1 // SPDX-License-Identifier: GPL-2.0
3 // sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
5 // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
7 #include <linux/module.h>
8 #include <linux/moduleparam.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
13 #include <linux/i2c.h>
14 #include <linux/clk.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regulator/machine.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/of_device.h>
21 #include <sound/core.h>
22 #include <sound/tlv.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dapm.h>
27 #include <sound/initval.h>
31 #define SGTL5000_DAP_REG_OFFSET 0x0100
32 #define SGTL5000_MAX_REG_OFFSET 0x013A
34 /* Delay for the VAG ramp up */
35 #define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
36 /* Delay for the VAG ramp down */
37 #define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
39 #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
41 /* default value of sgtl5000 registers */
42 static const struct reg_default sgtl5000_reg_defaults[] = {
43 { SGTL5000_CHIP_DIG_POWER, 0x0000 },
44 { SGTL5000_CHIP_I2S_CTRL, 0x0010 },
45 { SGTL5000_CHIP_SSS_CTRL, 0x0010 },
46 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
47 { SGTL5000_CHIP_DAC_VOL, 0x3c3c },
48 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
49 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
50 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
51 { SGTL5000_CHIP_ANA_CTRL, 0x0111 },
52 { SGTL5000_CHIP_REF_CTRL, 0x0000 },
53 { SGTL5000_CHIP_MIC_CTRL, 0x0000 },
54 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
55 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
56 { SGTL5000_CHIP_PLL_CTRL, 0x5000 },
57 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
58 { SGTL5000_CHIP_ANA_STATUS, 0x0000 },
59 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
60 { SGTL5000_CHIP_ANA_TEST2, 0x0000 },
61 { SGTL5000_DAP_CTRL, 0x0000 },
62 { SGTL5000_DAP_PEQ, 0x0000 },
63 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
64 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
65 { SGTL5000_DAP_AUDIO_EQ, 0x0000 },
66 { SGTL5000_DAP_SURROUND, 0x0040 },
67 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
68 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
69 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
70 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
71 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
72 { SGTL5000_DAP_MAIN_CHAN, 0x8000 },
73 { SGTL5000_DAP_MIX_CHAN, 0x0000 },
74 { SGTL5000_DAP_AVC_CTRL, 0x5100 },
75 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
76 { SGTL5000_DAP_AVC_ATTACK, 0x0028 },
77 { SGTL5000_DAP_AVC_DECAY, 0x0050 },
80 /* AVC: Threshold dB -> register: pre-calculated values */
81 static const u16 avc_thr_db2reg[97] = {
82 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
83 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
84 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
85 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
86 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
87 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
88 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
89 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
90 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
91 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
92 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
94 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
95 enum sgtl5000_regulator_supplies {
102 /* vddd is optional supply */
103 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
109 #define LDO_VOLTAGE 1200000
110 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
112 enum sgtl5000_micbias_resistor {
113 SGTL5000_MICBIAS_OFF = 0,
114 SGTL5000_MICBIAS_2K = 2,
115 SGTL5000_MICBIAS_4K = 4,
116 SGTL5000_MICBIAS_8K = 8,
120 I2S_LRCLK_STRENGTH_DISABLE,
121 I2S_LRCLK_STRENGTH_LOW,
122 I2S_LRCLK_STRENGTH_MEDIUM,
123 I2S_LRCLK_STRENGTH_HIGH,
127 I2S_SCLK_STRENGTH_DISABLE,
128 I2S_SCLK_STRENGTH_LOW,
129 I2S_SCLK_STRENGTH_MEDIUM,
130 I2S_SCLK_STRENGTH_HIGH,
137 LAST_POWER_EVENT = ADC_POWER_EVENT
140 /* sgtl5000 private structure in codec */
141 struct sgtl5000_priv {
142 int sysclk; /* sysclk rate */
143 int master; /* i2s master or not */
144 int fmt; /* i2s data format */
145 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
147 struct regmap *regmap;
154 u16 mute_state[LAST_POWER_EVENT + 1];
157 static inline int hp_sel_input(struct snd_soc_component *component)
159 return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
160 SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
163 static inline u16 mute_output(struct snd_soc_component *component,
166 u16 mute_reg = snd_soc_component_read(component,
167 SGTL5000_CHIP_ANA_CTRL);
169 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
170 mute_mask, mute_mask);
174 static inline void restore_output(struct snd_soc_component *component,
175 u16 mute_mask, u16 mute_reg)
177 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
178 mute_mask, mute_reg);
181 static void vag_power_on(struct snd_soc_component *component, u32 source)
183 if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
184 SGTL5000_VAG_POWERUP)
187 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
188 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
190 /* When VAG powering on to get local loop from Line-In, the sleep
191 * is required to avoid loud pop.
193 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
194 source == HP_POWER_EVENT)
195 msleep(SGTL5000_VAG_POWERUP_DELAY);
198 static int vag_power_consumers(struct snd_soc_component *component,
199 u16 ana_pwr_reg, u32 source)
203 /* count dac/adc consumers unconditional */
204 if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
206 if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
210 * If the event comes from HP and Line-In is selected,
211 * current action is 'DAC to be powered down'.
212 * As HP_POWERUP is not set when HP muxed to line-in,
213 * we need to keep VAG power ON.
