Merge branch 'tpm' into docs-next
[platform/kernel/linux-exynos.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/mutex.h>
29 #include <linux/module.h>
30 #include <linux/io.h>
31
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/info.h>
35 #include <sound/tlv.h>
36 #include "ymfpci.h"
37 #include <sound/asoundef.h>
38 #include <sound/mpu401.h>
39
40 #include <asm/byteorder.h>
41
42 /*
43  *  common I/O routines
44  */
45
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50         return readb(chip->reg_area_virt + offset);
51 }
52
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55         writeb(val, chip->reg_area_virt + offset);
56 }
57
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60         return readw(chip->reg_area_virt + offset);
61 }
62
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65         writew(val, chip->reg_area_virt + offset);
66 }
67
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70         return readl(chip->reg_area_virt + offset);
71 }
72
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75         writel(val, chip->reg_area_virt + offset);
76 }
77
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80         unsigned long end_time;
81         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82         
83         end_time = jiffies + msecs_to_jiffies(750);
84         do {
85                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86                         return 0;
87                 schedule_timeout_uninterruptible(1);
88         } while (time_before(jiffies, end_time));
89         dev_err(chip->card->dev,
90                 "codec_ready: codec %i is not ready [0x%x]\n",
91                 secondary, snd_ymfpci_readw(chip, reg));
92         return -EBUSY;
93 }
94
95 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
96 {
97         struct snd_ymfpci *chip = ac97->private_data;
98         u32 cmd;
99         
100         snd_ymfpci_codec_ready(chip, 0);
101         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
102         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
103 }
104
105 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
106 {
107         struct snd_ymfpci *chip = ac97->private_data;
108
109         if (snd_ymfpci_codec_ready(chip, 0))
110                 return ~0;
111         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
112         if (snd_ymfpci_codec_ready(chip, 0))
113                 return ~0;
114         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
115                 int i;
116                 for (i = 0; i < 600; i++)
117                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118         }
119         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
120 }
121
122 /*
123  *  Misc routines
124  */
125
126 static u32 snd_ymfpci_calc_delta(u32 rate)
127 {
128         switch (rate) {
129         case 8000:      return 0x02aaab00;
130         case 11025:     return 0x03accd00;
131         case 16000:     return 0x05555500;
132         case 22050:     return 0x07599a00;
133         case 32000:     return 0x0aaaab00;
134         case 44100:     return 0x0eb33300;
135         default:        return ((rate << 16) / 375) << 5;
136         }
137 }
138
139 static u32 def_rate[8] = {
140         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
141 };
142
143 static u32 snd_ymfpci_calc_lpfK(u32 rate)
144 {
145         u32 i;
146         static u32 val[8] = {
147                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
148                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
149         };
150         
151         if (rate == 44100)
152                 return 0x40000000;      /* FIXME: What's the right value? */
153         for (i = 0; i < 8; i++)
154                 if (rate <= def_rate[i])
155                         return val[i];
156         return val[0];
157 }
158
159 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
160 {
161         u32 i;
162         static u32 val[8] = {
163                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
164                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
165         };
166         
167         if (rate == 44100)
168                 return 0x370A0000;
169         for (i = 0; i < 8; i++)
170                 if (rate <= def_rate[i])
171                         return val[i];
172         return val[0];
173 }
174
175 /*
176  *  Hardware start management
177  */
178
179 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
180 {
181         unsigned long flags;
182
183         spin_lock_irqsave(&chip->reg_lock, flags);
184         if (chip->start_count++ > 0)
185                 goto __end;
186         snd_ymfpci_writel(chip, YDSXGR_MODE,
187                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
188         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
189       __end:
190         spin_unlock_irqrestore(&chip->reg_lock, flags);
191 }
192
193 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
194 {
195         unsigned long flags;
196         long timeout = 1000;
197
198         spin_lock_irqsave(&chip->reg_lock, flags);
199         if (--chip->start_count > 0)
200                 goto __end;
201         snd_ymfpci_writel(chip, YDSXGR_MODE,
202                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
203         while (timeout-- > 0) {
204                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
205                         break;
206         }
207         if (atomic_read(&chip->interrupt_sleep_count)) {
208                 atomic_set(&chip->interrupt_sleep_count, 0);
209                 wake_up(&chip->interrupt_sleep);
210         }
211       __end:
212         spin_unlock_irqrestore(&chip->reg_lock, flags);
213 }
214
215 /*
216  *  Playback voice management
217  */
218
219 static int voice_alloc(struct snd_ymfpci *chip,
220                        enum snd_ymfpci_voice_type type, int pair,
221                        struct snd_ymfpci_voice **rvoice)
222 {
223         struct snd_ymfpci_voice *voice, *voice2;
224         int idx;
225         
226         *rvoice = NULL;
227         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
228                 voice = &chip->voices[idx];
229                 voice2 = pair ? &chip->voices[idx+1] : NULL;
230                 if (voice->use || (voice2 && voice2->use))
231                         continue;
232                 voice->use = 1;
233                 if (voice2)
234                         voice2->use = 1;
235                 switch (type) {
236                 case YMFPCI_PCM:
237                         voice->pcm = 1;
238                         if (voice2)
239                                 voice2->pcm = 1;
240                         break;
241                 case YMFPCI_SYNTH:
242                         voice->synth = 1;
243                         break;
244                 case YMFPCI_MIDI:
245                         voice->midi = 1;
246                         break;
247                 }
248                 snd_ymfpci_hw_start(chip);
249                 if (voice2)
250                         snd_ymfpci_hw_start(chip);
251                 *rvoice = voice;
252                 return 0;
253         }
254         return -ENOMEM;
255 }
256
