1 // SPDX-License-Identifier: GPL-2.0+
3 // soc-ops.c -- Generic ASoC operations
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
35 * Callback to provide information about a double enumerated
38 * Returns 0 for success.
40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
55 * Callback to get the value of a double enumerated mixer.
57 * Returns 0 for success.
59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
86 * Callback to set the value of a double enumerated mixer.
88 * Returns 0 for success.
90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
99 if (item[0] >= e->items)
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
127 * Returns 0 on sucess, otherwise an error value
129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
158 ret |= ~((int)(BIT(sign_bit) - 1));
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
173 * Returns 0 for success.
175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
208 * Returns 0 for success.
210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
220 uinfo->value.integer.max += mc->min;
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
234 * Returns 0 for success.
236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
255 mask = BIT(sign_bit + 1) - 1;
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
261 ucontrol->value.integer.value[0] = val - min;
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
266 if (snd_soc_volsw_is_stereo(mc)) {
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
276 ucontrol->value.integer.value[1] = val - min;
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
294 * Returns 0 for success.
296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
317 mask = BIT(sign_bit + 1) - 1;
319 if (ucontrol->value.integer.value[0] < 0)
321 val = ucontrol->value.integer.value[0];
322 if (mc->platform_max && ((int)val + min) > mc->platform_max)
326 val = (val + min) & mask;
329 val_mask = mask << shift;
331 if (snd_soc_volsw_is_stereo(mc)) {
332 if (ucontrol->value.integer.value[1] < 0)
334 val2 = ucontrol->value.integer.value[1];
335 if (mc->platform_max && ((int)val2 + min) > mc->platform_max)
337 if (val2 > max - min)
339 val2 = (val2 + min) & mask;
343 val_mask |= mask << rshift;
344 val |= val2 << rshift;
346 val2 = val2 << shift;
350 err = snd_soc_component_update_bits(component, reg, val_mask, val);
356 err = snd_soc_component_update_bits(component, reg2, val_mask,
358 /* Don't discard any error code or drop change flag */
359 if (ret == 0 || err < 0) {
366 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
369 * snd_soc_get_volsw_sx - single mixer get callback
370 * @kcontrol: mixer control
371 * @ucontrol: control element information
373 * Callback to get the value of a single mixer control, or a double mixer
374 * control that spans 2 registers.
376 * Returns 0 for success.
378 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
379 struct snd_ctl_elem_value *ucontrol)
381 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
382 struct soc_mixer_control *mc =
383 (struct soc_mixer_control *)kcontrol->private_value;
384 unsigned int reg = mc->reg;
385 unsigned int reg2 = mc->rreg;
386 unsigned int shift = mc->shift;
387 unsigned int rshift = mc->rshift;
390 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
393 val = snd_soc_component_read(component, reg);
394 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
396 if (snd_soc_volsw_is_stereo(mc)) {
397 val = snd_soc_component_read(component, reg2);
398 val = ((val >> rshift) - min) & mask;
399 ucontrol->value.integer.value[1] = val;
404 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
407 * snd_soc_put_volsw_sx - double mixer set callback
408 * @kcontrol: mixer control
409 * @ucontrol: control element information
411 * Callback to set the value of a double mixer control that spans 2 registers.
413 * Returns 0 for success.
415 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
416 struct snd_ctl_elem_value *ucontrol)
418 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
419 struct soc_mixer_control *mc =
420 (struct soc_mixer_control *)kcontrol->private_value;
422 unsigned int reg = mc->reg;
423 unsigned int reg2 = mc->rreg;
424 unsigned int shift = mc->shift;
425 unsigned int rshift = mc->rshift;
428 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
431 unsigned int val, val_mask;
433 if (ucontrol->value.integer.value[0] < 0)
435 val = ucontrol->value.integer.value[0];
436 if (mc->platform_max && val > mc->platform_max)
440 val_mask = mask << shift;
441 val = (val + min) & mask;
444 err = snd_soc_component_update_bits(component, reg, val_mask, val);
449 if (snd_soc_volsw_is_stereo(mc)) {
452 val_mask = mask << rshift;
453 val2 = (ucontrol->value.integer.value[1] + min) & mask;
454 val2 = val2 << rshift;
456 err = snd_soc_component_update_bits(component, reg2, val_mask,
459 /* Don't discard any error code or drop change flag */
460 if (ret == 0 || err < 0) {
466 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
469 * snd_soc_info_volsw_range - single mixer info callback with range.