215 if (source == HP_POWER_EVENT) {
216 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
219 if (ana_pwr_reg & SGTL5000_HP_POWERUP)
226 static void vag_power_off(struct snd_soc_component *component, u32 source)
228 u16 ana_pwr = snd_soc_component_read(component,
229 SGTL5000_CHIP_ANA_POWER);
231 if (!(ana_pwr & SGTL5000_VAG_POWERUP))
235 * This function calls when any of VAG power consumers is disappearing.
236 * Thus, if there is more than one consumer at the moment, as minimum
237 * one consumer will definitely stay after the end of the current
239 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
240 * - LINE_IN (for HP events) / HP (for DAC/ADC events)
243 * (the current consumer is disappearing right now)
245 if (vag_power_consumers(component, ana_pwr, source) >= 2)
248 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
249 SGTL5000_VAG_POWERUP, 0);
250 /* In power down case, we need wait 400-1000 ms
251 * when VAG fully ramped down.
252 * As longer we wait, as smaller pop we've got.
254 msleep(SGTL5000_VAG_POWERDOWN_DELAY);
258 * mic_bias power on/off share the same register bits with
259 * output impedance of mic bias, when power on mic bias, we
260 * need reclaim it to impedance value.
266 static int mic_bias_event(struct snd_soc_dapm_widget *w,
267 struct snd_kcontrol *kcontrol, int event)
269 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
270 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
273 case SND_SOC_DAPM_POST_PMU:
274 /* change mic bias resistor */
275 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
276 SGTL5000_BIAS_R_MASK,
277 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
280 case SND_SOC_DAPM_PRE_PMD:
281 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
282 SGTL5000_BIAS_R_MASK, 0);
288 static int vag_and_mute_control(struct snd_soc_component *component,
289 int event, int event_source)
291 static const u16 mute_mask[] = {
293 * Mask for HP_POWER_EVENT.
294 * Muxing Headphones have to be wrapped with mute/unmute
299 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
300 * Muxing DAC or ADC block have to wrapped with mute/unmute
301 * both headphones and line-out.
303 SGTL5000_OUTPUTS_MUTE,
304 SGTL5000_OUTPUTS_MUTE
307 struct sgtl5000_priv *sgtl5000 =
308 snd_soc_component_get_drvdata(component);
311 case SND_SOC_DAPM_PRE_PMU:
312 sgtl5000->mute_state[event_source] =
313 mute_output(component, mute_mask[event_source]);
315 case SND_SOC_DAPM_POST_PMU:
316 vag_power_on(component, event_source);
317 restore_output(component, mute_mask[event_source],
318 sgtl5000->mute_state[event_source]);
320 case SND_SOC_DAPM_PRE_PMD:
321 sgtl5000->mute_state[event_source] =
322 mute_output(component, mute_mask[event_source]);
323 vag_power_off(component, event_source);
325 case SND_SOC_DAPM_POST_PMD:
326 restore_output(component, mute_mask[event_source],
327 sgtl5000->mute_state[event_source]);
337 * Mute Headphone when power it up/down.
338 * Control VAG power on HP power path.
340 static int headphone_pga_event(struct snd_soc_dapm_widget *w,
341 struct snd_kcontrol *kcontrol, int event)
343 struct snd_soc_component *component =
344 snd_soc_dapm_to_component(w->dapm);
346 return vag_and_mute_control(component, event, HP_POWER_EVENT);
349 /* As manual describes, ADC/DAC powering up/down requires
350 * to mute outputs to avoid pops.
351 * Control VAG power on ADC/DAC power path.
353 static int adc_updown_depop(struct snd_soc_dapm_widget *w,
354 struct snd_kcontrol *kcontrol, int event)
356 struct snd_soc_component *component =
357 snd_soc_dapm_to_component(w->dapm);
359 return vag_and_mute_control(component, event, ADC_POWER_EVENT);
362 static int dac_updown_depop(struct snd_soc_dapm_widget *w,
363 struct snd_kcontrol *kcontrol, int event)
365 struct snd_soc_component *component =
366 snd_soc_dapm_to_component(w->dapm);
368 return vag_and_mute_control(component, event, DAC_POWER_EVENT);
371 /* input sources for ADC */
372 static const char *adc_mux_text[] = {
376 static SOC_ENUM_SINGLE_DECL(adc_enum,
377 SGTL5000_CHIP_ANA_CTRL, 2,
380 static const struct snd_kcontrol_new adc_mux =
381 SOC_DAPM_ENUM("Capture Mux", adc_enum);
383 /* input sources for headphone */
384 static const char *hp_mux_text[] = {
388 static SOC_ENUM_SINGLE_DECL(hp_enum,
389 SGTL5000_CHIP_ANA_CTRL, 6,
392 static const struct snd_kcontrol_new hp_mux =
393 SOC_DAPM_ENUM("Headphone Mux", hp_enum);
395 /* input sources for DAC */
396 static const char *dac_mux_text[] = {
397 "ADC", "I2S", "Rsvrd", "DAP"
400 static SOC_ENUM_SINGLE_DECL(dac_enum,
401 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
404 static const struct snd_kcontrol_new dac_mux =
405 SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
407 /* input sources for DAP */
408 static const char *dap_mux_text[] = {
412 static SOC_ENUM_SINGLE_DECL(dap_enum,
413 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
416 static const struct snd_kcontrol_new dap_mux =
417 SOC_DAPM_ENUM("DAP Mux", dap_enum);
419 /* input sources for DAP mix */
420 static const char *dapmix_mux_text[] = {
424 static SOC_ENUM_SINGLE_DECL(dapmix_enum,
425 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
428 static const struct snd_kcontrol_new dapmix_mux =
429 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
432 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
433 SND_SOC_DAPM_INPUT("LINE_IN"),
434 SND_SOC_DAPM_INPUT("MIC_IN"),
436 SND_SOC_DAPM_OUTPUT("HP_OUT"),
437 SND_SOC_DAPM_OUTPUT("LINE_OUT"),
439 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
441 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
443 SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
445 SND_SOC_DAPM_PRE_POST_PMU |
446 SND_SOC_DAPM_PRE_POST_PMD),
447 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
449 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
