ASoC: mediatek: mt8186: Correct I2S shared clocks
[platform/kernel/linux-starfive.git] / sound / soc / codecs / sgtl5000.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
4 //
5 // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
6
7 #include <linux/module.h>
8 #include <linux/moduleparam.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/pm.h>
13 #include <linux/i2c.h>
14 #include <linux/clk.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regulator/machine.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/of_device.h>
21 #include <sound/core.h>
22 #include <sound/tlv.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dapm.h>
27 #include <sound/initval.h>
28
29 #include "sgtl5000.h"
30
31 #define SGTL5000_DAP_REG_OFFSET 0x0100
32 #define SGTL5000_MAX_REG_OFFSET 0x013A
33
34 /* Delay for the VAG ramp up */
35 #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
36 /* Delay for the VAG ramp down */
37 #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
38
39 #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
40
41 /* default value of sgtl5000 registers */
42 static const struct reg_default sgtl5000_reg_defaults[] = {
43         { SGTL5000_CHIP_DIG_POWER,              0x0000 },
44         { SGTL5000_CHIP_I2S_CTRL,               0x0010 },
45         { SGTL5000_CHIP_SSS_CTRL,               0x0010 },
46         { SGTL5000_CHIP_ADCDAC_CTRL,            0x020c },
47         { SGTL5000_CHIP_DAC_VOL,                0x3c3c },
48         { SGTL5000_CHIP_PAD_STRENGTH,           0x015f },
49         { SGTL5000_CHIP_ANA_ADC_CTRL,           0x0000 },
50         { SGTL5000_CHIP_ANA_HP_CTRL,            0x1818 },
51         { SGTL5000_CHIP_ANA_CTRL,               0x0111 },
52         { SGTL5000_CHIP_REF_CTRL,               0x0000 },
53         { SGTL5000_CHIP_MIC_CTRL,               0x0000 },
54         { SGTL5000_CHIP_LINE_OUT_CTRL,          0x0000 },
55         { SGTL5000_CHIP_LINE_OUT_VOL,           0x0404 },
56         { SGTL5000_CHIP_PLL_CTRL,               0x5000 },
57         { SGTL5000_CHIP_CLK_TOP_CTRL,           0x0000 },
58         { SGTL5000_CHIP_ANA_STATUS,             0x0000 },
59         { SGTL5000_CHIP_SHORT_CTRL,             0x0000 },
60         { SGTL5000_CHIP_ANA_TEST2,              0x0000 },
61         { SGTL5000_DAP_CTRL,                    0x0000 },
62         { SGTL5000_DAP_PEQ,                     0x0000 },
63         { SGTL5000_DAP_BASS_ENHANCE,            0x0040 },
64         { SGTL5000_DAP_BASS_ENHANCE_CTRL,       0x051f },
65         { SGTL5000_DAP_AUDIO_EQ,                0x0000 },
66         { SGTL5000_DAP_SURROUND,                0x0040 },
67         { SGTL5000_DAP_EQ_BASS_BAND0,           0x002f },
68         { SGTL5000_DAP_EQ_BASS_BAND1,           0x002f },
69         { SGTL5000_DAP_EQ_BASS_BAND2,           0x002f },
70         { SGTL5000_DAP_EQ_BASS_BAND3,           0x002f },
71         { SGTL5000_DAP_EQ_BASS_BAND4,           0x002f },
72         { SGTL5000_DAP_MAIN_CHAN,               0x8000 },
73         { SGTL5000_DAP_MIX_CHAN,                0x0000 },
74         { SGTL5000_DAP_AVC_CTRL,                0x5100 },
75         { SGTL5000_DAP_AVC_THRESHOLD,           0x1473 },
76         { SGTL5000_DAP_AVC_ATTACK,              0x0028 },
77         { SGTL5000_DAP_AVC_DECAY,               0x0050 },
78 };
79
80 /* AVC: Threshold dB -> register: pre-calculated values */
81 static const u16 avc_thr_db2reg[97] = {
82         0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
83         0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
84         0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
85         0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
86         0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
87         0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
88         0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
89         0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
90         0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
91         0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
92         0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
93
94 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
95 enum sgtl5000_regulator_supplies {
96         VDDA,
97         VDDIO,
98         VDDD,
99         SGTL5000_SUPPLY_NUM
100 };
101
102 /* vddd is optional supply */
103 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
104         "VDDA",
105         "VDDIO",
106         "VDDD"
107 };
108
109 #define LDO_VOLTAGE             1200000
110 #define LINREG_VDDD     ((1600 - LDO_VOLTAGE / 1000) / 50)
111
112 enum sgtl5000_micbias_resistor {
113         SGTL5000_MICBIAS_OFF = 0,
114         SGTL5000_MICBIAS_2K = 2,
115         SGTL5000_MICBIAS_4K = 4,
116         SGTL5000_MICBIAS_8K = 8,
117 };
118
119 enum  {
120         I2S_LRCLK_STRENGTH_DISABLE,
121         I2S_LRCLK_STRENGTH_LOW,
122         I2S_LRCLK_STRENGTH_MEDIUM,
123         I2S_LRCLK_STRENGTH_HIGH,
124 };
125
126 enum  {
127         I2S_SCLK_STRENGTH_DISABLE,
128         I2S_SCLK_STRENGTH_LOW,
129         I2S_SCLK_STRENGTH_MEDIUM,
130         I2S_SCLK_STRENGTH_HIGH,
131 };
132
133 enum {
134         HP_POWER_EVENT,
135         DAC_POWER_EVENT,
136         ADC_POWER_EVENT,
137         LAST_POWER_EVENT = ADC_POWER_EVENT
138 };
139
140 /* sgtl5000 private structure in codec */
141 struct sgtl5000_priv {
142         int sysclk;     /* sysclk rate */
143         int master;     /* i2s master or not */
144         int fmt;        /* i2s data format */
145         struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
146         int num_supplies;
147         struct regmap *regmap;
148         struct clk *mclk;
149         int revision;
150         u8 micbias_resistor;
151         u8 micbias_voltage;
152         u8 lrclk_strength;
153         u8 sclk_strength;
154         u16 mute_state[LAST_POWER_EVENT + 1];
155 };
156
157 static inline int hp_sel_input(struct snd_soc_component *component)
158 {
159         return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
160                 SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
161 }
162
163 static inline u16 mute_output(struct snd_soc_component *component,
164                               u16 mute_mask)
165 {
166         u16 mute_reg = snd_soc_component_read(component,
167                                               SGTL5000_CHIP_ANA_CTRL);
168
169         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
170                             mute_mask, mute_mask);
171         return mute_reg;
172 }
173
174 static inline void restore_output(struct snd_soc_component *component,
175                                   u16 mute_mask, u16 mute_reg)
176 {
177         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
178                 mute_mask, mute_reg);
179 }
180
181 static void vag_power_on(struct snd_soc_component *component, u32 source)
182 {
183         if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
184             SGTL5000_VAG_POWERUP)
185                 return;
186
187         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
188                             SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
189
190         /* When VAG powering on to get local loop from Line-In, the sleep
191          * is required to avoid loud pop.
192          */
193         if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
194             source == HP_POWER_EVENT)
195                 msleep(SGTL5000_VAG_POWERUP_DELAY);
196 }
197
198 static int vag_power_consumers(struct snd_soc_component *component,
199                                u16 ana_pwr_reg, u32 source)
200 {
201         int consumers = 0;
202
203         /* count dac/adc consumers unconditional */
204         if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
205                 consumers++;
206         if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
207                 consumers++;
208
209         /*
210          * If the event comes from HP and Line-In is selected,
211          * current action is 'DAC to be powered down'.
