buffer_bytes_max       = 64 * 1024,
2003         .period_bytes_min       = 1,
2004         .period_bytes_max       = DBRI_TD_MAXCNT,
2005         .periods_min            = 1,
2006         .periods_max            = 1024,
2007 };
2008
2009 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010                               struct snd_pcm_hw_rule *rule)
2011 {
2012         struct snd_interval *c = hw_param_interval(params,
2013                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2014         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015         struct snd_mask fmt;
2016
2017         snd_mask_any(&fmt);
2018         if (c->min > 1) {
2019                 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020                 return snd_mask_refine(f, &fmt);
2021         }
2022         return 0;
2023 }
2024
2025 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026                                 struct snd_pcm_hw_rule *rule)
2027 {
2028         struct snd_interval *c = hw_param_interval(params,
2029                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2030         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031         struct snd_interval ch;
2032
2033         snd_interval_any(&ch);
2034         if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035                 ch.min = 1;
2036                 ch.max = 1;
2037                 ch.integer = 1;
2038                 return snd_interval_refine(c, &ch);
2039         }
2040         return 0;
2041 }
2042
2043 static int snd_dbri_open(struct snd_pcm_substream *substream)
2044 {
2045         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046         struct snd_pcm_runtime *runtime = substream->runtime;
2047         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048         unsigned long flags;
2049
2050         dprintk(D_USR, "open audio output.\n");
2051         runtime->hw = snd_dbri_pcm_hw;
2052
2053         spin_lock_irqsave(&dbri->lock, flags);
2054         info->substream = substream;
2055         info->offset = 0;
2056         info->dvma_buffer = 0;
2057         info->pipe = -1;
2058         spin_unlock_irqrestore(&dbri->lock, flags);
2059
2060         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061                             snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062                             -1);
2063         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064                             snd_hw_rule_channels, NULL,
2065                             SNDRV_PCM_HW_PARAM_CHANNELS,
2066                             -1);
2067
2068         cs4215_open(dbri);
2069
2070         return 0;
2071 }
2072
2073 static int snd_dbri_close(struct snd_pcm_substream *substream)
2074 {
2075         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077
2078         dprintk(D_USR, "close audio output.\n");
2079         info->substream = NULL;
2080         info->offset = 0;
2081
2082         return 0;
2083 }
2084
2085 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086                               struct snd_pcm_hw_params *hw_params)
2087 {
2088         struct snd_pcm_runtime *runtime = substream->runtime;
2089         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091         int direction;
2092         int ret;
2093
2094         /* set sampling rate, audio format and number of channels */
2095         ret = cs4215_prepare(dbri, params_rate(hw_params),
2096                              params_format(hw_params),
2097                              params_channels(hw_params));
2098         if (ret != 0)
2099                 return ret;
2100
2101         /* hw_params can get called multiple times. Only map the DMA once.
2102          */
2103         if (info->dvma_buffer == 0) {
2104                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105                         direction = DMA_TO_DEVICE;
2106                 else
2107                         direction = DMA_FROM_DEVICE;
2108
2109                 info->dvma_buffer =
2110                         dma_map_single(&dbri->op->dev,
2111                                        runtime->dma_area,
2112                                        params_buffer_bytes(hw_params),
2113                                        direction);
2114         }
2115
2116         direction = params_buffer_bytes(hw_params);
2117         dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118                 direction, info->dvma_buffer);
2119         return 0;
2120 }
2121
2122 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123 {
2124         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126         int direction;
2127
2128         dprintk(D_USR, "hw_free.\n");
2129
2130         /* hw_free can get called multiple times. Only unmap the DMA once.