450 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
451 SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
452 SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
453 SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
454 SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
457 /* aif for i2s input */
458 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
459 0, SGTL5000_CHIP_DIG_POWER,
462 /* aif for i2s output */
463 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
464 0, SGTL5000_CHIP_DIG_POWER,
467 SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
468 adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
469 SND_SOC_DAPM_PRE_POST_PMD),
470 SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
471 dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
472 SND_SOC_DAPM_PRE_POST_PMD),
475 /* routes for sgtl5000 */
476 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
477 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
478 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
480 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
481 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
483 {"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */
484 {"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */
485 {"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */
487 {"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */
488 {"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */
489 {"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */
491 {"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */
492 {"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */
493 {"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */
494 {"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */
496 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
497 {"LO", NULL, "DAC"}, /* dac --> line_out */
499 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
500 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
502 {"LINE_OUT", NULL, "LO"},
503 {"HP_OUT", NULL, "HP"},
506 /* custom function to fetch info of PCM playback volume */
507 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
508 struct snd_ctl_elem_info *uinfo)
510 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
512 uinfo->value.integer.min = 0;
513 uinfo->value.integer.max = 0xfc - 0x3c;
518 * custom function to get of PCM playback volume
520 * dac volume register
521 * 15-------------8-7--------------0
522 * | R channel vol | L channel vol |
523 * -------------------------------
525 * PCM volume with 0.5017 dB steps from 0 to -90 dB
527 * register values map to dB
528 * 0x3B and less = Reserved
532 * 0xFC and greater = Muted
534 * register value map to userspace value
536 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
537 * ------------------------------
538 * userspace value 0xc0 0
540 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
541 struct snd_ctl_elem_value *ucontrol)
543 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
548 reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
550 /* get left channel volume */
551 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
553 /* get right channel volume */
554 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
556 /* make sure value fall in (0x3c,0xfc) */
557 l = clamp(l, 0x3c, 0xfc);
558 r = clamp(r, 0x3c, 0xfc);
560 /* invert it and map to userspace value */
564 ucontrol->value.integer.value[0] = l;
565 ucontrol->value.integer.value[1] = r;
571 * custom function to put of PCM playback volume
573 * dac volume register
574 * 15-------------8-7--------------0
575 * | R channel vol | L channel vol |
576 * -------------------------------
578 * PCM volume with 0.5017 dB steps from 0 to -90 dB
580 * register values map to dB
581 * 0x3B and less = Reserved
585 * 0xFC and greater = Muted
587 * userspace value map to register value
589 * userspace value 0xc0 0
590 * ------------------------------
591 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
593 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
594 struct snd_ctl_elem_value *ucontrol)
596 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
601 l = ucontrol->value.integer.value[0];
602 r = ucontrol->value.integer.value[1];
604 /* make sure userspace volume fall in (0, 0xfc-0x3c) */
605 l = clamp(l, 0, 0xfc - 0x3c);
606 r = clamp(r, 0, 0xfc - 0x3c);
608 /* invert it, get the value can be set to register */
612 /* shift to get the register value */
613 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
614 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
616 snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
622 * custom function to get AVC threshold
624 * The threshold dB is calculated by rearranging the calculation from the
625 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
626 * dB = ( fls(register_value) - 14.347 ) * 6.02
628 * As this calculation is expensive and the threshold dB values may not exceed
629 * 0 to 96 we use pre-calculated values.
631 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
632 struct snd_ctl_elem_value *ucontrol)
634 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
636 u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
638 /* register value 0 => -96dB */
640 ucontrol->value.integer.value[0] = 96;
641 ucontrol->value.integer.value[1] = 96;
645 /* get dB from register value (rounded down) */
646 for (i = 0; avc_thr_db2reg[i] > reg; i++)
650 ucontrol->value.integer.value[0] = db;
651 ucontrol->value.integer.value[1] = db;
657 * custom function to put AVC threshold
659 * The register value is calculated by following formula:
660 * register_value = 10^(dB/20) * 0.636 * 2^15
661 * As this calculation is expensive and the threshold dB values may not exceed
662 * 0 to 96 we use pre-calculated values.