470 * @kcontrol: mixer control
471 * @uinfo: control element information
473 * Callback to provide information, within a range, about a single
476 * returns 0 for success.
478 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
479 struct snd_ctl_elem_info *uinfo)
481 struct soc_mixer_control *mc =
482 (struct soc_mixer_control *)kcontrol->private_value;
486 if (!mc->platform_max)
487 mc->platform_max = mc->max;
488 platform_max = mc->platform_max;
490 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
491 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
492 uinfo->value.integer.min = 0;
493 uinfo->value.integer.max = platform_max - min;
497 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
500 * snd_soc_put_volsw_range - single mixer put value callback with range.
501 * @kcontrol: mixer control
502 * @ucontrol: control element information
504 * Callback to set the value, within a range, for a single mixer control.
506 * Returns 0 for success.
508 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
509 struct snd_ctl_elem_value *ucontrol)
511 struct soc_mixer_control *mc =
512 (struct soc_mixer_control *)kcontrol->private_value;
513 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
514 unsigned int reg = mc->reg;
515 unsigned int rreg = mc->rreg;
516 unsigned int shift = mc->shift;
519 unsigned int mask = (1 << fls(max)) - 1;
520 unsigned int invert = mc->invert;
521 unsigned int val, val_mask;
525 val = (max - ucontrol->value.integer.value[0]) & mask;
527 val = ((ucontrol->value.integer.value[0] + min) & mask);
528 val_mask = mask << shift;
531 err = snd_soc_component_update_bits(component, reg, val_mask, val);
536 if (snd_soc_volsw_is_stereo(mc)) {
538 val = (max - ucontrol->value.integer.value[1]) & mask;
540 val = ((ucontrol->value.integer.value[1] + min) & mask);
541 val_mask = mask << shift;
544 err = snd_soc_component_update_bits(component, rreg, val_mask,
546 /* Don't discard any error code or drop change flag */
547 if (ret == 0 || err < 0) {
554 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
557 * snd_soc_get_volsw_range - single mixer get callback with range
558 * @kcontrol: mixer control
559 * @ucontrol: control element information
561 * Callback to get the value, within a range, of a single mixer control.
563 * Returns 0 for success.
565 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
566 struct snd_ctl_elem_value *ucontrol)
568 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
569 struct soc_mixer_control *mc =
570 (struct soc_mixer_control *)kcontrol->private_value;
571 unsigned int reg = mc->reg;
572 unsigned int rreg = mc->rreg;
573 unsigned int shift = mc->shift;
576 unsigned int mask = (1 << fls(max)) - 1;
577 unsigned int invert = mc->invert;
580 val = snd_soc_component_read(component, reg);
581 ucontrol->value.integer.value[0] = (val >> shift) & mask;
583 ucontrol->value.integer.value[0] =
584 max - ucontrol->value.integer.value[0];
586 ucontrol->value.integer.value[0] =
587 ucontrol->value.integer.value[0] - min;
589 if (snd_soc_volsw_is_stereo(mc)) {
590 val = snd_soc_component_read(component, rreg);
591 ucontrol->value.integer.value[1] = (val >> shift) & mask;
593 ucontrol->value.integer.value[1] =
594 max - ucontrol->value.integer.value[1];
596 ucontrol->value.integer.value[1] =
597 ucontrol->value.integer.value[1] - min;
602 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
605 * snd_soc_limit_volume - Set new limit to an existing volume control.