2131          */
2132         if (info->dvma_buffer) {
2133                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134                         direction = DMA_TO_DEVICE;
2135                 else
2136                         direction = DMA_FROM_DEVICE;
2137
2138                 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139                                  substream->runtime->buffer_size, direction);
2140                 info->dvma_buffer = 0;
2141         }
2142         if (info->pipe != -1) {
2143                 reset_pipe(dbri, info->pipe);
2144                 info->pipe = -1;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151 {
2152         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154         int ret;
2155
2156         info->size = snd_pcm_lib_buffer_bytes(substream);
2157         if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158                 info->pipe = 4; /* Send pipe */
2159         else
2160                 info->pipe = 6; /* Receive pipe */
2161
2162         spin_lock_irq(&dbri->lock);
2163         info->offset = 0;
2164
2165         /* Setup the all the transmit/receive descriptors to cover the
2166          * whole DMA buffer.
2167          */
2168         ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169                           snd_pcm_lib_period_bytes(substream));
2170
2171         spin_unlock_irq(&dbri->lock);
2172
2173         dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174         return ret;
2175 }
2176
2177 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178 {
2179         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181         int ret = 0;
2182
2183         switch (cmd) {
2184         case SNDRV_PCM_TRIGGER_START:
2185                 dprintk(D_USR, "start audio, period is %d bytes\n",
2186                         (int)snd_pcm_lib_period_bytes(substream));
2187                 /* Re-submit the TDs. */
2188                 xmit_descs(dbri);
2189                 break;
2190         case SNDRV_PCM_TRIGGER_STOP:
2191                 dprintk(D_USR, "stop audio.\n");
2192                 reset_pipe(dbri, info->pipe);
2193                 break;
2194         default:
2195                 ret = -EINVAL;
2196         }
2197
2198         return ret;
2199 }
2200
2201 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202 {
2203         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205         snd_pcm_uframes_t ret;
2206
2207         ret = bytes_to_frames(substream->runtime, info->offset)
2208                 % substream->runtime->buffer_size;
2209         dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210                 ret, substream->runtime->buffer_size);
2211         return ret;
2212 }
2213
2214 static const struct snd_pcm_ops snd_dbri_ops = {
2215         .open = snd_dbri_open,
2216         .close = snd_dbri_close,
2217         .hw_params = snd_dbri_hw_params,
2218         .hw_free = snd_dbri_hw_free,
2219         .prepare = snd_dbri_prepare,
2220         .trigger = snd_dbri_trigger,
2221         .pointer = snd_dbri_pointer,
2222 };
2223
2224 static int snd_dbri_pcm(struct snd_card *card)
2225 {
2226         struct snd_pcm *pcm;
2227         int err;
2228
2229         err = snd_pcm_new(card,
2230                           /* ID */          "sun_dbri",
2231                           /* device */      0,
2232                           /* playback count */ 1,
2233                           /* capture count */  1, &pcm);
2234         if (err < 0)
2235                 return err;
2236
2237         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239
2240         pcm->private_data = card->private_data;
2241         pcm->info_flags = 0;
2242         strcpy(pcm->name, card->shortname);
2243
2244         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245                                        NULL, 64 * 1024, 64 * 1024);
2246         return 0;
2247 }
2248
2249 /*****************************************************************************
2250                         Mixer interface
2251 *****************************************************************************/
2252
2253 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254                                   struct snd_ctl_elem_info *uinfo)
2255 {
2256         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257         uinfo->count = 2;
2258         uinfo->value.integer.min = 0;
2259         if (kcontrol->private_value == DBRI_PLAY)
2260                 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261         else
2262                 uinfo->value.integer.max = DBRI_MAX_GAIN;
2263         return 0;
2264 }
2265
2266 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267                                  struct snd_ctl_elem_value *ucontrol)
2268 {
2269         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270         struct dbri_streaminfo *info;
2271
2272         if (snd_BUG_ON(!dbri))
2273                 return -EINVAL;
2274         info = &dbri->stream_info[kcontrol->private_value];
2275
2276         ucontrol->value.integer.value[0] = info->left_gain;
2277         ucontrol->value.integer.value[1] = info->right_gain;
2278         return 0;
2279 }
2280
2281 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282                                  struct snd_ctl_elem_value *ucontrol)
2283 {
2284         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285         struct dbri_streaminfo *info =
2286                                 &dbri->stream_info[kcontrol->private_value];
2287         unsigned int vol[2];
2288         int changed = 0;
2289
2290         vol[0] = ucontrol->value.integer.value[0];
2291         vol[1] = ucontrol->value.integer.value[1];
2292         if (kcontrol->private_value == DBRI_PLAY) {
2293                 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294                         return -EINVAL;
2295         } else {
2296                 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297                         return -EINVAL;
2298         }
2299
2300         if (info->left_gain != vol[0]) {
2301                 info->left_gain = vol[0];
2302                 changed = 1;
2303         }
2304         if (info->right_gain != vol[1]) {
2305                 info->right_gain = vol[1];
2306                 changed = 1;
2307         }
2308         if (changed) {
2309                 /* First mute outputs, and wait 1/8000 sec (125 us)
2310                  * to make sure this takes.  This avoids clicking noises.