664 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
665 struct snd_ctl_elem_value *ucontrol)
667 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
671 db = (int)ucontrol->value.integer.value[0];
672 if (db < 0 || db > 96)
674 reg = avc_thr_db2reg[db];
675 snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
680 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
682 /* tlv for mic gain, 0db 20db 30db 40db */
683 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
684 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
685 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
688 /* tlv for DAP channels, 0% - 100% - 200% */
689 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
691 /* tlv for bass bands, -11.75db to 12.0db, step .25db */
692 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
694 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
695 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
697 /* tlv for lineout volume, 31 steps of .5db each */
698 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
700 /* tlv for dap avc max gain, 0db, 6db, 12db */
701 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
703 /* tlv for dap avc threshold, */
704 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
706 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
707 /* SOC_DOUBLE_S8_TLV with invert */
709 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710 .name = "PCM Playback Volume",
711 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
712 SNDRV_CTL_ELEM_ACCESS_READWRITE,
713 .info = dac_info_volsw,
714 .get = dac_get_volsw,
715 .put = dac_put_volsw,
718 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
719 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
720 SGTL5000_CHIP_ANA_ADC_CTRL,
721 8, 1, 0, capture_6db_attenuate),
722 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
723 SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
725 SOC_DOUBLE_TLV("Headphone Playback Volume",
726 SGTL5000_CHIP_ANA_HP_CTRL,
730 SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
732 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
735 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
736 0, 3, 0, mic_gain_tlv),
738 SOC_DOUBLE_TLV("Lineout Playback Volume",
739 SGTL5000_CHIP_LINE_OUT_VOL,
740 SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
741 SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
744 SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
746 SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
747 0, 0xffff, 0, dap_volume),
749 SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
750 0, 0xffff, 0, dap_volume),
751 /* Automatic Volume Control (DAP AVC) */
752 SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
753 SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
754 SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
756 SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
757 SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
758 0, 96, 0, avc_get_threshold, avc_put_threshold,
761 SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
762 0, 0x5F, 0, bass_band),
764 SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
765 0, 0x5F, 0, bass_band),
767 SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
768 0, 0x5F, 0, bass_band),
770 SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
771 0, 0x5F, 0, bass_band),
773 SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
774 0, 0x5F, 0, bass_band),
777 /* mute the codec used by alsa core */
778 static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
780 struct snd_soc_component *component = codec_dai->component;
781 u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
784 * During 'digital mute' do not mute DAC
785 * because LINE_IN would be muted aswell. We want to mute
786 * only I2S block - this can be done by powering it off
788 snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
789 i2s_pwr, mute ? 0 : i2s_pwr);
794 /* set codec format */
795 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
797 struct snd_soc_component *component = codec_dai->component;
798 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
801 sgtl5000->master = 0;
803 * i2s clock and frame master setting.
805 * - clock and frame slave,
806 * - clock and frame master
808 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
809 case SND_SOC_DAIFMT_CBS_CFS:
811 case SND_SOC_DAIFMT_CBM_CFM:
812 i2sctl |= SGTL5000_I2S_MASTER;
813 sgtl5000->master = 1;
819 /* setting i2s data format */
820 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821 case SND_SOC_DAIFMT_DSP_A:
822 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
824 case SND_SOC_DAIFMT_DSP_B:
825 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
826 i2sctl |= SGTL5000_I2S_LRALIGN;
828 case SND_SOC_DAIFMT_I2S:
829 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
831 case SND_SOC_DAIFMT_RIGHT_J:
832 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
833 i2sctl |= SGTL5000_I2S_LRPOL;
835 case SND_SOC_DAIFMT_LEFT_J:
836 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
837 i2sctl |= SGTL5000_I2S_LRALIGN;
843 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
845 /* Clock inversion */
846 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
847 case SND_SOC_DAIFMT_NB_NF:
849 case SND_SOC_DAIFMT_IB_NF:
850 i2sctl |= SGTL5000_I2S_SCLK_INV;
856 snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
861 /* set codec sysclk */
862 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
863 int clk_id, unsigned int freq, int dir)
865 struct snd_soc_component *component = codec_dai->component;
866 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
869 case SGTL5000_SYSCLK:
870 sgtl5000->sysclk = freq;
880 * set clock according to i2s frame clock,
881 * sgtl5000 provides 2 clock sources:
882 * 1. sys_mclk: sample freq can only be configured to
883 * 1/256, 1/384, 1/512 of sys_mclk.
884 * 2. pll: can derive any audio clocks.
886 * clock setting rules:
887 * 1. in slave mode, only sys_mclk can be used
888 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
890 * 3. usage of sys_mclk is preferred over pll to save power.
892 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
894 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
896 int sys_fs; /* sample freq */
899 * sample freq should be divided by frame clock,
900 * if frame clock is lower than 44.1 kHz, sample freq should be set to
901 * 32 kHz or 44.1 kHz.