257 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
258                                   enum snd_ymfpci_voice_type type, int pair,
259                                   struct snd_ymfpci_voice **rvoice)
260 {
261         unsigned long flags;
262         int result;
263         
264         if (snd_BUG_ON(!rvoice))
265                 return -EINVAL;
266         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
267                 return -EINVAL;
268         
269         spin_lock_irqsave(&chip->voice_lock, flags);
270         for (;;) {
271                 result = voice_alloc(chip, type, pair, rvoice);
272                 if (result == 0 || type != YMFPCI_PCM)
273                         break;
274                 /* TODO: synth/midi voice deallocation */
275                 break;
276         }
277         spin_unlock_irqrestore(&chip->voice_lock, flags);       
278         return result;          
279 }
280
281 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
282 {
283         unsigned long flags;
284         
285         if (snd_BUG_ON(!pvoice))
286                 return -EINVAL;
287         snd_ymfpci_hw_stop(chip);
288         spin_lock_irqsave(&chip->voice_lock, flags);
289         if (pvoice->number == chip->src441_used) {
290                 chip->src441_used = -1;
291                 pvoice->ypcm->use_441_slot = 0;
292         }
293         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
294         pvoice->ypcm = NULL;
295         pvoice->interrupt = NULL;
296         spin_unlock_irqrestore(&chip->voice_lock, flags);
297         return 0;
298 }
299
300 /*
301  *  PCM part
302  */
303
304 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
305 {
306         struct snd_ymfpci_pcm *ypcm;
307         u32 pos, delta;
308         
309         if ((ypcm = voice->ypcm) == NULL)
310                 return;
311         if (ypcm->substream == NULL)
312                 return;
313         spin_lock(&chip->reg_lock);
314         if (ypcm->running) {
315                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
316                 if (pos < ypcm->last_pos)
317                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
318                 else
319                         delta = pos - ypcm->last_pos;
320                 ypcm->period_pos += delta;
321                 ypcm->last_pos = pos;
322                 if (ypcm->period_pos >= ypcm->period_size) {
323                         /*
324                         dev_dbg(chip->card->dev,
325                                "done - active_bank = 0x%x, start = 0x%x\n",
326                                chip->active_bank,
327                                voice->bank[chip->active_bank].start);
328                         */
329                         ypcm->period_pos %= ypcm->period_size;
330                         spin_unlock(&chip->reg_lock);
331                         snd_pcm_period_elapsed(ypcm->substream);
332                         spin_lock(&chip->reg_lock);
333                 }
334
335                 if (unlikely(ypcm->update_pcm_vol)) {
336                         unsigned int subs = ypcm->substream->number;
337                         unsigned int next_bank = 1 - chip->active_bank;
338                         struct snd_ymfpci_playback_bank *bank;
339                         u32 volume;
340                         
341                         bank = &voice->bank[next_bank];
342                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
343                         bank->left_gain_end = volume;
344                         if (ypcm->output_rear)
345                                 bank->eff2_gain_end = volume;
346                         if (ypcm->voices[1])
347                                 bank = &ypcm->voices[1]->bank[next_bank];
348                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
349                         bank->right_gain_end = volume;
350                         if (ypcm->output_rear)
351                                 bank->eff3_gain_end = volume;
352                         ypcm->update_pcm_vol--;
353                 }
354         }
355         spin_unlock(&chip->reg_lock);
356 }
357
358 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
359 {
360         struct snd_pcm_runtime *runtime = substream->runtime;
361         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
362         struct snd_ymfpci *chip = ypcm->chip;
363         u32 pos, delta;
364         
365         spin_lock(&chip->reg_lock);
366         if (ypcm->running) {
367                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
368                 if (pos < ypcm->last_pos)
369                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
370                 else
371                         delta = pos - ypcm->last_pos;
372                 ypcm->period_pos += delta;
373                 ypcm->last_pos = pos;
374                 if (ypcm->period_pos >= ypcm->period_size) {
375                         ypcm->period_pos %= ypcm->period_size;
376                         /*
377                         dev_dbg(chip->card->dev,
378                                "done - active_bank = 0x%x, start = 0x%x\n",
379                                chip->active_bank,
380                                voice->bank[chip->active_bank].start);
381                         */
382                         spin_unlock(&chip->reg_lock);
383                         snd_pcm_period_elapsed(substream);
384                         spin_lock(&chip->reg_lock);
385                 }
386         }
387         spin_unlock(&chip->reg_lock);
388 }
389
390 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
391                                        int cmd)
392 {
393         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
394         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
395         struct snd_kcontrol *kctl = NULL;
396         int result = 0;
397
398         spin_lock(&chip->reg_lock);
399         if (ypcm->voices[0] == NULL) {
400                 result = -EINVAL;
401                 goto __unlock;
402         }
403         switch (cmd) {
404         case SNDRV_PCM_TRIGGER_START:
405         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
406         case SNDRV_PCM_TRIGGER_RESUME:
407                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
408                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
409                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
410                 ypcm->running = 1;
411                 break;
412         case SNDRV_PCM_TRIGGER_STOP:
413                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
414                         kctl = chip->pcm_mixer[substream->number].ctl;
415                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
416                 }
417                 /* fall through */
418         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
419         case SNDRV_PCM_TRIGGER_SUSPEND:
420                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
421                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
422                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
423                 ypcm->running = 0;
424                 break;
425         default:
426                 result = -EINVAL;
427                 break;
428         }
429       __unlock:
430         spin_unlock(&chip->reg_lock);
431         if (kctl)
432                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
433         return result;
434 }
435 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
436                                       int cmd)
437 {
438         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
439         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
440         int result = 0;
441         u32 tmp;
442
443         spin_lock(&chip->reg_lock);
444         switch (cmd) {
445         case SNDRV_PCM_TRIGGER_START:
446         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
447         case SNDRV_PCM_TRIGGER_RESUME:
448                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
449                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
450                 ypcm->running = 1;
451                 break;
452         case SNDRV_PCM_TRIGGER_STOP:
453         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
454         case SNDRV_PCM_TRIGGER_SUSPEND:
455                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
456                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
457                 ypcm->running = 0;
458                 break;
459         default:
460                 result = -EINVAL;
461                 break;
462         }
463         spin_unlock(&chip->reg_lock);
464         return result;
465 }
466
467 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
468 {
469         int err;
470
471         if (ypcm->voices[1] != NULL && voices < 2) {
472                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
473                 ypcm->voices[1] = NULL;
474         }
475         if (voices == 1 && ypcm->voices[0] != NULL)
476                 return 0;               /* already allocated */
477         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
478                 return 0;               /* already allocated */
479         if (voices > 1) {
480                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
481                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
482                         ypcm->voices[0] = NULL;
483                 }               
484         }
485         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
486         if (err < 0)
487                 return err;
488         ypcm->voices[0]->ypcm = ypcm;
489         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
490         if (voices > 1) {
491                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
492                 ypcm->voices[1]->ypcm = ypcm;
493         }
494         return 0;
495 }
496
497 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
498                                       struct snd_pcm_runtime *runtime,
499                                       int has_pcm_volume)
500 {
501         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
502         u32 format;
503         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
504         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
505         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
506         struct snd_ymfpci_playback_bank *bank;
507         unsigned int nbank;
508         u32 vol_left, vol_right;
509         u8 use_left, use_right;
510         unsigned long flags;
511
512         if (snd_BUG_ON(!voice))
513                 return;
514         if (runtime->channels == 1) {
515                 use_left = 1;
516                 use_right = 1;
517         } else {
518                 use_left = (voiceidx & 1) == 0;
519                 use_right = !use_left;
520         }
521         if (has_pcm_volume) {
522                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
523                                        [ypcm->substream->number].left << 15);
524                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
525                                         [ypcm->substream->number].right << 15);
526         } else {
527                 vol_left = cpu_to_le32(0x40000000);
528                 vol_right = cpu_to_le32(0x40000000);
529         }
530         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
531         format = runtime->channels == 2 ? 0x00010000 : 0;
532         if (snd_pcm_format_width(runtime->format) == 8)
533                 format |= 0x80000000;
534         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
535                  runtime->rate == 44100 && runtime->channels == 2 &&
536                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
537                                    ypcm->chip->src441_used == voice->number)) {
538                 ypcm->chip->src441_used = voice->number;
539                 ypcm->use_441_slot = 1;
540                 format |= 0x10000000;
541         }
542         if (ypcm->chip->src441_used == voice->number &&
543             (format & 0x10000000) == 0) {
544                 ypcm->chip->src441_used = -1;
545                 ypcm->use_441_slot = 0;
546         }
547         if (runtime->channels == 2 && (voiceidx & 1) != 0)
548                 format |= 1;
549         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
550         for (nbank = 0; nbank < 2; nbank++) {
551                 bank = &voice->bank[nbank];
552                 memset(bank, 0, sizeof(*bank));
553                 bank->format = cpu_to_le32(format);
554                 bank->base = cpu_to_le32(runtime->dma_addr);
555                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
556                 bank->lpfQ = cpu_to_le32(lpfQ);
557                 bank->delta =
558                 bank->delta_end = cpu_to_le32(delta);
559                 bank->lpfK =
560                 bank->lpfK_end = cpu_to_le32(lpfK);
561                 bank->eg_gain =
562                 bank->eg_gain_end = cpu_to_le32(0x40000000);
563
564                 if (ypcm->output_front) {
565                         if (use_left) {
566                                 bank->left_gain =
567                                 bank->left_gain_end = vol_left;
568                         }
569                         if (use_right) {
570                                 bank->right_gain =
571                                 bank->right_gain_end = vol_right;
572                         }
573                 }
574                 if (ypcm->output_rear) {
575                         if (!ypcm->swap_rear) {
576                                 if (use_left) {
577                                         bank->eff2_gain =
578                                         bank->eff2_gain_end = vol_left;
579                                 }
580                                 if (use_right) {
581                                         bank->eff3_gain =
582                                         bank->eff3_gain_end = vol_right;
583                                 }
584                         } else {
585                                 /* The SPDIF out channels seem to be swapped, so we have
586                                  * to swap them here, too.  The rear analog out channels
587                                  * will be wrong, but otherwise AC3 would not work.