2311                  */
2312                 cs4215_setdata(dbri, 1);
2313                 udelay(125);
2314                 cs4215_setdata(dbri, 0);
2315         }
2316         return changed;
2317 }
2318
2319 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320                                   struct snd_ctl_elem_info *uinfo)
2321 {
2322         int mask = (kcontrol->private_value >> 16) & 0xff;
2323
2324         uinfo->type = (mask == 1) ?
2325             SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326         uinfo->count = 1;
2327         uinfo->value.integer.min = 0;
2328         uinfo->value.integer.max = mask;
2329         return 0;
2330 }
2331
2332 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333                                  struct snd_ctl_elem_value *ucontrol)
2334 {
2335         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336         int elem = kcontrol->private_value & 0xff;
2337         int shift = (kcontrol->private_value >> 8) & 0xff;
2338         int mask = (kcontrol->private_value >> 16) & 0xff;
2339         int invert = (kcontrol->private_value >> 24) & 1;
2340
2341         if (snd_BUG_ON(!dbri))
2342                 return -EINVAL;
2343
2344         if (elem < 4)
2345                 ucontrol->value.integer.value[0] =
2346                     (dbri->mm.data[elem] >> shift) & mask;
2347         else
2348                 ucontrol->value.integer.value[0] =
2349                     (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350
2351         if (invert == 1)
2352                 ucontrol->value.integer.value[0] =
2353                     mask - ucontrol->value.integer.value[0];
2354         return 0;
2355 }
2356
2357 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358                                  struct snd_ctl_elem_value *ucontrol)
2359 {
2360         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361         int elem = kcontrol->private_value & 0xff;
2362         int shift = (kcontrol->private_value >> 8) & 0xff;
2363         int mask = (kcontrol->private_value >> 16) & 0xff;
2364         int invert = (kcontrol->private_value >> 24) & 1;
2365         int changed = 0;
2366         unsigned short val;
2367
2368         if (snd_BUG_ON(!dbri))
2369                 return -EINVAL;
2370
2371         val = (ucontrol->value.integer.value[0] & mask);
2372         if (invert == 1)
2373                 val = mask - val;
2374         val <<= shift;
2375
2376         if (elem < 4) {
2377                 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378                                        ~(mask << shift)) | val;
2379                 changed = (val != dbri->mm.data[elem]);
2380         } else {
2381                 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382                                            ~(mask << shift)) | val;
2383                 changed = (val != dbri->mm.ctrl[elem - 4]);
2384         }
2385
2386         dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387                 "mixer-value=%ld, mm-value=0x%x\n",
2388                 mask, changed, ucontrol->value.integer.value[0],
2389                 dbri->mm.data[elem & 3]);
2390
2391         if (changed) {
2392                 /* First mute outputs, and wait 1/8000 sec (125 us)
2393                  * to make sure this takes.  This avoids clicking noises.
2394                  */
2395                 cs4215_setdata(dbri, 1);
2396                 udelay(125);
2397                 cs4215_setdata(dbri, 0);
2398         }
2399         return changed;
2400 }
2401
2402 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403    timeslots. Shift is the bit offset in the timeslot, mask defines the
2404    number of bits. invert is a boolean for use with attenuation.