212          * As HP_POWERUP is not set when HP muxed to line-in,
213          * we need to keep VAG power ON.
214          */
215         if (source == HP_POWER_EVENT) {
216                 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
217                         consumers++;
218         } else {
219                 if (ana_pwr_reg & SGTL5000_HP_POWERUP)
220                         consumers++;
221         }
222
223         return consumers;
224 }
225
226 static void vag_power_off(struct snd_soc_component *component, u32 source)
227 {
228         u16 ana_pwr = snd_soc_component_read(component,
229                                              SGTL5000_CHIP_ANA_POWER);
230
231         if (!(ana_pwr & SGTL5000_VAG_POWERUP))
232                 return;
233
234         /*
235          * This function calls when any of VAG power consumers is disappearing.
236          * Thus, if there is more than one consumer at the moment, as minimum
237          * one consumer will definitely stay after the end of the current
238          * event.
239          * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
240          * - LINE_IN (for HP events) / HP (for DAC/ADC events)
241          * - DAC
242          * - ADC
243          * (the current consumer is disappearing right now)
244          */
245         if (vag_power_consumers(component, ana_pwr, source) >= 2)
246                 return;
247
248         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
249                 SGTL5000_VAG_POWERUP, 0);
250         /* In power down case, we need wait 400-1000 ms
251          * when VAG fully ramped down.
252          * As longer we wait, as smaller pop we've got.
253          */
254         msleep(SGTL5000_VAG_POWERDOWN_DELAY);
255 }
256
257 /*
258  * mic_bias power on/off share the same register bits with
259  * output impedance of mic bias, when power on mic bias, we
260  * need reclaim it to impedance value.
261  * 0x0 = Powered off
262  * 0x1 = 2Kohm
263  * 0x2 = 4Kohm
264  * 0x3 = 8Kohm
265  */
266 static int mic_bias_event(struct snd_soc_dapm_widget *w,
267         struct snd_kcontrol *kcontrol, int event)
268 {
269         struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
270         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
271
272         switch (event) {
273         case SND_SOC_DAPM_POST_PMU:
274                 /* change mic bias resistor */
275                 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
276                         SGTL5000_BIAS_R_MASK,
277                         sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
278                 break;
279
280         case SND_SOC_DAPM_PRE_PMD:
281                 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
282                                 SGTL5000_BIAS_R_MASK, 0);
283                 break;
284         }
285         return 0;
286 }
287
288 static int vag_and_mute_control(struct snd_soc_component *component,
289                                  int event, int event_source)
290 {
291         static const u16 mute_mask[] = {
292                 /*
293                  * Mask for HP_POWER_EVENT.
294                  * Muxing Headphones have to be wrapped with mute/unmute
295                  * headphones only.
296                  */
297                 SGTL5000_HP_MUTE,
298                 /*
299                  * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
300                  * Muxing DAC or ADC block have to wrapped with mute/unmute
301                  * both headphones and line-out.
302                  */
303                 SGTL5000_OUTPUTS_MUTE,
304                 SGTL5000_OUTPUTS_MUTE
305         };
306
307         struct sgtl5000_priv *sgtl5000 =
308                 snd_soc_component_get_drvdata(component);
309
310         switch (event) {
311         case SND_SOC_DAPM_PRE_PMU:
312                 sgtl5000->mute_state[event_source] =
313                         mute_output(component, mute_mask[event_source]);
314                 break;
315         case SND_SOC_DAPM_POST_PMU:
316                 vag_power_on(component, event_source);
317                 restore_output(component, mute_mask[event_source],
318                                sgtl5000->mute_state[event_source]);
319                 break;
320         case SND_SOC_DAPM_PRE_PMD:
321                 sgtl5000->mute_state[event_source] =
322                         mute_output(component, mute_mask[event_source]);
323                 vag_power_off(component, event_source);
324                 break;
325         case SND_SOC_DAPM_POST_PMD:
326                 restore_output(component, mute_mask[event_source],
327                                sgtl5000->mute_state[event_source]);
328                 break;
329         default:
330                 break;
331         }
332
333         return 0;
334 }
335
336 /*
337  * Mute Headphone when power it up/down.
338  * Control VAG power on HP power path.
339  */
340 static int headphone_pga_event(struct snd_soc_dapm_widget *w,
341         struct snd_kcontrol *kcontrol, int event)
342 {
343         struct snd_soc_component *component =
344                 snd_soc_dapm_to_component(w->dapm);
345
346         return vag_and_mute_control(component, event, HP_POWER_EVENT);
347 }
348
349 /* As manual describes, ADC/DAC powering up/down requires
350  * to mute outputs to avoid pops.
351  * Control VAG power on ADC/DAC power path.
352  */
353 static int adc_updown_depop(struct snd_soc_dapm_widget *w,
354         struct snd_kcontrol *kcontrol, int event)
355 {
356         struct snd_soc_component *component =
357                 snd_soc_dapm_to_component(w->dapm);
358
359         return vag_and_mute_control(component, event, ADC_POWER_EVENT);
360 }
361
362 static int dac_updown_depop(struct snd_soc_dapm_widget *w,
363         struct snd_kcontrol *kcontrol, int event)
364 {
365         struct snd_soc_component *component =
366                 snd_soc_dapm_to_component(w->dapm);
367
368         return vag_and_mute_control(component, event, DAC_POWER_EVENT);
369 }
370
371 /* input sources for ADC */
372 static const char *adc_mux_text[] = {
373         "MIC_IN", "LINE_IN"
374 };
375
376 static SOC_ENUM_SINGLE_DECL(adc_enum,
377                             SGTL5000_CHIP_ANA_CTRL, 2,
378                             adc_mux_text);
379
380 static const struct snd_kcontrol_new adc_mux =
381 SOC_DAPM_ENUM("Capture Mux", adc_enum);
382
383 /* input sources for headphone */
384 static const char *hp_mux_text[] = {
385         "DAC", "LINE_IN"
386 };
387
388 static SOC_ENUM_SINGLE_DECL(hp_enum,
389                             SGTL5000_CHIP_ANA_CTRL, 6,
390                             hp_mux_text);
391
392 static const struct snd_kcontrol_new hp_mux =
393 SOC_DAPM_ENUM("Headphone Mux", hp_enum);
394
395 /* input sources for DAC */
396 static const char *dac_mux_text[] = {
397         "ADC", "I2S", "Rsvrd", "DAP"
398 };
399
400 static SOC_ENUM_SINGLE_DECL(dac_enum,
401                             SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
402                             dac_mux_text);
403
404 static const struct snd_kcontrol_new dac_mux =
405 SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
406
407 /* input sources for DAP */
408 static const char *dap_mux_text[] = {
409         "ADC", "I2S"
410 };
411
412 static SOC_ENUM_SINGLE_DECL(dap_enum,
413                             SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
414                             dap_mux_text);
415
416 static const struct snd_kcontrol_new dap_mux =
417 SOC_DAPM_ENUM("DAP Mux", dap_enum);
418
419 /* input sources for DAP mix */
420 static const char *dapmix_mux_text[] = {
421         "ADC", "I2S"
422 };
423
424 static SOC_ENUM_SINGLE_DECL(dapmix_enum,
425                             SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
426                             dapmix_mux_text);
427
428 static const struct snd_kcontrol_new dapmix_mux =
429 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
430
431
432 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
433         SND_SOC_DAPM_INPUT("LINE_IN"),
434         SND_SOC_DAPM_INPUT("MIC_IN"),
435
436         SND_SOC_DAPM_OUTPUT("HP_OUT"),
437         SND_SOC_DAPM_OUTPUT("LINE_OUT"),
438
439         SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
440                             mic_bias_event,