588                                  */
589                                 if (use_left) {
590                                         bank->eff3_gain =
591                                         bank->eff3_gain_end = vol_left;
592                                 }
593                                 if (use_right) {
594                                         bank->eff2_gain =
595                                         bank->eff2_gain_end = vol_right;
596                                 }
597                         }
598                 }
599         }
600 }
601
602 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
603 {
604         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
605                                 4096, &chip->ac3_tmp_base) < 0)
606                 return -ENOMEM;
607
608         chip->bank_effect[3][0]->base =
609         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
610         chip->bank_effect[3][0]->loop_end =
611         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
612         chip->bank_effect[4][0]->base =
613         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
614         chip->bank_effect[4][0]->loop_end =
615         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
616
617         spin_lock_irq(&chip->reg_lock);
618         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
619                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
620         spin_unlock_irq(&chip->reg_lock);
621         return 0;
622 }
623
624 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
625 {
626         spin_lock_irq(&chip->reg_lock);
627         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
628                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
629         spin_unlock_irq(&chip->reg_lock);
630         // snd_ymfpci_irq_wait(chip);
631         if (chip->ac3_tmp_base.area) {
632                 snd_dma_free_pages(&chip->ac3_tmp_base);
633                 chip->ac3_tmp_base.area = NULL;
634         }
635         return 0;
636 }
637
638 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
639                                          struct snd_pcm_hw_params *hw_params)
640 {
641         struct snd_pcm_runtime *runtime = substream->runtime;
642         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
643         int err;
644
645         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
646                 return err;
647         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
648                 return err;
649         return 0;
650 }
651
652 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
653 {
654         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
655         struct snd_pcm_runtime *runtime = substream->runtime;
656         struct snd_ymfpci_pcm *ypcm;
657         
658         if (runtime->private_data == NULL)
659                 return 0;
660         ypcm = runtime->private_data;
661
662         /* wait, until the PCI operations are not finished */
663         snd_ymfpci_irq_wait(chip);
664         snd_pcm_lib_free_pages(substream);
665         if (ypcm->voices[1]) {
666                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
667                 ypcm->voices[1] = NULL;
668         }
669         if (ypcm->voices[0]) {
670                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
671                 ypcm->voices[0] = NULL;
672         }
673         return 0;
674 }
675
676 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
677 {
678         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
679         struct snd_pcm_runtime *runtime = substream->runtime;
680         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
681         struct snd_kcontrol *kctl;
682         unsigned int nvoice;
683
684         ypcm->period_size = runtime->period_size;
685         ypcm->buffer_size = runtime->buffer_size;
686         ypcm->period_pos = 0;
687         ypcm->last_pos = 0;
688         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
689                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
690                                           substream->pcm == chip->pcm);
691
692         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
693                 kctl = chip->pcm_mixer[substream->number].ctl;
694                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
695                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
696         }
697         return 0;
698 }
699
700 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
701                                         struct snd_pcm_hw_params *hw_params)
702 {
703         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
704 }
705
706 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
707 {
708         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
709
710         /* wait, until the PCI operations are not finished */
711         snd_ymfpci_irq_wait(chip);
712         return snd_pcm_lib_free_pages(substream);
713 }
714
715 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
716 {
717         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
718         struct snd_pcm_runtime *runtime = substream->runtime;
719         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
720         struct snd_ymfpci_capture_bank * bank;
721         int nbank;
722         u32 rate, format;
723
724         ypcm->period_size = runtime->period_size;
725         ypcm->buffer_size = runtime->buffer_size;
726         ypcm->period_pos = 0;
727         ypcm->last_pos = 0;
728         ypcm->shift = 0;
729         rate = ((48000 * 4096) / runtime->rate) - 1;
730         format = 0;
731         if (runtime->channels == 2) {
732                 format |= 2;
733                 ypcm->shift++;
734         }
735         if (snd_pcm_format_width(runtime->format) == 8)
736                 format |= 1;
737         else
738                 ypcm->shift++;
739         switch (ypcm->capture_bank_number) {
740         case 0:
741                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
742                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
743                 break;
744         case 1:
745                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
746                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
747                 break;
748         }
749         for (nbank = 0; nbank < 2; nbank++) {
750                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
751                 bank->base = cpu_to_le32(runtime->dma_addr);
752                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
753                 bank->start = 0;
754                 bank->num_of_loops = 0;
755         }
756         return 0;
757 }
758
759 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
760 {
761         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
762         struct snd_pcm_runtime *runtime = substream->runtime;
763         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
764         struct snd_ymfpci_voice *voice = ypcm->voices[0];
765
766         if (!(ypcm->running && voice))
767                 return 0;
768         return le32_to_cpu(voice->bank[chip->active_bank].start);
769 }
770
771 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
772 {
773         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
774         struct snd_pcm_runtime *runtime = substream->runtime;
775         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
776
777         if (!ypcm->running)
778                 return 0;
779         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
780 }
781
782 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
783 {
784         wait_queue_t wait;
785         int loops = 4;
786
787         while (loops-- > 0) {
788                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
789                         continue;
790                 init_waitqueue_entry(&wait, current);
791                 add_wait_queue(&chip->interrupt_sleep, &wait);
792                 atomic_inc(&chip->interrupt_sleep_count);
793                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
794                 remove_wait_queue(&chip->interrupt_sleep, &wait);
795         }
796 }
797
798 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
799 {
800         struct snd_ymfpci *chip = dev_id;
801         u32 status, nvoice, mode;
802         struct snd_ymfpci_voice *voice;
803
804         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
805         if (status & 0x80000000) {
806                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
807                 spin_lock(&chip->voice_lock);