2405  */
2406 #define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2407 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2408   .info = snd_cs4215_info_single,                               \
2409   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2410   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2411                         ((invert) << 24) },
2412
2413 static const struct snd_kcontrol_new dbri_controls[] = {
2414         {
2415          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416          .name  = "Playback Volume",
2417          .info  = snd_cs4215_info_volume,
2418          .get   = snd_cs4215_get_volume,
2419          .put   = snd_cs4215_put_volume,
2420          .private_value = DBRI_PLAY,
2421          },
2422         CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423         CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424         CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425         {
2426          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427          .name  = "Capture Volume",
2428          .info  = snd_cs4215_info_volume,
2429          .get   = snd_cs4215_get_volume,
2430          .put   = snd_cs4215_put_volume,
2431          .private_value = DBRI_REC,
2432          },
2433         /* FIXME: mic/line switch */
2434         CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435         CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436         CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437         CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438 };
2439
2440 static int snd_dbri_mixer(struct snd_card *card)
2441 {
2442         int idx, err;
2443         struct snd_dbri *dbri;
2444
2445         if (snd_BUG_ON(!card || !card->private_data))
2446                 return -EINVAL;
2447         dbri = card->private_data;
2448
2449         strcpy(card->mixername, card->shortname);
2450
2451         for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452                 err = snd_ctl_add(card,
2453                                 snd_ctl_new1(&dbri_controls[idx], dbri));
2454                 if (err < 0)
2455                         return err;
2456         }
2457
2458         for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459                 dbri->stream_info[idx].left_gain = 0;
2460                 dbri->stream_info[idx].right_gain = 0;
2461         }
2462
2463         return 0;
2464 }
2465
2466 /****************************************************************************
2467                         /proc interface
2468 ****************************************************************************/
2469 static void dbri_regs_read(struct snd_info_entry *entry,
2470                            struct snd_info_buffer *buffer)
2471 {
2472         struct snd_dbri *dbri = entry->private_data;
2473
2474         snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475         snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476         snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477         snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478 }
2479
2480 #ifdef DBRI_DEBUG
2481 static void dbri_debug_read(struct snd_info_entry *entry,
2482                             struct snd_info_buffer *buffer)
2483 {
2484         struct snd_dbri *dbri = entry->private_data;
2485         int pipe;
2486         snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487
2488         for (pipe = 0; pipe < 32; pipe++) {
2489                 if (pipe_active(dbri, pipe)) {
2490                         struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491                         snd_iprintf(buffer,
2492                                     "Pipe %d: %s SDP=0x%x desc=%d, "
2493                                     "len=%d next %d\n",
2494                                     pipe,
2495                                    (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496                                                                  "input",
2497                                     pptr->sdp, pptr->desc,
2498                                     pptr->length, pptr->nextpipe);
2499                 }
2500         }
2501 }
2502 #endif
2503
2504 static void snd_dbri_proc(struct snd_card *card)
2505 {
2506         struct snd_dbri *dbri = card->private_data;
2507
2508         snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509 #ifdef DBRI_DEBUG
2510         snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2511 #endif
2512 }
2513
2514 /*
2515 ****************************************************************************
2516 **************************** Initialization ********************************
2517 ****************************************************************************
2518 */
2519 static void snd_dbri_free(struct snd_dbri *dbri);
2520
2521 static int snd_dbri_create(struct snd_card *card,
2522                            struct platform_device *op,
2523                            int irq, int dev)
2524 {
2525         struct snd_dbri *dbri = card->private_data;
2526         int err;
2527
2528         spin_lock_init(&dbri->lock);
2529         dbri->op = op;
2530         dbri->irq = irq;