607 * @card: where to look for the control
608 * @name: Name of the control
609 * @max: new maximum limit
611 * Return 0 for success, else error.
613 int snd_soc_limit_volume(struct snd_soc_card *card,
614 const char *name, int max)
616 struct snd_kcontrol *kctl;
619 /* Sanity check for name and max */
620 if (unlikely(!name || max <= 0))
623 kctl = snd_soc_card_get_kcontrol(card, name);
625 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
626 if (max <= mc->max) {
627 mc->platform_max = max;
633 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
635 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
636 struct snd_ctl_elem_info *uinfo)
638 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
639 struct soc_bytes *params = (void *)kcontrol->private_value;
641 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
642 uinfo->count = params->num_regs * component->val_bytes;
646 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
648 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
649 struct snd_ctl_elem_value *ucontrol)
651 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
652 struct soc_bytes *params = (void *)kcontrol->private_value;
655 if (component->regmap)
656 ret = regmap_raw_read(component->regmap, params->base,
657 ucontrol->value.bytes.data,
658 params->num_regs * component->val_bytes);
662 /* Hide any masked bytes to ensure consistent data reporting */
663 if (ret == 0 && params->mask) {
664 switch (component->val_bytes) {
666 ucontrol->value.bytes.data[0] &= ~params->mask;
669 ((u16 *)(&ucontrol->value.bytes.data))[0]
670 &= cpu_to_be16(~params->mask);
673 ((u32 *)(&ucontrol->value.bytes.data))[0]
674 &= cpu_to_be32(~params->mask);
683 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
685 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
686 struct snd_ctl_elem_value *ucontrol)
688 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
689 struct soc_bytes *params = (void *)kcontrol->private_value;
691 unsigned int val, mask;
694 if (!component->regmap || !params->num_regs)
697 len = params->num_regs * component->val_bytes;
699 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
704 * If we've got a mask then we need to preserve the register
705 * bits. We shouldn't modify the incoming data so take a
709 ret = regmap_read(component->regmap, params->base, &val);
715 switch (component->val_bytes) {
717 ((u8 *)data)[0] &= ~params->mask;
718 ((u8 *)data)[0] |= val;
721 mask = ~params->mask;
722 ret = regmap_parse_val(component->regmap,
727 ((u16 *)data)[0] &= mask;
729 ret = regmap_parse_val(component->regmap,
734 ((u16 *)data)[0] |= val;
737 mask = ~params->mask;
738 ret = regmap_parse_val(component->regmap,
743 ((u32 *)data)[0] &= mask;
745 ret = regmap_parse_val(component->regmap,
750 ((u32 *)data)[0] |= val;
758 ret = regmap_raw_write(component->regmap, params->base,
766 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
768 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
769 struct snd_ctl_elem_info *ucontrol)
771 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
773 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
774 ucontrol->count = params->max;
778 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
780 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
781 unsigned int size, unsigned int __user *tlv)
783 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
784 unsigned int count = size < params->max ? size : params->max;
788 case SNDRV_CTL_TLV_OP_READ:
790 ret = params->get(kcontrol, tlv, count);
792 case SNDRV_CTL_TLV_OP_WRITE:
794 ret = params->put(kcontrol, tlv, count);
799 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
802 * snd_soc_info_xr_sx - signed multi register info callback
803 * @kcontrol: mreg control
804 * @uinfo: control element information
806 * Callback to provide information of a control that can
807 * span multiple codec registers which together
808 * forms a single signed value in a MSB/LSB manner.
810 * Returns 0 for success.