808                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
809                         voice = &chip->voices[nvoice];
810                         if (voice->interrupt)
811                                 voice->interrupt(chip, voice);
812                 }
813                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
814                         if (chip->capture_substream[nvoice])
815                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
816                 }
817 #if 0
818                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
819                         if (chip->effect_substream[nvoice])
820                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
821                 }
822 #endif
823                 spin_unlock(&chip->voice_lock);
824                 spin_lock(&chip->reg_lock);
825                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
826                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
827                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
828                 spin_unlock(&chip->reg_lock);
829
830                 if (atomic_read(&chip->interrupt_sleep_count)) {
831                         atomic_set(&chip->interrupt_sleep_count, 0);
832                         wake_up(&chip->interrupt_sleep);
833                 }
834         }
835
836         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
837         if (status & 1) {
838                 if (chip->timer)
839                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
840         }
841         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
842
843         if (chip->rawmidi)
844                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
845         return IRQ_HANDLED;
846 }
847
848 static struct snd_pcm_hardware snd_ymfpci_playback =
849 {
850         .info =                 (SNDRV_PCM_INFO_MMAP |
851                                  SNDRV_PCM_INFO_MMAP_VALID | 
852                                  SNDRV_PCM_INFO_INTERLEAVED |
853                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
854                                  SNDRV_PCM_INFO_PAUSE |
855                                  SNDRV_PCM_INFO_RESUME),
856         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
857         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
858         .rate_min =             8000,
859         .rate_max =             48000,
860         .channels_min =         1,
861         .channels_max =         2,
862         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
863         .period_bytes_min =     64,
864         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
865         .periods_min =          3,
866         .periods_max =          1024,
867         .fifo_size =            0,
868 };
869
870 static struct snd_pcm_hardware snd_ymfpci_capture =
871 {
872         .info =                 (SNDRV_PCM_INFO_MMAP |
873                                  SNDRV_PCM_INFO_MMAP_VALID |
874                                  SNDRV_PCM_INFO_INTERLEAVED |
875                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
876                                  SNDRV_PCM_INFO_PAUSE |
877                                  SNDRV_PCM_INFO_RESUME),
878         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
879         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
880         .rate_min =             8000,
881         .rate_max =             48000,
882         .channels_min =         1,
883         .channels_max =         2,
884         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
885         .period_bytes_min =     64,
886         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
887         .periods_min =          3,
888         .periods_max =          1024,
889         .fifo_size =            0,
890 };
891
892 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
893 {
894         kfree(runtime->private_data);
895 }
896
897 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
898 {
899         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
900         struct snd_pcm_runtime *runtime = substream->runtime;
901         struct snd_ymfpci_pcm *ypcm;
902         int err;
903
904         runtime->hw = snd_ymfpci_playback;
905         /* FIXME? True value is 256/48 = 5.33333 ms */
906         err = snd_pcm_hw_constraint_minmax(runtime,
907                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
908                                            5334, UINT_MAX);
909         if (err < 0)
910                 return err;
911         err = snd_pcm_hw_rule_noresample(runtime, 48000);
912         if (err < 0)
913                 return err;
914
915         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
916         if (ypcm == NULL)
917                 return -ENOMEM;
918         ypcm->chip = chip;
919         ypcm->type = PLAYBACK_VOICE;
920         ypcm->substream = substream;
921         runtime->private_data = ypcm;
922         runtime->private_free = snd_ymfpci_pcm_free_substream;
923         return 0;
924 }
925
926 /* call with spinlock held */
927 static void ymfpci_open_extension(struct snd_ymfpci *chip)
928 {
929         if (! chip->rear_opened) {
930                 if (! chip->spdif_opened) /* set AC3 */
931                         snd_ymfpci_writel(chip, YDSXGR_MODE,
932                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
933                 /* enable second codec (4CHEN) */
934                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
935                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
936         }
937 }
938
939 /* call with spinlock held */
940 static void ymfpci_close_extension(struct snd_ymfpci *chip)
941 {
942         if (! chip->rear_opened) {
943                 if (! chip->spdif_opened)
944                         snd_ymfpci_writel(chip, YDSXGR_MODE,
945                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
946                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
947                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
948         }
949 }
950
951 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
952 {
953         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
954         struct snd_pcm_runtime *runtime = substream->runtime;
955         struct snd_ymfpci_pcm *ypcm;
956         int err;
957         
958         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
959                 return err;
960         ypcm = runtime->private_data;
961         ypcm->output_front = 1;
962         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
963         ypcm->swap_rear = 0;
964         spin_lock_irq(&chip->reg_lock);
965         if (ypcm->output_rear) {
966                 ymfpci_open_extension(chip);
967                 chip->rear_opened++;
968         }
969         spin_unlock_irq(&chip->reg_lock);
970         return 0;
971 }
972
973 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
974 {
975         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
976         struct snd_pcm_runtime *runtime = substream->runtime;
977         struct snd_ymfpci_pcm *ypcm;
978         int err;
979         
980         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
981                 return err;
982         ypcm = runtime->private_data;
983         ypcm->output_front = 0;
984         ypcm->output_rear = 1;
985         ypcm->swap_rear = 1;
986         spin_lock_irq(&chip->reg_lock);
987         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
988                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
989         ymfpci_open_extension(chip);
990         chip->spdif_pcm_bits = chip->spdif_bits;
991         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
992         chip->spdif_opened++;
993         spin_unlock_irq(&chip->reg_lock);
994
995         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
996         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
997                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
998         return 0;
999 }
1000
1001 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
1002 {
1003         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1004         struct snd_pcm_runtime *runtime = substream->runtime;
1005         struct snd_ymfpci_pcm *ypcm;
1006         int err;
1007         
1008         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
1009                 return err;
1010         ypcm = runtime->private_data;
1011         ypcm->output_front = 0;
1012         ypcm->output_rear = 1;
1013         ypcm->swap_rear = 0;