441                             SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
442
443         SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
444                            headphone_pga_event,
445                            SND_SOC_DAPM_PRE_POST_PMU |
446                            SND_SOC_DAPM_PRE_POST_PMD),
447         SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
448
449         SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
450         SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
451         SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
452         SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
453         SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
454         SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
455
456
457         /* aif for i2s input */
458         SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
459                                 0, SGTL5000_CHIP_DIG_POWER,
460                                 0, 0),
461
462         /* aif for i2s output */
463         SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
464                                 0, SGTL5000_CHIP_DIG_POWER,
465                                 1, 0),
466
467         SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
468                            adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
469                            SND_SOC_DAPM_PRE_POST_PMD),
470         SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
471                            dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
472                            SND_SOC_DAPM_PRE_POST_PMD),
473 };
474
475 /* routes for sgtl5000 */
476 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
477         {"Capture Mux", "LINE_IN", "LINE_IN"},  /* line_in --> adc_mux */
478         {"Capture Mux", "MIC_IN", "MIC_IN"},    /* mic_in --> adc_mux */
479
480         {"ADC", NULL, "Capture Mux"},           /* adc_mux --> adc */
481         {"AIFOUT", NULL, "ADC"},                /* adc --> i2s_out */
482
483         {"DAP Mux", "ADC", "ADC"},              /* adc --> DAP mux */
484         {"DAP Mux", NULL, "AIFIN"},             /* i2s --> DAP mux */
485         {"DAP", NULL, "DAP Mux"},               /* DAP mux --> dap */
486
487         {"DAP MIX Mux", "ADC", "ADC"},          /* adc --> DAP MIX mux */
488         {"DAP MIX Mux", NULL, "AIFIN"},         /* i2s --> DAP MIX mux */
489         {"DAP", NULL, "DAP MIX Mux"},           /* DAP MIX mux --> dap */
490
491         {"Digital Input Mux", "ADC", "ADC"},    /* adc --> audio mux */
492         {"Digital Input Mux", NULL, "AIFIN"},   /* i2s --> audio mux */
493         {"Digital Input Mux", NULL, "DAP"},     /* dap --> audio mux */
494         {"DAC", NULL, "Digital Input Mux"},     /* audio mux --> dac */
495
496         {"Headphone Mux", "DAC", "DAC"},        /* dac --> hp_mux */
497         {"LO", NULL, "DAC"},                    /* dac --> line_out */
498
499         {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
500         {"HP", NULL, "Headphone Mux"},          /* hp_mux --> hp */
501
502         {"LINE_OUT", NULL, "LO"},
503         {"HP_OUT", NULL, "HP"},
504 };
505
506 /* custom function to fetch info of PCM playback volume */
507 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
508                           struct snd_ctl_elem_info *uinfo)
509 {
510         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
511         uinfo->count = 2;
512         uinfo->value.integer.min = 0;
513         uinfo->value.integer.max = 0xfc - 0x3c;
514         return 0;
515 }
516
517 /*
518  * custom function to get of PCM playback volume
519  *
520  * dac volume register
521  * 15-------------8-7--------------0
522  * | R channel vol | L channel vol |
523  *  -------------------------------
524  *
525  * PCM volume with 0.5017 dB steps from 0 to -90 dB
526  *
527  * register values map to dB
528  * 0x3B and less = Reserved
529  * 0x3C = 0 dB
530  * 0x3D = -0.5 dB
531  * 0xF0 = -90 dB
532  * 0xFC and greater = Muted
533  *
534  * register value map to userspace value
535  *
536  * register value       0x3c(0dB)         0xf0(-90dB)0xfc
537  *                      ------------------------------
538  * userspace value      0xc0                         0
539  */
540 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
541                          struct snd_ctl_elem_value *ucontrol)
542 {
543         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
544         int reg;
545         int l;
546         int r;
547
548         reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
549
550         /* get left channel volume */
551         l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
552
553         /* get right channel volume */
554         r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
555
556         /* make sure value fall in (0x3c,0xfc) */
557         l = clamp(l, 0x3c, 0xfc);
558         r = clamp(r, 0x3c, 0xfc);
559
560         /* invert it and map to userspace value */
561         l = 0xfc - l;
562         r = 0xfc - r;
563
564         ucontrol->value.integer.value[0] = l;
565         ucontrol->value.integer.value[1] = r;
566
567         return 0;
568 }
569
570 /*
571  * custom function to put of PCM playback volume
572  *
573  * dac volume register
574  * 15-------------8-7--------------0
575  * | R channel vol | L channel vol |
576  *  -------------------------------
577  *
578  * PCM volume with 0.5017 dB steps from 0 to -90 dB
579  *
580  * register values map to dB
581  * 0x3B and less = Reserved
582  * 0x3C = 0 dB
583  * 0x3D = -0.5 dB
584  * 0xF0 = -90 dB
585  * 0xFC and greater = Muted
586  *
587  * userspace value map to register value
588  *
589  * userspace value      0xc0                         0
590  *                      ------------------------------
591  * register value       0x3c(0dB)       0xf0(-90dB)0xfc
592  */
593 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
594                          struct snd_ctl_elem_value *ucontrol)
595 {
596         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
597         int reg;
598         int l;
599         int r;
600
601         l = ucontrol->value.integer.value[0];
602         r = ucontrol->value.integer.value[1];
603
604         /* make sure userspace volume fall in (0, 0xfc-0x3c) */
605         l = clamp(l, 0, 0xfc - 0x3c);
606         r = clamp(r, 0, 0xfc - 0x3c);
607
608         /* invert it, get the value can be set to register */
609         l = 0xfc - l;
610         r = 0xfc - r;
611
612         /* shift to get the register value */
613         reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
614                 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
615
616         snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
617
618         return 0;
619 }
620
621 /*
622  * custom function to get AVC threshold
623  *
624  * The threshold dB is calculated by rearranging the calculation from the
625  * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
626  * dB = ( fls(register_value) - 14.347 ) * 6.02
627  *
628  * As this calculation is expensive and the threshold dB values may not exceed
629  * 0 to 96 we use pre-calculated values.
630  */
631 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
632                              struct snd_ctl_elem_value *ucontrol)
633 {
634         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
635         int db, i;
636         u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
637
638         /* register value 0 => -96dB */
639         if (!reg) {
640                 ucontrol->value.integer.value[0] = 96;
641                 ucontrol->value.integer.value[1] = 96;
642                 return 0;
643         }
644
645         /* get dB from register value (rounded down) */
646         for (i = 0; avc_thr_db2reg[i] > reg; i++)
647                 ;
648         db = i;
649
650         ucontrol->value.integer.value[0] = db;
651         ucontrol->value.integer.value[1] = db;
652
653         return 0;
654 }
655
656 /*
657  * custom function to put AVC threshold
658  *
659  * The register value is calculated by following formula:
660  *                                    register_value = 10^(dB/20) * 0.636 * 2^15
661  * As this calculation is expensive and the threshold dB values may not exceed
662  * 0 to 96 we use pre-calculated values.