903 switch (frame_rate) {
917 /* set divided factor of frame clock */
918 switch (sys_fs / frame_rate) {
920 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
923 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
926 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
932 /* set the sys_fs according to frame rate */
935 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
938 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
941 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
944 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
947 dev_err(component->dev, "frame rate %d not supported\n",
953 * calculate the divider of mclk/sample_freq,
954 * factor of freq = 96 kHz can only be 256, since mclk is in the range
957 switch (sgtl5000->sysclk / frame_rate) {
959 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
960 SGTL5000_MCLK_FREQ_SHIFT;
963 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
964 SGTL5000_MCLK_FREQ_SHIFT;
967 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
968 SGTL5000_MCLK_FREQ_SHIFT;
971 /* if mclk does not satisfy the divider, use pll */
972 if (sgtl5000->master) {
973 clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
974 SGTL5000_MCLK_FREQ_SHIFT;
976 dev_err(component->dev,
977 "PLL not supported in slave mode\n");
978 dev_err(component->dev, "%d ratio is not supported. "
979 "SYS_MCLK needs to be 256, 384 or 512 * fs\n",
980 sgtl5000->sysclk / frame_rate);
985 /* if using pll, please check manual 6.4.2 for detail */
986 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
990 unsigned int in, int_div, frac_div;
992 if (sgtl5000->sysclk > 17000000) {
994 in = sgtl5000->sysclk / 2;
997 in = sgtl5000->sysclk;
1003 t = do_div(out, in);
1008 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1011 snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1013 snd_soc_component_update_bits(component,
1014 SGTL5000_CHIP_CLK_TOP_CTRL,
1015 SGTL5000_INPUT_FREQ_DIV2,
1016 SGTL5000_INPUT_FREQ_DIV2);
1018 snd_soc_component_update_bits(component,
1019 SGTL5000_CHIP_CLK_TOP_CTRL,
1020 SGTL5000_INPUT_FREQ_DIV2,
1024 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1028 /* if using pll, clk_ctrl must be set after pll power up */
1029 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1031 /* otherwise, clk_ctrl must be set before pll power down */
1032 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1034 /* power down pll */
1035 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1044 * Set PCM DAI bit size and sample rate.
1045 * input: params_rate, params_fmt
1047 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048 struct snd_pcm_hw_params *params,
1049 struct snd_soc_dai *dai)
1051 struct snd_soc_component *component = dai->component;
1052 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053 int channels = params_channels(params);
1058 /* sysclk should already set */
1059 if (!sgtl5000->sysclk) {
1060 dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1064 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065 stereo = SGTL5000_DAC_STEREO;
1067 stereo = SGTL5000_ADC_STEREO;
1069 /* set mono to save power */
1070 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071 channels == 1 ? 0 : stereo);
1073 /* set codec clock base on lrclk */
1074 ret = sgtl5000_set_clock(component, params_rate(params));
1078 /* set i2s data format */
1079 switch (params_width(params)) {
1081 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1083 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085 SGTL5000_I2S_SCLKFREQ_SHIFT;
1088 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090 SGTL5000_I2S_SCLKFREQ_SHIFT;
1093 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095 SGTL5000_I2S_SCLKFREQ_SHIFT;
1098 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1100 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102 SGTL5000_I2S_SCLKFREQ_SHIFT;
1108 snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1117 * common state changes:
1119 * off --> standby --> prepare --> on
1120 * standby --> prepare --> on
1123 * on --> prepare --> standby
1125 static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126 enum snd_soc_bias_level level)
1128 struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1132 case SND_SOC_BIAS_ON:
1133 case SND_SOC_BIAS_PREPARE:
1134 case SND_SOC_BIAS_STANDBY:
1135 regcache_cache_only(sgtl->regmap, false);
1136 ret = regcache_sync(sgtl->regmap);
1138 regcache_cache_only(sgtl->regmap, true);
1142 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143 SGTL5000_REFTOP_POWERUP,
1144 SGTL5000_REFTOP_POWERUP);
1146 case SND_SOC_BIAS_OFF:
1147 regcache_cache_only(sgtl->regmap, true);
1148 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149 SGTL5000_REFTOP_POWERUP, 0);
1156 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157 SNDRV_PCM_FMTBIT_S20_3LE |\
1158 SNDRV_PCM_FMTBIT_S24_LE |\
1159 SNDRV_PCM_FMTBIT_S32_LE)
1161 static const struct snd_soc_dai_ops sgtl5000_ops = {
1162 .hw_params = sgtl5000_pcm_hw_params,
1163 .mute_stream = sgtl5000_mute_stream,
1164 .set_fmt = sgtl5000_set_dai_fmt,
1165 .set_sysclk = sgtl5000_set_dai_sysclk,
1166 .no_capture_mute = 1,
1169 static struct snd_soc_dai_driver sgtl5000_dai = {
1172 .stream_name = "Playback",
1176 * only support 8~48K + 96K,
1177 * TODO modify hw_param to support more
1179 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1180 .formats = SGTL5000_FORMATS,
1183 .stream_name = "Capture",
1186 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1187 .formats = SGTL5000_FORMATS,
1189 .ops = &sgtl5000_ops,
1190 .symmetric_rate = 1,
1193 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1196 case SGTL5000_CHIP_ID:
1197 case SGTL5000_CHIP_ADCDAC_CTRL:
1198 case SGTL5000_CHIP_ANA_STATUS:
1205 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1208 case SGTL5000_CHIP_ID:
1209 case SGTL5000_CHIP_DIG_POWER:
1210 case SGTL5000_CHIP_CLK_CTRL:
1211 case SGTL5000_CHIP_I2S_CTRL:
1212 case SGTL5000_CHIP_SSS_CTRL:
1213 case SGTL5000_CHIP_ADCDAC_CTRL:
1214 case SGTL5000_CHIP_DAC_VOL:
1215 case SGTL5000_CHIP_PAD_STRENGTH:
1216 case SGTL5000_CHIP_ANA_ADC_CTRL:
1217 case SGTL5000_CHIP_ANA_HP_CTRL:
1218 case SGTL5000_CHIP_ANA_CTRL:
1219 case SGTL5000_CHIP_LINREG_CTRL:
1220 case SGTL5000_CHIP_REF_CTRL:
1221 case SGTL5000_CHIP_MIC_CTRL:
1222 case SGTL5000_CHIP_LINE_OUT_CTRL:
1223 case SGTL5000_CHIP_LINE_OUT_VOL:
1224 case SGTL5000_CHIP_ANA_POWER:
1225 case SGTL5000_CHIP_PLL_CTRL:
1226 case SGTL5000_CHIP_CLK_TOP_CTRL:
1227 case SGTL5000_CHIP_ANA_STATUS:
1228 case SGTL5000_CHIP_SHORT_CTRL:
1229 case SGTL5000_CHIP_ANA_TEST2:
1230 case SGTL5000_DAP_CTRL:
1231 case SGTL5000_DAP_PEQ:
1232 case SGTL5000_DAP_BASS_ENHANCE:
1233 case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1234 case SGTL5000_DAP_AUDIO_EQ:
1235 case SGTL5000_DAP_SURROUND:
1236 case SGTL5000_DAP_FLT_COEF_ACCESS:
1237 case SGTL5000_DAP_COEF_WR_B0_MSB:
1238 case SGTL5000_DAP_COEF_WR_B0_LSB:
1239 case SGTL5000_DAP_EQ_BASS_BAND0:
1240 case SGTL5000_DAP_EQ_BASS_BAND1:
1241 case SGTL5000_DAP_EQ_BASS_BAND2:
1242 case SGTL5000_DAP_EQ_BASS_BAND3:
1243 case SGTL5000_DAP_EQ_BASS_BAND4:
1244 case SGTL5000_DAP_MAIN_CHAN:
1245 case SGTL5000_DAP_MIX_CHAN:
1246 case SGTL5000_DAP_AVC_CTRL:
1247 case SGTL5000_DAP_AVC_THRESHOLD:
1248 case SGTL5000_DAP_AVC_ATTACK:
1249 case SGTL5000_DAP_AVC_DECAY:
1250 case SGTL5000_DAP_COEF_WR_B1_MSB:
1251 case SGTL5000_DAP_COEF_WR_B1_LSB:
1252 case SGTL5000_DAP_COEF_WR_B2_MSB:
1253 case SGTL5000_DAP_COEF_WR_B2_LSB:
1254 case SGTL5000_DAP_COEF_WR_A1_MSB:
1255 case SGTL5000_DAP_COEF_WR_A1_LSB:
1256 case SGTL5000_DAP_COEF_WR_A2_MSB:
1257 case SGTL5000_DAP_COEF_WR_A2_LSB:
1266 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1267 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1268 * The calculatation was done for all possible register values which
1269 * is the array index and the following formula: 10^((idx−15)/40) * 100
1271 static const u8 vol_quot_table[] = {
1272 42, 45, 47, 50, 53, 56, 60, 63,
1273 67, 71, 75, 79, 84, 89, 94, 100,
1274 106, 112, 119, 126, 133, 141, 150, 158,
1275 168, 178, 188, 200, 211, 224, 237, 251
1279 * sgtl5000 has 3 internal power supplies:
1280 * 1. VAG, normally set to vdda/2
1281 * 2. charge pump, set to different value
1282 * according to voltage of vdda and vddio
1283 * 3. line out VAG, normally set to vddio/2
1285 * and should be set according to:
1286 * 1. vddd provided by external or not
1287 * 2. vdda and vddio voltage value. > 3.1v or not
1289 static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1301 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1303 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1304 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1305 vddd = (sgtl5000->num_supplies > VDDD)
1306 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1310 vddio = vddio / 1000;
1313 if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1314 dev_err(component->dev, "regulator voltage not set correctly\n");
1319 /* according to datasheet, maximum voltage of supplies */
1320 if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1321 dev_err(component->dev,
1322 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1329 ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
1330 ana_pwr |= SGTL5000_DAC_STEREO |
1331 SGTL5000_ADC_STEREO |
1332 SGTL5000_REFTOP_POWERUP;
1333 lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
1335 if (vddio < 3100 && vdda < 3100) {
1336 /* enable internal oscillator used for charge pump */
1337 snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1338 SGTL5000_INT_OSC_EN,
1339 SGTL5000_INT_OSC_EN);
1340 /* Enable VDDC charge pump */
1341 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1343 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1345 * if vddio == vdda the source of charge pump should be
1346 * assigned manually to VDDIO
1348 if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1349 sgtl5000->supplies[VDDIO].consumer)) {
1350 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1351 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1352 SGTL5000_VDDC_MAN_ASSN_SHIFT;
1356 snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1358 snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1361 * set ADC/DAC VAG to vdda / 2,
1362 * should stay in range (0.8v, 1.575v)
1365 if (vag <= SGTL5000_ANA_GND_BASE)
1367 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1368 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1369 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1371 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1373 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1374 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1376 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1378 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1380 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1381 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1382 lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1384 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1385 SGTL5000_LINE_OUT_GND_STP;
1387 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1388 SGTL5000_LINE_OUT_CURRENT_MASK |
1389 SGTL5000_LINE_OUT_GND_MASK,
1390 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1391 SGTL5000_LINE_OUT_CURRENT_360u <<
1392 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1395 * Set lineout output level in range (0..31)
1396 * the same value is used for right and left channel
1398 * Searching for a suitable index solving this formula:
1399 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1401 vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1403 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1404 if (vol_quot >= vol_quot_table[i])
1410 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1411 SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1412 SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1413 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1414 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1419 static int sgtl5000_enable_regulators(struct i2c_client *client)
1423 int external_vddd = 0;
1424 struct regulator *vddd;
1425 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1427 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1428 sgtl5000->supplies[i].supply = supply_names[i];
1430 vddd = regulator_get_optional(&client->dev, "VDDD");
1432 /* See if it's just not registered yet */
1433 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1434 return -EPROBE_DEFER;
1437 regulator_put(vddd);
1440 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1441 - 1 + external_vddd;
1442 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1443 sgtl5000->supplies);
1447 ret = regulator_bulk_enable(sgtl5000->num_supplies,
1448 sgtl5000->supplies);
1450 usleep_range(10, 20);
1452 regulator_bulk_free(sgtl5000->num_supplies,
1453 sgtl5000->supplies);
1458 static int sgtl5000_probe(struct snd_soc_component *component)
1462 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1463 unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
1465 /* power up sgtl5000 */
1466 ret = sgtl5000_set_power_regs(component);
1470 /* enable small pop, introduce 400ms delay in turning off */
1471 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1472 SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1474 /* disable short cut detector */
1475 snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1477 snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1478 SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1480 /* enable dac volume ramp by default */
1481 snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1482 SGTL5000_DAC_VOL_RAMP_EN |
1483 SGTL5000_DAC_MUTE_RIGHT |
1484 SGTL5000_DAC_MUTE_LEFT);
1486 reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1487 (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1489 snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1491 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1492 zcd_mask, zcd_mask);
1494 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1495 SGTL5000_BIAS_R_MASK,
1496 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1498 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1499 SGTL5000_BIAS_VOLT_MASK,
1500 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1502 * enable DAP Graphic EQ
1504 * Add control for changing between PEQ/Tone Control/GEQ
1506 snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1508 /* Unmute DAC after start */
1509 snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1510 SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1518 static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
1519 struct device_node *endpoint)
1521 /* return dai id 0, whatever the endpoint index */
1525 static const struct snd_soc_component_driver sgtl5000_driver = {
1526 .probe = sgtl5000_probe,
1527 .set_bias_level = sgtl5000_set_bias_level,
1528 .controls = sgtl5000_snd_controls,
1529 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1530 .dapm_widgets = sgtl5000_dapm_widgets,
1531 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1532 .dapm_routes = sgtl5000_dapm_routes,
1533 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1534 .of_xlate_dai_id = sgtl5000_of_xlate_dai_id,
1535 .suspend_bias_off = 1,
1537 .use_pmdown_time = 1,
1541 static const struct regmap_config sgtl5000_regmap = {
1546 .max_register = SGTL5000_MAX_REG_OFFSET,
1547 .volatile_reg = sgtl5000_volatile,
1548 .readable_reg = sgtl5000_readable,
1550 .cache_type = REGCACHE_RBTREE,
1551 .reg_defaults = sgtl5000_reg_defaults,
1552 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1556 * Write all the default values from sgtl5000_reg_defaults[] array into the
1557 * sgtl5000 registers, to make sure we always start with the sane registers
1558 * values as stated in the datasheet.
1560 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1561 * we follow this approach to guarantee we always start from the default values
1562 * and avoid problems like, not being able to probe after an audio playback
1563 * followed by a system reset or a 'reboot' command in Linux
1565 static void sgtl5000_fill_defaults(struct i2c_client *client)
1567 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568 int i, ret, val, index;
1570 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1571 val = sgtl5000_reg_defaults[i].def;
1572 index = sgtl5000_reg_defaults[i].reg;
1573 ret = regmap_write(sgtl5000->regmap, index, val);
1575 dev_err(&client->dev,
1576 "%s: error %d setting reg 0x%02x to 0x%04x\n",
1577 __func__, ret, index, val);
1581 static int sgtl5000_i2c_probe(struct i2c_client *client)
1583 struct sgtl5000_priv *sgtl5000;
1585 struct device_node *np = client->dev.of_node;
1589 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1593 i2c_set_clientdata(client, sgtl5000);
1595 ret = sgtl5000_enable_regulators(client);
1599 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1600 if (IS_ERR(sgtl5000->regmap)) {
1601 ret = PTR_ERR(sgtl5000->regmap);
1602 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1606 sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1607 if (IS_ERR(sgtl5000->mclk)) {
1608 ret = PTR_ERR(sgtl5000->mclk);
1609 /* Defer the probe to see if the clk will be provided later */
1611 ret = -EPROBE_DEFER;