1014         spin_lock_irq(&chip->reg_lock);
1015         ymfpci_open_extension(chip);
1016         chip->rear_opened++;
1017         spin_unlock_irq(&chip->reg_lock);
1018         return 0;
1019 }
1020
1021 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1022                                    u32 capture_bank_number)
1023 {
1024         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1025         struct snd_pcm_runtime *runtime = substream->runtime;
1026         struct snd_ymfpci_pcm *ypcm;
1027         int err;
1028
1029         runtime->hw = snd_ymfpci_capture;
1030         /* FIXME? True value is 256/48 = 5.33333 ms */
1031         err = snd_pcm_hw_constraint_minmax(runtime,
1032                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1033                                            5334, UINT_MAX);
1034         if (err < 0)
1035                 return err;
1036         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1037         if (err < 0)
1038                 return err;
1039
1040         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1041         if (ypcm == NULL)
1042                 return -ENOMEM;
1043         ypcm->chip = chip;
1044         ypcm->type = capture_bank_number + CAPTURE_REC;
1045         ypcm->substream = substream;    
1046         ypcm->capture_bank_number = capture_bank_number;
1047         chip->capture_substream[capture_bank_number] = substream;
1048         runtime->private_data = ypcm;
1049         runtime->private_free = snd_ymfpci_pcm_free_substream;
1050         snd_ymfpci_hw_start(chip);
1051         return 0;
1052 }
1053
1054 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1055 {
1056         return snd_ymfpci_capture_open(substream, 0);
1057 }
1058
1059 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1060 {
1061         return snd_ymfpci_capture_open(substream, 1);
1062 }
1063
1064 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1065 {
1066         return 0;
1067 }
1068
1069 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1070 {
1071         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1072         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1073
1074         spin_lock_irq(&chip->reg_lock);
1075         if (ypcm->output_rear && chip->rear_opened > 0) {
1076                 chip->rear_opened--;
1077                 ymfpci_close_extension(chip);
1078         }
1079         spin_unlock_irq(&chip->reg_lock);
1080         return snd_ymfpci_playback_close_1(substream);
1081 }
1082
1083 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1084 {
1085         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1086
1087         spin_lock_irq(&chip->reg_lock);
1088         chip->spdif_opened = 0;
1089         ymfpci_close_extension(chip);
1090         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1091                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1092         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1093         spin_unlock_irq(&chip->reg_lock);
1094         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1095         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1096                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1097         return snd_ymfpci_playback_close_1(substream);
1098 }
1099
1100 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1101 {
1102         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1103
1104         spin_lock_irq(&chip->reg_lock);
1105         if (chip->rear_opened > 0) {
1106                 chip->rear_opened--;
1107                 ymfpci_close_extension(chip);
1108         }
1109         spin_unlock_irq(&chip->reg_lock);
1110         return snd_ymfpci_playback_close_1(substream);
1111 }
1112
1113 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1114 {
1115         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1116         struct snd_pcm_runtime *runtime = substream->runtime;
1117         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1118
1119         if (ypcm != NULL) {
1120                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1121                 snd_ymfpci_hw_stop(chip);
1122         }
1123         return 0;
1124 }
1125
1126 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1127         .open =                 snd_ymfpci_playback_open,
1128         .close =                snd_ymfpci_playback_close,
1129         .ioctl =                snd_pcm_lib_ioctl,
1130         .hw_params =            snd_ymfpci_playback_hw_params,
1131         .hw_free =              snd_ymfpci_playback_hw_free,
1132         .prepare =              snd_ymfpci_playback_prepare,
1133         .trigger =              snd_ymfpci_playback_trigger,
1134         .pointer =              snd_ymfpci_playback_pointer,
1135 };
1136
1137 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1138         .open =                 snd_ymfpci_capture_rec_open,
1139         .close =                snd_ymfpci_capture_close,
1140         .ioctl =                snd_pcm_lib_ioctl,
1141         .hw_params =            snd_ymfpci_capture_hw_params,
1142         .hw_free =              snd_ymfpci_capture_hw_free,
1143         .prepare =              snd_ymfpci_capture_prepare,
1144         .trigger =              snd_ymfpci_capture_trigger,
1145         .pointer =              snd_ymfpci_capture_pointer,
1146 };
1147
1148 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1149 {
1150         struct snd_pcm *pcm;
1151         int err;
1152
1153         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1154                 return err;
1155         pcm->private_data = chip;
1156
1157         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1158         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1159
1160         /* global setup */
1161         pcm->info_flags = 0;
1162         strcpy(pcm->name, "YMFPCI");
1163         chip->pcm = pcm;
1164
1165         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1166                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1167
1168         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1169                                      snd_pcm_std_chmaps, 2, 0, NULL);
1170 }
1171
1172 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1173         .open =                 snd_ymfpci_capture_ac97_open,
1174         .close =                snd_ymfpci_capture_close,
1175         .ioctl =                snd_pcm_lib_ioctl,
1176         .hw_params =            snd_ymfpci_capture_hw_params,
1177         .hw_free =              snd_ymfpci_capture_hw_free,
1178         .prepare =              snd_ymfpci_capture_prepare,
1179         .trigger =              snd_ymfpci_capture_trigger,
1180         .pointer =              snd_ymfpci_capture_pointer,
1181 };
1182
1183 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1184 {
1185         struct snd_pcm *pcm;
1186         int err;
1187
1188         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1189                 return err;
1190         pcm->private_data = chip;
1191
1192         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1193
1194         /* global setup */
1195         pcm->info_flags = 0;
1196         sprintf(pcm->name, "YMFPCI - %s",
1197                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1198         chip->pcm2 = pcm;
1199
1200         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1201                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1202
1203         return 0;
1204 }
1205
1206 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1207         .open =                 snd_ymfpci_playback_spdif_open,
1208         .close =                snd_ymfpci_playback_spdif_close,
1209         .ioctl =                snd_pcm_lib_ioctl,
1210         .hw_params =            snd_ymfpci_playback_hw_params,
1211         .hw_free =              snd_ymfpci_playback_hw_free,
1212         .prepare =              snd_ymfpci_playback_prepare,
1213         .trigger =              snd_ymfpci_playback_trigger,
1214         .pointer =              snd_ymfpci_playback_pointer,
1215 };
1216
1217 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1218 {
1219         struct snd_pcm *pcm;
1220         int err;
1221
1222         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1223                 return err;
1224         pcm->private_data = chip;
1225
1226         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1227
1228         /* global setup */
1229         pcm->info_flags = 0;
1230         strcpy(pcm->name, "YMFPCI - IEC958");
1231         chip->pcm_spdif = pcm;
1232
1233         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1234                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1235