663  */
664 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
665                              struct snd_ctl_elem_value *ucontrol)
666 {
667         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
668         int db;
669         u16 reg;
670
671         db = (int)ucontrol->value.integer.value[0];
672         if (db < 0 || db > 96)
673                 return -EINVAL;
674         reg = avc_thr_db2reg[db];
675         snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
676
677         return 0;
678 }
679
680 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
681
682 /* tlv for mic gain, 0db 20db 30db 40db */
683 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
684         0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
685         1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
686 );
687
688 /* tlv for DAP channels, 0% - 100% - 200% */
689 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
690
691 /* tlv for bass bands, -11.75db to 12.0db, step .25db */
692 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
693
694 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
695 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
696
697 /* tlv for lineout volume, 31 steps of .5db each */
698 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
699
700 /* tlv for dap avc max gain, 0db, 6db, 12db */
701 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
702
703 /* tlv for dap avc threshold, */
704 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
705
706 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
707         /* SOC_DOUBLE_S8_TLV with invert */
708         {
709                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710                 .name = "PCM Playback Volume",
711                 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
712                         SNDRV_CTL_ELEM_ACCESS_READWRITE,
713                 .info = dac_info_volsw,
714                 .get = dac_get_volsw,
715                 .put = dac_put_volsw,
716         },
717
718         SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
719         SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
720                         SGTL5000_CHIP_ANA_ADC_CTRL,
721                         8, 1, 0, capture_6db_attenuate),
722         SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
723         SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
724
725         SOC_DOUBLE_TLV("Headphone Playback Volume",
726                         SGTL5000_CHIP_ANA_HP_CTRL,
727                         0, 8,
728                         0x7f, 1,
729                         headphone_volume),
730         SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
731                         4, 1, 1),
732         SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
733                         5, 1, 0),
734
735         SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
736                         0, 3, 0, mic_gain_tlv),
737
738         SOC_DOUBLE_TLV("Lineout Playback Volume",
739                         SGTL5000_CHIP_LINE_OUT_VOL,
740                         SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
741                         SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
742                         0x1f, 1,
743                         lineout_volume),
744         SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
745
746         SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
747         0, 0xffff, 0, dap_volume),
748
749         SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
750         0, 0xffff, 0, dap_volume),
751         /* Automatic Volume Control (DAP AVC) */
752         SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
753         SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
754         SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
755                         avc_max_gain),
756         SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
757         SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
758                         0, 96, 0, avc_get_threshold, avc_put_threshold,
759                         avc_threshold),
760
761         SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
762         0, 0x5F, 0, bass_band),
763
764         SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
765         0, 0x5F, 0, bass_band),
766
767         SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
768         0, 0x5F, 0, bass_band),
769
770         SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
771         0, 0x5F, 0, bass_band),
772
773         SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
774         0, 0x5F, 0, bass_band),
775 };
776
777 /* mute the codec used by alsa core */
778 static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
779 {
780         struct snd_soc_component *component = codec_dai->component;
781         u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
782
783         /*
784          * During 'digital mute' do not mute DAC
785          * because LINE_IN would be muted aswell. We want to mute
786          * only I2S block - this can be done by powering it off
787          */
788         snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
789                         i2s_pwr, mute ? 0 : i2s_pwr);
790
791         return 0;
792 }
793
794 /* set codec format */
795 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
796 {
797         struct snd_soc_component *component = codec_dai->component;
798         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
799         u16 i2sctl = 0;
800
801         sgtl5000->master = 0;
802         /*
803          * i2s clock and frame master setting.
804          * ONLY support:
805          *  - clock and frame slave,
806          *  - clock and frame master
807          */
808         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
809         case SND_SOC_DAIFMT_CBS_CFS:
810                 break;
811         case SND_SOC_DAIFMT_CBM_CFM:
812                 i2sctl |= SGTL5000_I2S_MASTER;
813                 sgtl5000->master = 1;
814                 break;
815         default:
816                 return -EINVAL;
817         }
818
819         /* setting i2s data format */
820         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821         case SND_SOC_DAIFMT_DSP_A:
822                 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
823                 break;
824         case SND_SOC_DAIFMT_DSP_B:
825                 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
826                 i2sctl |= SGTL5000_I2S_LRALIGN;
827                 break;
828         case SND_SOC_DAIFMT_I2S:
829                 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
830                 break;
831         case SND_SOC_DAIFMT_RIGHT_J:
832                 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
833                 i2sctl |= SGTL5000_I2S_LRPOL;
834                 break;
835         case SND_SOC_DAIFMT_LEFT_J:
836                 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
837                 i2sctl |= SGTL5000_I2S_LRALIGN;
838                 break;
839         default:
840                 return -EINVAL;
841         }
842
843         sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
844
845         /* Clock inversion */
846         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
847         case SND_SOC_DAIFMT_NB_NF:
848                 break;
849         case SND_SOC_DAIFMT_IB_NF:
850                 i2sctl |= SGTL5000_I2S_SCLK_INV;
851                 break;
852         default:
853                 return -EINVAL;
854         }
855
856         snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
857
858         return 0;
859 }
860
861 /* set codec sysclk */
862 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
863                                    int clk_id, unsigned int freq, int dir)
864 {
865         struct snd_soc_component *component = codec_dai->component;
866         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
867
868         switch (clk_id) {
869         case SGTL5000_SYSCLK:
870                 sgtl5000->sysclk = freq;
871                 break;
872         default:
873                 return -EINVAL;
874         }
875
876         return 0;
877 }
878
879 /*
880  * set clock according to i2s frame clock,
881  * sgtl5000 provides 2 clock sources:
882  * 1. sys_mclk: sample freq can only be configured to
883  *      1/256, 1/384, 1/512 of sys_mclk.
884  * 2. pll: can derive any audio clocks.
885  *
886  * clock setting rules:
887  * 1. in slave mode, only sys_mclk can be used
888  * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
889  * and above.
890  * 3. usage of sys_mclk is preferred over pll to save power.
891  */
892 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
893 {
894         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
895         int clk_ctl = 0;
896         int sys_fs;     /* sample freq */
897
898         /*
899          * sample freq should be divided by frame clock,
900          * if frame clock is lower than 44.1 kHz, sample freq should be set to
901          * 32 kHz or 44.1 kHz.