1613 dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
1618 ret = clk_prepare_enable(sgtl5000->mclk);
1620 dev_err(&client->dev, "Error enabling clock %d\n", ret);
1624 /* Need 8 clocks before I2C accesses */
1627 /* read chip information */
1628 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®);
1630 dev_err(&client->dev, "Error reading chip id %d\n", ret);
1634 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1635 SGTL5000_PARTID_PART_ID) {
1636 dev_err(&client->dev,
1637 "Device with ID register %x is not a sgtl5000\n", reg);
1642 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1643 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1644 sgtl5000->revision = rev;
1646 /* reconfigure the clocks in case we're using the PLL */
1647 ret = regmap_write(sgtl5000->regmap,
1648 SGTL5000_CHIP_CLK_CTRL,
1649 SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1651 dev_err(&client->dev,
1652 "Error %d initializing CHIP_CLK_CTRL\n", ret);
1654 /* Mute everything to avoid pop from the following power-up */
1655 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1656 SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1658 dev_err(&client->dev,
1659 "Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1664 * If VAG is powered-on (e.g. from previous boot), it would be disabled
1665 * by the write to ANA_POWER in later steps of the probe code. This
1666 * may create a loud pop even with all outputs muted. The proper way
1667 * to circumvent this is disabling the bit first and waiting the proper
1670 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1672 dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1675 if (value & SGTL5000_VAG_POWERUP) {
1676 ret = regmap_update_bits(sgtl5000->regmap,
1677 SGTL5000_CHIP_ANA_POWER,
1678 SGTL5000_VAG_POWERUP,
1681 dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1685 msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1688 /* Follow section 2.2.1.1 of AN3663 */
1689 ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1690 if (sgtl5000->num_supplies <= VDDD) {
1691 /* internal VDDD at 1.2V */
1692 ret = regmap_update_bits(sgtl5000->regmap,
1693 SGTL5000_CHIP_LINREG_CTRL,
1694 SGTL5000_LINREG_VDDD_MASK,
1697 dev_err(&client->dev,
1698 "Error %d setting LINREG_VDDD\n", ret);
1700 ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1701 dev_info(&client->dev,
1702 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1704 /* using external LDO for VDDD
1705 * Clear startup powerup and simple powerup
1706 * bits to save power
1708 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1709 | SGTL5000_LINREG_SIMPLE_POWERUP);
1710 dev_dbg(&client->dev, "Using external VDDD\n");
1712 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1714 dev_err(&client->dev,
1715 "Error %d setting CHIP_ANA_POWER to %04x\n",
1719 if (!of_property_read_u32(np,
1720 "micbias-resistor-k-ohms", &value)) {
1722 case SGTL5000_MICBIAS_OFF:
1723 sgtl5000->micbias_resistor = 0;
1725 case SGTL5000_MICBIAS_2K:
1726 sgtl5000->micbias_resistor = 1;
1728 case SGTL5000_MICBIAS_4K:
1729 sgtl5000->micbias_resistor = 2;
1731 case SGTL5000_MICBIAS_8K:
1732 sgtl5000->micbias_resistor = 3;
1735 sgtl5000->micbias_resistor = 2;
1736 dev_err(&client->dev,
1737 "Unsuitable MicBias resistor\n");
1740 /* default is 4Kohms */
1741 sgtl5000->micbias_resistor = 2;
1743 if (!of_property_read_u32(np,
1744 "micbias-voltage-m-volts", &value)) {
1746 /* steps of 250mV */
1747 if ((value >= 1250) && (value <= 3000))
1748 sgtl5000->micbias_voltage = (value / 250) - 5;
1750 sgtl5000->micbias_voltage = 0;
1751 dev_err(&client->dev,
1752 "Unsuitable MicBias voltage\n");
1755 sgtl5000->micbias_voltage = 0;
1759 sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1760 if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1761 if (value > I2S_LRCLK_STRENGTH_HIGH)
1762 value = I2S_LRCLK_STRENGTH_LOW;
1763 sgtl5000->lrclk_strength = value;
1766 sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1767 if (!of_property_read_u32(np, "sclk-strength", &value)) {
1768 if (value > I2S_SCLK_STRENGTH_HIGH)
1769 value = I2S_SCLK_STRENGTH_LOW;
1770 sgtl5000->sclk_strength = value;
1773 /* Ensure sgtl5000 will start with sane register values */
1774 sgtl5000_fill_defaults(client);
1776 ret = devm_snd_soc_register_component(&client->dev,
1777 &sgtl5000_driver, &sgtl5000_dai, 1);
1784 clk_disable_unprepare(sgtl5000->mclk);
1787 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1788 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1793 static void sgtl5000_i2c_remove(struct i2c_client *client)
1795 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1797 regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1798 regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT);
1799 regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT);
1801 clk_disable_unprepare(sgtl5000->mclk);
1802 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1803 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1806 static void sgtl5000_i2c_shutdown(struct i2c_client *client)
1808 sgtl5000_i2c_remove(client);
1811 static const struct i2c_device_id sgtl5000_id[] = {
1816 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1818 static const struct of_device_id sgtl5000_dt_ids[] = {
1819 { .compatible = "fsl,sgtl5000", },
1822 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1824 static struct i2c_driver sgtl5000_i2c_driver = {
1827 .of_match_table = sgtl5000_dt_ids,
1829 .probe_new = sgtl5000_i2c_probe,
1830 .remove = sgtl5000_i2c_remove,
1831 .shutdown = sgtl5000_i2c_shutdown,
1832 .id_table = sgtl5000_id,
1835 module_i2c_driver(sgtl5000_i2c_driver);
1837 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1838 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1839 MODULE_LICENSE("GPL");