1236         return 0;
1237 }
1238
1239 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1240         .open =                 snd_ymfpci_playback_4ch_open,
1241         .close =                snd_ymfpci_playback_4ch_close,
1242         .ioctl =                snd_pcm_lib_ioctl,
1243         .hw_params =            snd_ymfpci_playback_hw_params,
1244         .hw_free =              snd_ymfpci_playback_hw_free,
1245         .prepare =              snd_ymfpci_playback_prepare,
1246         .trigger =              snd_ymfpci_playback_trigger,
1247         .pointer =              snd_ymfpci_playback_pointer,
1248 };
1249
1250 static const struct snd_pcm_chmap_elem surround_map[] = {
1251         { .channels = 1,
1252           .map = { SNDRV_CHMAP_MONO } },
1253         { .channels = 2,
1254           .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1255         { }
1256 };
1257
1258 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1259 {
1260         struct snd_pcm *pcm;
1261         int err;
1262
1263         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1264                 return err;
1265         pcm->private_data = chip;
1266
1267         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1268
1269         /* global setup */
1270         pcm->info_flags = 0;
1271         strcpy(pcm->name, "YMFPCI - Rear PCM");
1272         chip->pcm_4ch = pcm;
1273
1274         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1275                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1276
1277         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1278                                      surround_map, 2, 0, NULL);
1279 }
1280
1281 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1282 {
1283         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1284         uinfo->count = 1;
1285         return 0;
1286 }
1287
1288 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1289                                         struct snd_ctl_elem_value *ucontrol)
1290 {
1291         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1292
1293         spin_lock_irq(&chip->reg_lock);
1294         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1295         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1296         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1297         spin_unlock_irq(&chip->reg_lock);
1298         return 0;
1299 }
1300
1301 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1302                                          struct snd_ctl_elem_value *ucontrol)
1303 {
1304         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1305         unsigned int val;
1306         int change;
1307
1308         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1309               (ucontrol->value.iec958.status[1] << 8);
1310         spin_lock_irq(&chip->reg_lock);
1311         change = chip->spdif_bits != val;
1312         chip->spdif_bits = val;
1313         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1314                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1315         spin_unlock_irq(&chip->reg_lock);
1316         return change;
1317 }
1318
1319 static struct snd_kcontrol_new snd_ymfpci_spdif_default =
1320 {
1321         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1322         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1323         .info =         snd_ymfpci_spdif_default_info,
1324         .get =          snd_ymfpci_spdif_default_get,
1325         .put =          snd_ymfpci_spdif_default_put
1326 };
1327
1328 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1329 {
1330         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1331         uinfo->count = 1;
1332         return 0;
1333 }
1334
1335 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1336                                       struct snd_ctl_elem_value *ucontrol)
1337 {
1338         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1339
1340         spin_lock_irq(&chip->reg_lock);
1341         ucontrol->value.iec958.status[0] = 0x3e;
1342         ucontrol->value.iec958.status[1] = 0xff;
1343         spin_unlock_irq(&chip->reg_lock);
1344         return 0;
1345 }
1346
1347 static struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1348 {
1349         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1350         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1351         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1352         .info =         snd_ymfpci_spdif_mask_info,
1353         .get =          snd_ymfpci_spdif_mask_get,
1354 };
1355
1356 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1357 {
1358         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1359         uinfo->count = 1;
1360         return 0;
1361 }
1362
1363 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1364                                         struct snd_ctl_elem_value *ucontrol)
1365 {
1366         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1367
1368         spin_lock_irq(&chip->reg_lock);
1369         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1370         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1371         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1372         spin_unlock_irq(&chip->reg_lock);
1373         return 0;
1374 }
1375
1376 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1377                                         struct snd_ctl_elem_value *ucontrol)
1378 {
1379         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1380         unsigned int val;
1381         int change;
1382
1383         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1384               (ucontrol->value.iec958.status[1] << 8);
1385         spin_lock_irq(&chip->reg_lock);
1386         change = chip->spdif_pcm_bits != val;
1387         chip->spdif_pcm_bits = val;
1388         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1389                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1390         spin_unlock_irq(&chip->reg_lock);
1391         return change;
1392 }
1393
1394 static struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1395 {
1396         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1397         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1398         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1399         .info =         snd_ymfpci_spdif_stream_info,
1400         .get =          snd_ymfpci_spdif_stream_get,
1401         .put =          snd_ymfpci_spdif_stream_put
1402 };
1403
1404 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1405 {
1406         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1407
1408         return snd_ctl_enum_info(info, 1, 3, texts);
1409 }
1410
1411 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1412 {
1413         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1414         u16 reg;
1415
1416         spin_lock_irq(&chip->reg_lock);
1417         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1418         spin_unlock_irq(&chip->reg_lock);
1419         if (!(reg & 0x100))
1420                 value->value.enumerated.item[0] = 0;
1421         else
1422                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1423         return 0;
1424 }
1425
1426 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1427 {
1428         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1429         u16 reg, old_reg;
1430
1431         spin_lock_irq(&chip->reg_lock);
1432         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1433         if (value->value.enumerated.item[0] == 0)
1434                 reg = old_reg & ~0x100;
1435         else
1436                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1437         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1438         spin_unlock_irq(&chip->reg_lock);
1439         return reg != old_reg;
1440 }
1441
1442 static struct snd_kcontrol_new snd_ymfpci_drec_source = {
1443         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1444         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1445         .name =         "Direct Recording Source",
1446         .info =         snd_ymfpci_drec_source_info,
1447         .get =          snd_ymfpci_drec_source_get,
1448         .put =          snd_ymfpci_drec_source_put
1449 };
1450
1451 /*
1452  *  Mixer controls
1453  */
1454
1455 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1456 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1457   .info = snd_ymfpci_info_single, \
1458   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1459   .private_value = ((reg) | ((shift) << 16)) }