902          */
903         switch (frame_rate) {
904         case 8000:
905         case 16000:
906                 sys_fs = 32000;
907                 break;
908         case 11025:
909         case 22050:
910                 sys_fs = 44100;
911                 break;
912         default:
913                 sys_fs = frame_rate;
914                 break;
915         }
916
917         /* set divided factor of frame clock */
918         switch (sys_fs / frame_rate) {
919         case 4:
920                 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
921                 break;
922         case 2:
923                 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
924                 break;
925         case 1:
926                 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
927                 break;
928         default:
929                 return -EINVAL;
930         }
931
932         /* set the sys_fs according to frame rate */
933         switch (sys_fs) {
934         case 32000:
935                 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
936                 break;
937         case 44100:
938                 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
939                 break;
940         case 48000:
941                 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
942                 break;
943         case 96000:
944                 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
945                 break;
946         default:
947                 dev_err(component->dev, "frame rate %d not supported\n",
948                         frame_rate);
949                 return -EINVAL;
950         }
951
952         /*
953          * calculate the divider of mclk/sample_freq,
954          * factor of freq = 96 kHz can only be 256, since mclk is in the range
955          * of 8 MHz - 27 MHz
956          */
957         switch (sgtl5000->sysclk / frame_rate) {
958         case 256:
959                 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
960                         SGTL5000_MCLK_FREQ_SHIFT;
961                 break;
962         case 384:
963                 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
964                         SGTL5000_MCLK_FREQ_SHIFT;
965                 break;
966         case 512:
967                 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
968                         SGTL5000_MCLK_FREQ_SHIFT;
969                 break;
970         default:
971                 /* if mclk does not satisfy the divider, use pll */
972                 if (sgtl5000->master) {
973                         clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
974                                 SGTL5000_MCLK_FREQ_SHIFT;
975                 } else {
976                         dev_err(component->dev,
977                                 "PLL not supported in slave mode\n");
978                         dev_err(component->dev, "%d ratio is not supported. "
979                                 "SYS_MCLK needs to be 256, 384 or 512 * fs\n",
980                                 sgtl5000->sysclk / frame_rate);
981                         return -EINVAL;
982                 }
983         }
984
985         /* if using pll, please check manual 6.4.2 for detail */
986         if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
987                 u64 out, t;
988                 int div2;
989                 int pll_ctl;
990                 unsigned int in, int_div, frac_div;
991
992                 if (sgtl5000->sysclk > 17000000) {
993                         div2 = 1;
994                         in = sgtl5000->sysclk / 2;
995                 } else {
996                         div2 = 0;
997                         in = sgtl5000->sysclk;
998                 }
999                 if (sys_fs == 44100)
1000                         out = 180633600;
1001                 else
1002                         out = 196608000;
1003                 t = do_div(out, in);
1004                 int_div = out;
1005                 t *= 2048;
1006                 do_div(t, in);
1007                 frac_div = t;
1008                 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009                     frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1010
1011                 snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1012                 if (div2)
1013                         snd_soc_component_update_bits(component,
1014                                 SGTL5000_CHIP_CLK_TOP_CTRL,
1015                                 SGTL5000_INPUT_FREQ_DIV2,
1016                                 SGTL5000_INPUT_FREQ_DIV2);
1017                 else
1018                         snd_soc_component_update_bits(component,
1019                                 SGTL5000_CHIP_CLK_TOP_CTRL,
1020                                 SGTL5000_INPUT_FREQ_DIV2,
1021                                 0);
1022
1023                 /* power up pll */
1024                 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025                         SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026                         SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1027
1028                 /* if using pll, clk_ctrl must be set after pll power up */
1029                 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1030         } else {
1031                 /* otherwise, clk_ctrl must be set before pll power down */
1032                 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1033
1034                 /* power down pll */
1035                 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036                         SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1037                         0);
1038         }
1039
1040         return 0;
1041 }
1042
1043 /*
1044  * Set PCM DAI bit size and sample rate.
1045  * input: params_rate, params_fmt
1046  */
1047 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048                                   struct snd_pcm_hw_params *params,
1049                                   struct snd_soc_dai *dai)
1050 {
1051         struct snd_soc_component *component = dai->component;
1052         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053         int channels = params_channels(params);
1054         int i2s_ctl = 0;
1055         int stereo;
1056         int ret;
1057
1058         /* sysclk should already set */
1059         if (!sgtl5000->sysclk) {
1060                 dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1061                 return -EFAULT;
1062         }
1063
1064         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065                 stereo = SGTL5000_DAC_STEREO;
1066         else
1067                 stereo = SGTL5000_ADC_STEREO;
1068
1069         /* set mono to save power */
1070         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071                         channels == 1 ? 0 : stereo);
1072
1073         /* set codec clock base on lrclk */
1074         ret = sgtl5000_set_clock(component, params_rate(params));
1075         if (ret)
1076                 return ret;
1077
1078         /* set i2s data format */
1079         switch (params_width(params)) {
1080         case 16:
1081                 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1082                         return -EINVAL;
1083                 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084                 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085                     SGTL5000_I2S_SCLKFREQ_SHIFT;
1086                 break;
1087         case 20:
1088                 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089                 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090                     SGTL5000_I2S_SCLKFREQ_SHIFT;
1091                 break;
1092         case 24:
1093                 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094                 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095                     SGTL5000_I2S_SCLKFREQ_SHIFT;
1096                 break;
1097         case 32:
1098                 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1099                         return -EINVAL;
1100                 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101                 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102                     SGTL5000_I2S_SCLKFREQ_SHIFT;
1103                 break;
1104         default:
1105                 return -EINVAL;
1106         }
1107
1108         snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109                             SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1110                             i2s_ctl);
1111
1112         return 0;
1113 }
1114
1115 /*
1116  * set dac bias
1117  * common state changes:
1118  * startup:
1119  * off --> standby --> prepare --> on
1120  * standby --> prepare --> on
1121  *
1122  * stop:
1123  * on --> prepare --> standby
1124  */
1125 static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126                                    enum snd_soc_bias_level level)
1127 {
1128         struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1129         int ret;
1130
1131         switch (level) {
1132         case SND_SOC_BIAS_ON:
1133         case SND_SOC_BIAS_PREPARE:
1134         case SND_SOC_BIAS_STANDBY:
1135                 regcache_cache_only(sgtl->regmap, false);
1136                 ret = regcache_sync(sgtl->regmap);
1137                 if (ret) {
1138                         regcache_cache_only(sgtl->regmap, true);
1139                         return ret;
1140                 }
1141
1142                 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143                                     SGTL5000_REFTOP_POWERUP,
1144                                     SGTL5000_REFTOP_POWERUP);
1145                 break;
1146         case SND_SOC_BIAS_OFF:
1147                 regcache_cache_only(sgtl->regmap, true);
1148                 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149                                     SGTL5000_REFTOP_POWERUP, 0);
1150                 break;
1151         }
1152
1153         return 0;
1154 }
1155
1156 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157                         SNDRV_PCM_FMTBIT_S20_3LE |\
1158                         SNDRV_PCM_FMTBIT_S24_LE |\
1159                         SNDRV_PCM_FMTBIT_S32_LE)
1160
1161 static const struct snd_soc_dai_ops sgtl5000_ops = {