812 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
813 struct snd_ctl_elem_info *uinfo)
815 struct soc_mreg_control *mc =
816 (struct soc_mreg_control *)kcontrol->private_value;
817 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
819 uinfo->value.integer.min = mc->min;
820 uinfo->value.integer.max = mc->max;
824 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
827 * snd_soc_get_xr_sx - signed multi register get callback
828 * @kcontrol: mreg control
829 * @ucontrol: control element information
831 * Callback to get the value of a control that can span
832 * multiple codec registers which together forms a single
833 * signed value in a MSB/LSB manner. The control supports
834 * specifying total no of bits used to allow for bitfields
835 * across the multiple codec registers.
837 * Returns 0 for success.
839 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
840 struct snd_ctl_elem_value *ucontrol)
842 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
843 struct soc_mreg_control *mc =
844 (struct soc_mreg_control *)kcontrol->private_value;
845 unsigned int regbase = mc->regbase;
846 unsigned int regcount = mc->regcount;
847 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
848 unsigned int regwmask = (1UL<<regwshift)-1;
849 unsigned int invert = mc->invert;
850 unsigned long mask = (1UL<<mc->nbits)-1;
856 for (i = 0; i < regcount; i++) {
857 unsigned int regval = snd_soc_component_read(component, regbase+i);
858 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
861 if (min < 0 && val > max)
865 ucontrol->value.integer.value[0] = val;
869 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
872 * snd_soc_put_xr_sx - signed multi register get callback
873 * @kcontrol: mreg control
874 * @ucontrol: control element information
876 * Callback to set the value of a control that can span
877 * multiple codec registers which together forms a single
878 * signed value in a MSB/LSB manner. The control supports
879 * specifying total no of bits used to allow for bitfields
880 * across the multiple codec registers.
882 * Returns 0 for success.
884 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
885 struct snd_ctl_elem_value *ucontrol)
887 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
888 struct soc_mreg_control *mc =
889 (struct soc_mreg_control *)kcontrol->private_value;
890 unsigned int regbase = mc->regbase;
891 unsigned int regcount = mc->regcount;
892 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
893 unsigned int regwmask = (1UL<<regwshift)-1;
894 unsigned int invert = mc->invert;
895 unsigned long mask = (1UL<<mc->nbits)-1;
897 long val = ucontrol->value.integer.value[0];
901 if (val < mc->min || val > mc->max)
906 for (i = 0; i < regcount; i++) {
907 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
908 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
909 int err = snd_soc_component_update_bits(component, regbase+i,
919 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
922 * snd_soc_get_strobe - strobe get callback
923 * @kcontrol: mixer control
924 * @ucontrol: control element information
926 * Callback get the value of a strobe mixer control.
928 * Returns 0 for success.
930 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
931 struct snd_ctl_elem_value *ucontrol)
933 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
934 struct soc_mixer_control *mc =
935 (struct soc_mixer_control *)kcontrol->private_value;
936 unsigned int reg = mc->reg;
937 unsigned int shift = mc->shift;
938 unsigned int mask = 1 << shift;
939 unsigned int invert = mc->invert != 0;
942 val = snd_soc_component_read(component, reg);
945 if (shift != 0 && val != 0)
947 ucontrol->value.enumerated.item[0] = val ^ invert;
951 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
954 * snd_soc_put_strobe - strobe put callback
955 * @kcontrol: mixer control
956 * @ucontrol: control element information
958 * Callback strobe a register bit to high then low (or the inverse)
959 * in one pass of a single mixer enum control.
961 * Returns 1 for success.
963 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
964 struct snd_ctl_elem_value *ucontrol)
966 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
967 struct soc_mixer_control *mc =
968 (struct soc_mixer_control *)kcontrol->private_value;
969 unsigned int reg = mc->reg;
970 unsigned int shift = mc->shift;
971 unsigned int mask = 1 << shift;
972 unsigned int invert = mc->invert != 0;
973 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
974 unsigned int val1 = (strobe ^ invert) ? mask : 0;
975 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
978 err = snd_soc_component_update_bits(component, reg, mask, val1);
982 return snd_soc_component_update_bits(component, reg, mask, val2);
984 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);