2531
2532         dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533                                        &dbri->dma_dvma, GFP_KERNEL);
2534         if (!dbri->dma)
2535                 return -ENOMEM;
2536
2537         dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538                 dbri->dma, dbri->dma_dvma);
2539
2540         /* Map the registers into memory. */
2541         dbri->regs_size = resource_size(&op->resource[0]);
2542         dbri->regs = of_ioremap(&op->resource[0], 0,
2543                                 dbri->regs_size, "DBRI Registers");
2544         if (!dbri->regs) {
2545                 printk(KERN_ERR "DBRI: could not allocate registers\n");
2546                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547                                   (void *)dbri->dma, dbri->dma_dvma);
2548                 return -EIO;
2549         }
2550
2551         err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552                           "DBRI audio", dbri);
2553         if (err) {
2554                 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555                 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557                                   (void *)dbri->dma, dbri->dma_dvma);
2558                 return err;
2559         }
2560
2561         /* Do low level initialization of the DBRI and CS4215 chips */
2562         dbri_initialize(dbri);
2563         err = cs4215_init(dbri);
2564         if (err) {
2565                 snd_dbri_free(dbri);
2566                 return err;
2567         }
2568
2569         return 0;
2570 }
2571
2572 static void snd_dbri_free(struct snd_dbri *dbri)
2573 {
2574         dprintk(D_GEN, "snd_dbri_free\n");
2575         dbri_reset(dbri);
2576
2577         if (dbri->irq)
2578                 free_irq(dbri->irq, dbri);
2579
2580         if (dbri->regs)
2581                 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582
2583         if (dbri->dma)
2584                 dma_free_coherent(&dbri->op->dev,
2585                                   sizeof(struct dbri_dma),
2586                                   (void *)dbri->dma, dbri->dma_dvma);
2587 }
2588
2589 static int dbri_probe(struct platform_device *op)
2590 {
2591         struct snd_dbri *dbri;
2592         struct resource *rp;
2593         struct snd_card *card;
2594         static int dev;
2595         int irq;
2596         int err;
2597
2598         if (dev >= SNDRV_CARDS)
2599                 return -ENODEV;
2600         if (!enable[dev]) {
2601                 dev++;
2602                 return -ENOENT;
2603         }
2604
2605         irq = op->archdata.irqs[0];
2606         if (irq <= 0) {
2607                 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608                 return -ENODEV;
2609         }
2610
2611         err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612                            sizeof(struct snd_dbri), &card);
2613         if (err < 0)
2614                 return err;
2615
2616         strcpy(card->driver, "DBRI");
2617         strcpy(card->shortname, "Sun DBRI");
2618         rp = &op->resource[0];
2619         sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620                 card->shortname,
2621                 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622
2623         err = snd_dbri_create(card, op, irq, dev);
2624         if (err < 0) {
2625                 snd_card_free(card);
2626                 return err;
2627         }
2628
2629         dbri = card->private_data;
2630         err = snd_dbri_pcm(card);
2631         if (err < 0)
2632                 goto _err;
2633
2634         err = snd_dbri_mixer(card);
2635         if (err < 0)
2636                 goto _err;
2637
2638         /* /proc file handling */
2639         snd_dbri_proc(card);
2640         dev_set_drvdata(&op->dev, card);
2641
2642         err = snd_card_register(card);
2643         if (err < 0)
2644                 goto _err;
2645
2646         printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647                dev, dbri->regs,
2648                dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649         dev++;
2650
2651         return 0;
2652
2653 _err:
2654         snd_dbri_free(dbri);
2655         snd_card_free(card);
2656         return err;
2657 }
2658
2659 static int dbri_remove(struct platform_device *op)
2660 {
2661         struct snd_card *card = dev_get_drvdata(&op->dev);
2662
2663         snd_dbri_free(card->private_data);
2664         snd_card_free(card);
2665
2666         return 0;
2667 }
2668
2669 static const struct of_device_id dbri_match[] = {
2670         {
2671                 .name = "SUNW,DBRIe",
2672         },
2673         {
2674                 .name = "SUNW,DBRIf",
2675         },
2676         {},
2677 };
2678
2679 MODULE_DEVICE_TABLE(of, dbri_match);
2680
2681 static struct platform_driver dbri_sbus_driver = {
2682         .driver = {
2683                 .name = "dbri",
2684                 .of_match_table = dbri_match,
2685         },
2686         .probe          = dbri_probe,
2687         .remove         = dbri_remove,
2688 };
2689
2690 module_platform_driver(dbri_sbus_driver);