1162         .hw_params = sgtl5000_pcm_hw_params,
1163         .mute_stream = sgtl5000_mute_stream,
1164         .set_fmt = sgtl5000_set_dai_fmt,
1165         .set_sysclk = sgtl5000_set_dai_sysclk,
1166         .no_capture_mute = 1,
1167 };
1168
1169 static struct snd_soc_dai_driver sgtl5000_dai = {
1170         .name = "sgtl5000",
1171         .playback = {
1172                 .stream_name = "Playback",
1173                 .channels_min = 1,
1174                 .channels_max = 2,
1175                 /*
1176                  * only support 8~48K + 96K,
1177                  * TODO modify hw_param to support more
1178                  */
1179                 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1180                 .formats = SGTL5000_FORMATS,
1181         },
1182         .capture = {
1183                 .stream_name = "Capture",
1184                 .channels_min = 1,
1185                 .channels_max = 2,
1186                 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1187                 .formats = SGTL5000_FORMATS,
1188         },
1189         .ops = &sgtl5000_ops,
1190         .symmetric_rate = 1,
1191 };
1192
1193 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1194 {
1195         switch (reg) {
1196         case SGTL5000_CHIP_ID:
1197         case SGTL5000_CHIP_ADCDAC_CTRL:
1198         case SGTL5000_CHIP_ANA_STATUS:
1199                 return true;
1200         }
1201
1202         return false;
1203 }
1204
1205 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1206 {
1207         switch (reg) {
1208         case SGTL5000_CHIP_ID:
1209         case SGTL5000_CHIP_DIG_POWER:
1210         case SGTL5000_CHIP_CLK_CTRL:
1211         case SGTL5000_CHIP_I2S_CTRL:
1212         case SGTL5000_CHIP_SSS_CTRL:
1213         case SGTL5000_CHIP_ADCDAC_CTRL:
1214         case SGTL5000_CHIP_DAC_VOL:
1215         case SGTL5000_CHIP_PAD_STRENGTH:
1216         case SGTL5000_CHIP_ANA_ADC_CTRL:
1217         case SGTL5000_CHIP_ANA_HP_CTRL:
1218         case SGTL5000_CHIP_ANA_CTRL:
1219         case SGTL5000_CHIP_LINREG_CTRL:
1220         case SGTL5000_CHIP_REF_CTRL:
1221         case SGTL5000_CHIP_MIC_CTRL:
1222         case SGTL5000_CHIP_LINE_OUT_CTRL:
1223         case SGTL5000_CHIP_LINE_OUT_VOL:
1224         case SGTL5000_CHIP_ANA_POWER:
1225         case SGTL5000_CHIP_PLL_CTRL:
1226         case SGTL5000_CHIP_CLK_TOP_CTRL:
1227         case SGTL5000_CHIP_ANA_STATUS:
1228         case SGTL5000_CHIP_SHORT_CTRL:
1229         case SGTL5000_CHIP_ANA_TEST2:
1230         case SGTL5000_DAP_CTRL:
1231         case SGTL5000_DAP_PEQ:
1232         case SGTL5000_DAP_BASS_ENHANCE:
1233         case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1234         case SGTL5000_DAP_AUDIO_EQ:
1235         case SGTL5000_DAP_SURROUND:
1236         case SGTL5000_DAP_FLT_COEF_ACCESS:
1237         case SGTL5000_DAP_COEF_WR_B0_MSB:
1238         case SGTL5000_DAP_COEF_WR_B0_LSB:
1239         case SGTL5000_DAP_EQ_BASS_BAND0:
1240         case SGTL5000_DAP_EQ_BASS_BAND1:
1241         case SGTL5000_DAP_EQ_BASS_BAND2:
1242         case SGTL5000_DAP_EQ_BASS_BAND3:
1243         case SGTL5000_DAP_EQ_BASS_BAND4:
1244         case SGTL5000_DAP_MAIN_CHAN:
1245         case SGTL5000_DAP_MIX_CHAN:
1246         case SGTL5000_DAP_AVC_CTRL:
1247         case SGTL5000_DAP_AVC_THRESHOLD:
1248         case SGTL5000_DAP_AVC_ATTACK:
1249         case SGTL5000_DAP_AVC_DECAY:
1250         case SGTL5000_DAP_COEF_WR_B1_MSB:
1251         case SGTL5000_DAP_COEF_WR_B1_LSB:
1252         case SGTL5000_DAP_COEF_WR_B2_MSB:
1253         case SGTL5000_DAP_COEF_WR_B2_LSB:
1254         case SGTL5000_DAP_COEF_WR_A1_MSB:
1255         case SGTL5000_DAP_COEF_WR_A1_LSB:
1256         case SGTL5000_DAP_COEF_WR_A2_MSB:
1257         case SGTL5000_DAP_COEF_WR_A2_LSB:
1258                 return true;
1259
1260         default:
1261                 return false;
1262         }
1263 }
1264
1265 /*
1266  * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1267  * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1268  * The calculatation was done for all possible register values which
1269  * is the array index and the following formula: 10^((idx−15)/40) * 100
1270  */
1271 static const u8 vol_quot_table[] = {
1272         42, 45, 47, 50, 53, 56, 60, 63,
1273         67, 71, 75, 79, 84, 89, 94, 100,
1274         106, 112, 119, 126, 133, 141, 150, 158,
1275         168, 178, 188, 200, 211, 224, 237, 251
1276 };
1277
1278 /*
1279  * sgtl5000 has 3 internal power supplies:
1280  * 1. VAG, normally set to vdda/2
1281  * 2. charge pump, set to different value
1282  *      according to voltage of vdda and vddio
1283  * 3. line out VAG, normally set to vddio/2
1284  *
1285  * and should be set according to:
1286  * 1. vddd provided by external or not
1287  * 2. vdda and vddio voltage value. > 3.1v or not
1288  */
1289 static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1290 {
1291         int vddd;
1292         int vdda;
1293         int vddio;
1294         u16 ana_pwr;
1295         u16 lreg_ctrl;
1296         int vag;
1297         int lo_vag;
1298         int vol_quot;
1299         int lo_vol;
1300         size_t i;
1301         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1302
1303         vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1304         vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1305         vddd  = (sgtl5000->num_supplies > VDDD)
1306                 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1307                 : LDO_VOLTAGE;
1308
1309         vdda  = vdda / 1000;
1310         vddio = vddio / 1000;
1311         vddd  = vddd / 1000;
1312
1313         if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1314                 dev_err(component->dev, "regulator voltage not set correctly\n");
1315
1316                 return -EINVAL;
1317         }
1318
1319         /* according to datasheet, maximum voltage of supplies */
1320         if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1321                 dev_err(component->dev,
1322                         "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1323                         vdda, vddio, vddd);
1324
1325                 return -EINVAL;
1326         }
1327
1328         /* reset value */
1329         ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
1330         ana_pwr |= SGTL5000_DAC_STEREO |
1331                         SGTL5000_ADC_STEREO |
1332                         SGTL5000_REFTOP_POWERUP;
1333         lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
1334
1335         if (vddio < 3100 && vdda < 3100) {
1336                 /* enable internal oscillator used for charge pump */
1337                 snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1338                                         SGTL5000_INT_OSC_EN,
1339                                         SGTL5000_INT_OSC_EN);
1340                 /* Enable VDDC charge pump */
1341                 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1342         } else {
1343                 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1344                 /*
1345                  * if vddio == vdda the source of charge pump should be
1346                  * assigned manually to VDDIO
1347                  */
1348                 if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1349                                        sgtl5000->supplies[VDDIO].consumer)) {
1350                         lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1351                         lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1352                                     SGTL5000_VDDC_MAN_ASSN_SHIFT;
1353                 }
1354         }
1355
1356         snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1357
1358         snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1359
1360         /*
1361          * set ADC/DAC VAG to vdda / 2,
1362          * should stay in range (0.8v, 1.575v)
1363          */
1364         vag = vdda / 2;
1365         if (vag <= SGTL5000_ANA_GND_BASE)
1366                 vag = 0;
1367         else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1368                  (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1369                 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1370         else
1371                 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1372
1373         snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1374                         SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1375
1376         /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1377         lo_vag = vddio / 2;
1378         if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1379                 lo_vag = 0;
1380         else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1381                 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1382                 lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1383         else
1384                 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1385                     SGTL5000_LINE_OUT_GND_STP;
1386
1387         snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1388                         SGTL5000_LINE_OUT_CURRENT_MASK |
1389                         SGTL5000_LINE_OUT_GND_MASK,
1390                         lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1391                         SGTL5000_LINE_OUT_CURRENT_360u <<
1392                                 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1393
1394         /*
1395          * Set lineout output level in range (0..31)
1396          * the same value is used for right and left channel
1397          *
1398          * Searching for a suitable index solving this formula:
1399          * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1400          */
1401         vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1402         lo_vol = 0;
1403         for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1404                 if (vol_quot >= vol_quot_table[i])
1405                         lo_vol = i;
1406                 else
1407                         break;
1408         }
1409
1410         snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1411                 SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1412                 SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1413                 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1414                 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1415
1416         return 0;
1417 }
1418
1419 static int sgtl5000_enable_regulators(struct i2c_client *client)
1420 {
1421         int ret;
1422         int i;
1423         int external_vddd = 0;
1424         struct regulator *vddd;
1425         struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1426
1427         for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1428                 sgtl5000->supplies[i].supply = supply_names[i];
1429
1430         vddd = regulator_get_optional(&client->dev, "VDDD");
1431         if (IS_ERR(vddd)) {
1432                 /* See if it's just not registered yet */
1433                 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1434                         return -EPROBE_DEFER;
1435         } else {
1436                 external_vddd = 1;
1437                 regulator_put(vddd);
1438         }
1439
1440         sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1441                                  - 1 + external_vddd;
1442         ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1443                                  sgtl5000->supplies);
1444         if (ret)
1445                 return ret;
1446
1447         ret = regulator_bulk_enable(sgtl5000->num_supplies,
1448                                     sgtl5000->supplies);
1449         if (!ret)
1450                 usleep_range(10, 20);
1451         else
1452                 regulator_bulk_free(sgtl5000->num_supplies,
1453                                     sgtl5000->supplies);
1454
1455         return ret;
1456 }
1457
1458 static int sgtl5000_probe(struct snd_soc_component *component)
1459 {
1460         int ret;
1461         u16 reg;
1462         struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1463         unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
1464
1465         /* power up sgtl5000 */
1466         ret = sgtl5000_set_power_regs(component);
1467         if (ret)
1468                 goto err;
1469
1470         /* enable small pop, introduce 400ms delay in turning off */
1471         snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1472                                 SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1473
1474         /* disable short cut detector */
1475         snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1476
1477         snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1478                         SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1479
1480         /* enable dac volume ramp by default */
1481         snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1482                         SGTL5000_DAC_VOL_RAMP_EN |
1483                         SGTL5000_DAC_MUTE_RIGHT |
1484                         SGTL5000_DAC_MUTE_LEFT);
1485
1486         reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1487                (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1488                0x1f);
1489         snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1490
1491         snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1492                 zcd_mask, zcd_mask);
1493
1494         snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1495                         SGTL5000_BIAS_R_MASK,
1496                         sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1497
1498         snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1499                         SGTL5000_BIAS_VOLT_MASK,
1500                         sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1501         /*
1502          * enable DAP Graphic EQ
1503          * TODO:
1504          * Add control for changing between PEQ/Tone Control/GEQ
1505          */
1506         snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1507
1508         /* Unmute DAC after start */
1509         snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1510                 SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1511
1512         return 0;
1513
1514 err:
1515         return ret;
1516 }
1517
1518 static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
1519                                     struct device_node *endpoint)
1520 {
1521         /* return dai id 0, whatever the endpoint index */
1522         return 0;
1523 }
1524
1525 static const struct snd_soc_component_driver sgtl5000_driver = {
1526         .probe                  = sgtl5000_probe,
1527         .set_bias_level         = sgtl5000_set_bias_level,
1528         .controls               = sgtl5000_snd_controls,
1529         .num_controls           = ARRAY_SIZE(sgtl5000_snd_controls),
1530         .dapm_widgets           = sgtl5000_dapm_widgets,
1531         .num_dapm_widgets       = ARRAY_SIZE(sgtl5000_dapm_widgets),
1532         .dapm_routes            = sgtl5000_dapm_routes,
1533         .num_dapm_routes        = ARRAY_SIZE(sgtl5000_dapm_routes),
1534         .of_xlate_dai_id        = sgtl5000_of_xlate_dai_id,
1535         .suspend_bias_off       = 1,
1536         .idle_bias_on           = 1,
1537         .use_pmdown_time        = 1,
1538         .endianness             = 1,
1539 };
1540
1541 static const struct regmap_config sgtl5000_regmap = {
1542         .reg_bits = 16,
1543         .val_bits = 16,
1544         .reg_stride = 2,
1545
1546         .max_register = SGTL5000_MAX_REG_OFFSET,
1547         .volatile_reg = sgtl5000_volatile,
1548         .readable_reg = sgtl5000_readable,
1549
1550         .cache_type = REGCACHE_RBTREE,
1551         .reg_defaults = sgtl5000_reg_defaults,
1552         .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1553 };
1554
1555 /*
1556  * Write all the default values from sgtl5000_reg_defaults[] array into the
1557  * sgtl5000 registers, to make sure we always start with the sane registers
1558  * values as stated in the datasheet.
1559  *
1560  * Since sgtl5000 does not have a reset line, nor a reset command in software,
1561  * we follow this approach to guarantee we always start from the default values
1562  * and avoid problems like, not being able to probe after an audio playback
1563  * followed by a system reset or a 'reboot' command in Linux
1564  */
1565 static void sgtl5000_fill_defaults(struct i2c_client *client)
1566 {
1567         struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568         int i, ret, val, index;
1569
1570         for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1571                 val = sgtl5000_reg_defaults[i].def;
1572                 index = sgtl5000_reg_defaults[i].reg;
1573                 ret = regmap_write(sgtl5000->regmap, index, val);
1574                 if (ret)
1575                         dev_err(&client->dev,
1576                                 "%s: error %d setting reg 0x%02x to 0x%04x\n",
1577                                 __func__, ret, index, val);
1578         }
1579 }
1580
1581 static int sgtl5000_i2c_probe(struct i2c_client *client)
1582 {
1583         struct sgtl5000_priv *sgtl5000;
1584         int ret, reg, rev;
1585         struct device_node *np = client->dev.of_node;
1586         u32 value;
1587         u16 ana_pwr;
1588
1589         sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1590         if (!sgtl5000)
1591                 return -ENOMEM;
1592
1593         i2c_set_clientdata(client, sgtl5000);
1594
1595         ret = sgtl5000_enable_regulators(client);
1596         if (ret)
1597                 return ret;
1598
1599         sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1600         if (IS_ERR(sgtl5000->regmap)) {
1601                 ret = PTR_ERR(sgtl5000->regmap);
1602                 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1603                 goto disable_regs;
1604         }
1605
1606         sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1607         if (IS_ERR(sgtl5000->mclk)) {
1608                 ret = PTR_ERR(sgtl5000->mclk);
1609                 /* Defer the probe to see if the clk will be provided later */
1610                 if (ret == -ENOENT)
1611                         ret = -EPROBE_DEFER;
1612
1613                 dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
1614
1615                 goto disable_regs;
1616         }
1617
1618         ret = clk_prepare_enable(sgtl5000->mclk);
1619         if (ret) {
1620                 dev_err(&client->dev, "Error enabling clock %d\n", ret);
1621                 goto disable_regs;
1622         }
1623
1624         /* Need 8 clocks before I2C accesses */
1625         udelay(1);
1626
1627         /* read chip information */
1628         ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1629         if (ret) {
1630                 dev_err(&client->dev, "Error reading chip id %d\n", ret);
1631                 goto disable_clk;
1632         }
1633
1634         if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1635             SGTL5000_PARTID_PART_ID) {
1636                 dev_err(&client->dev,
1637                         "Device with ID register %x is not a sgtl5000\n", reg);
1638                 ret = -ENODEV;
1639                 goto disable_clk;
1640         }
1641
1642         rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1643         dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1644         sgtl5000->revision = rev;
1645
1646         /* reconfigure the clocks in case we're using the PLL */
1647         ret = regmap_write(sgtl5000->regmap,
1648                            SGTL5000_CHIP_CLK_CTRL,
1649                            SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1650         if (ret)
1651                 dev_err(&client->dev,
1652                         "Error %d initializing CHIP_CLK_CTRL\n", ret);
1653
1654         /* Mute everything to avoid pop from the following power-up */
1655         ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1656                            SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1657         if (ret) {
1658                 dev_err(&client->dev,
1659                         "Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1660                 goto disable_clk;
1661         }
1662
1663         /*
1664          * If VAG is powered-on (e.g. from previous boot), it would be disabled
1665          * by the write to ANA_POWER in later steps of the probe code. This
1666          * may create a loud pop even with all outputs muted. The proper way
1667          * to circumvent this is disabling the bit first and waiting the proper
1668          * cool-down time.
1669          */
1670         ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1671         if (ret) {
1672                 dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1673                 goto disable_clk;
1674         }
1675         if (value & SGTL5000_VAG_POWERUP) {
1676                 ret = regmap_update_bits(sgtl5000->regmap,
1677                                          SGTL5000_CHIP_ANA_POWER,
1678                                          SGTL5000_VAG_POWERUP,
1679                                          0);
1680                 if (ret) {
1681                         dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1682                         goto disable_clk;
1683                 }
1684
1685                 msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1686         }
1687
1688         /* Follow section 2.2.1.1 of AN3663 */
1689         ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1690         if (sgtl5000->num_supplies <= VDDD) {
1691                 /* internal VDDD at 1.2V */
1692                 ret = regmap_update_bits(sgtl5000->regmap,
1693                                          SGTL5000_CHIP_LINREG_CTRL,
1694                                          SGTL5000_LINREG_VDDD_MASK,
1695                                          LINREG_VDDD);
1696                 if (ret)
1697                         dev_err(&client->dev,
1698                                 "Error %d setting LINREG_VDDD\n", ret);
1699
1700                 ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1701                 dev_info(&client->dev,
1702                          "Using internal LDO instead of VDDD: check ER1 erratum\n");
1703         } else {
1704                 /* using external LDO for VDDD
1705                  * Clear startup powerup and simple powerup
1706                  * bits to save power
1707                  */
1708                 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1709                              | SGTL5000_LINREG_SIMPLE_POWERUP);
1710                 dev_dbg(&client->dev, "Using external VDDD\n");
1711         }
1712         ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1713         if (ret)
1714                 dev_err(&client->dev,
1715                         "Error %d setting CHIP_ANA_POWER to %04x\n",
1716                         ret, ana_pwr);
1717
1718         if (np) {
1719                 if (!of_property_read_u32(np,
1720                         "micbias-resistor-k-ohms", &value)) {
1721                         switch (value) {
1722                         case SGTL5000_MICBIAS_OFF:
1723                                 sgtl5000->micbias_resistor = 0;
1724                                 break;
1725                         case SGTL5000_MICBIAS_2K:
1726                                 sgtl5000->micbias_resistor = 1;
1727                                 break;
1728                         case SGTL5000_MICBIAS_4K:
1729                                 sgtl5000->micbias_resistor = 2;
1730                                 break;
1731                         case SGTL5000_MICBIAS_8K:
1732                                 sgtl5000->micbias_resistor = 3;
1733                                 break;
1734                         default:
1735                                 sgtl5000->micbias_resistor = 2;
1736                                 dev_err(&client->dev,
1737                                         "Unsuitable MicBias resistor\n");
1738                         }
1739                 } else {
1740                         /* default is 4Kohms */
1741                         sgtl5000->micbias_resistor = 2;
1742                 }
1743                 if (!of_property_read_u32(np,
1744                         "micbias-voltage-m-volts", &value)) {
1745                         /* 1250mV => 0 */
1746                         /* steps of 250mV */
1747                         if ((value >= 1250) && (value <= 3000))
1748                                 sgtl5000->micbias_voltage = (value / 250) - 5;
1749                         else {
1750                                 sgtl5000->micbias_voltage = 0;
1751                                 dev_err(&client->dev,
1752                                         "Unsuitable MicBias voltage\n");
1753                         }
1754                 } else {
1755                         sgtl5000->micbias_voltage = 0;
1756                 }
1757         }
1758
1759         sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1760         if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1761                 if (value > I2S_LRCLK_STRENGTH_HIGH)
1762                         value = I2S_LRCLK_STRENGTH_LOW;
1763                 sgtl5000->lrclk_strength = value;
1764         }
1765
1766         sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1767         if (!of_property_read_u32(np, "sclk-strength", &value)) {
1768                 if (value > I2S_SCLK_STRENGTH_HIGH)
1769                         value = I2S_SCLK_STRENGTH_LOW;
1770                 sgtl5000->sclk_strength = value;
1771         }
1772
1773         /* Ensure sgtl5000 will start with sane register values */
1774         sgtl5000_fill_defaults(client);
1775
1776         ret = devm_snd_soc_register_component(&client->dev,
1777                         &sgtl5000_driver, &sgtl5000_dai, 1);
1778         if (ret)
1779                 goto disable_clk;
1780
1781         return 0;
1782
1783 disable_clk:
1784         clk_disable_unprepare(sgtl5000->mclk);
1785
1786 disable_regs:
1787         regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1788         regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1789
1790         return ret;
1791 }
1792
1793 static void sgtl5000_i2c_remove(struct i2c_client *client)
1794 {
1795         struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1796
1797         regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1798         regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT);
1799         regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT);
1800
1801         clk_disable_unprepare(sgtl5000->mclk);
1802         regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1803         regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1804 }
1805
1806 static void sgtl5000_i2c_shutdown(struct i2c_client *client)
1807 {
1808         sgtl5000_i2c_remove(client);
1809 }
1810
1811 static const struct i2c_device_id sgtl5000_id[] = {
1812         {"sgtl5000", 0},
1813         {},
1814 };
1815
1816 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1817
1818 static const struct of_device_id sgtl5000_dt_ids[] = {
1819         { .compatible = "fsl,sgtl5000", },
1820         { /* sentinel */ }
1821 };
1822 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1823
1824 static struct i2c_driver sgtl5000_i2c_driver = {
1825         .driver = {
1826                 .name = "sgtl5000",
1827                 .of_match_table = sgtl5000_dt_ids,
1828         },
1829         .probe_new = sgtl5000_i2c_probe,
1830         .remove = sgtl5000_i2c_remove,
1831         .shutdown = sgtl5000_i2c_shutdown,
1832         .id_table = sgtl5000_id,
1833 };
1834
1835 module_i2c_driver(sgtl5000_i2c_driver);
1836
1837 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1838 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1839 MODULE_LICENSE("GPL");