1460
1461 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1462
1463 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1464                                  struct snd_ctl_elem_value *ucontrol)
1465 {
1466         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1467         int reg = kcontrol->private_value & 0xffff;
1468         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1469         unsigned int mask = 1;
1470         
1471         switch (reg) {
1472         case YDSXGR_SPDIFOUTCTRL: break;
1473         case YDSXGR_SPDIFINCTRL: break;
1474         default: return -EINVAL;
1475         }
1476         ucontrol->value.integer.value[0] =
1477                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1478         return 0;
1479 }
1480
1481 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1482                                  struct snd_ctl_elem_value *ucontrol)
1483 {
1484         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1485         int reg = kcontrol->private_value & 0xffff;
1486         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1487         unsigned int mask = 1;
1488         int change;
1489         unsigned int val, oval;
1490         
1491         switch (reg) {
1492         case YDSXGR_SPDIFOUTCTRL: break;
1493         case YDSXGR_SPDIFINCTRL: break;
1494         default: return -EINVAL;
1495         }
1496         val = (ucontrol->value.integer.value[0] & mask);
1497         val <<= shift;
1498         spin_lock_irq(&chip->reg_lock);
1499         oval = snd_ymfpci_readl(chip, reg);
1500         val = (oval & ~(mask << shift)) | val;
1501         change = val != oval;
1502         snd_ymfpci_writel(chip, reg, val);
1503         spin_unlock_irq(&chip->reg_lock);
1504         return change;
1505 }
1506
1507 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1508
1509 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1510 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1511   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1512   .info = snd_ymfpci_info_double, \
1513   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1514   .private_value = reg, \
1515   .tlv = { .p = db_scale_native } }
1516
1517 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1518 {
1519         unsigned int reg = kcontrol->private_value;
1520
1521         if (reg < 0x80 || reg >= 0xc0)
1522                 return -EINVAL;
1523         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1524         uinfo->count = 2;
1525         uinfo->value.integer.min = 0;
1526         uinfo->value.integer.max = 16383;
1527         return 0;
1528 }
1529
1530 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1531 {
1532         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1533         unsigned int reg = kcontrol->private_value;
1534         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1535         unsigned int val;
1536         
1537         if (reg < 0x80 || reg >= 0xc0)
1538                 return -EINVAL;
1539         spin_lock_irq(&chip->reg_lock);
1540         val = snd_ymfpci_readl(chip, reg);
1541         spin_unlock_irq(&chip->reg_lock);
1542         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1543         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1544         return 0;
1545 }
1546
1547 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1548 {
1549         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1550         unsigned int reg = kcontrol->private_value;
1551         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1552         int change;
1553         unsigned int val1, val2, oval;
1554         
1555         if (reg < 0x80 || reg >= 0xc0)
1556                 return -EINVAL;
1557         val1 = ucontrol->value.integer.value[0] & mask;
1558         val2 = ucontrol->value.integer.value[1] & mask;
1559         val1 <<= shift_left;
1560         val2 <<= shift_right;
1561         spin_lock_irq(&chip->reg_lock);
1562         oval = snd_ymfpci_readl(chip, reg);
1563         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1564         change = val1 != oval;
1565         snd_ymfpci_writel(chip, reg, val1);
1566         spin_unlock_irq(&chip->reg_lock);
1567         return change;
1568 }
1569
1570 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1571                                        struct snd_ctl_elem_value *ucontrol)
1572 {
1573         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1574         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1575         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1576         int change;
1577         unsigned int value, oval;
1578         
1579         value = ucontrol->value.integer.value[0] & 0x3fff;
1580         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1581         spin_lock_irq(&chip->reg_lock);
1582         oval = snd_ymfpci_readl(chip, reg);
1583         change = value != oval;
1584         snd_ymfpci_writel(chip, reg, value);
1585         snd_ymfpci_writel(chip, reg2, value);
1586         spin_unlock_irq(&chip->reg_lock);
1587         return change;
1588 }
1589
1590 /*
1591  * 4ch duplication
1592  */
1593 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1594
1595 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1596 {
1597         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1598         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1599         return 0;
1600 }
1601
1602 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1603 {
1604         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1605         int change;
1606         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1607         if (change)
1608                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1609         return change;
1610 }
1611
1612 static struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1613         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1614         .name = "4ch Duplication",
1615         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1616         .info = snd_ymfpci_info_dup4ch,
1617         .get = snd_ymfpci_get_dup4ch,
1618         .put = snd_ymfpci_put_dup4ch,
1619 };
1620
1621 static struct snd_kcontrol_new snd_ymfpci_controls[] = {
1622 {
1623         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1624         .name = "Wave Playback Volume",
1625         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1626                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1627         .info = snd_ymfpci_info_double,
1628         .get = snd_ymfpci_get_double,
1629         .put = snd_ymfpci_put_nativedacvol,
1630         .private_value = YDSXGR_NATIVEDACOUTVOL,
1631         .tlv = { .p = db_scale_native },
1632 },
1633 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1634 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1635 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1636 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1637 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1638 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1639 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1640 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1641 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1642 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1643 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1644 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1645 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1646 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1647 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1648 };
1649
1650
1651 /*
1652  * GPIO
1653  */
1654
1655 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1656 {
1657         u16 reg, mode;
1658         unsigned long flags;
1659
1660         spin_lock_irqsave(&chip->reg_lock, flags);
1661         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1662         reg &= ~(1 << (pin + 8));
1663         reg |= (1 << pin);
1664         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1665         /* set the level mode for input line */
1666         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1667         mode &= ~(3 << (pin * 2));
1668         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1669         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1670         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1671         spin_unlock_irqrestore(&chip->reg_lock, flags);
1672         return (mode >> pin) & 1;
1673 }
1674
1675 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1676 {
1677         u16 reg;
1678         unsigned long flags;
1679
1680         spin_lock_irqsave(&chip->reg_lock, flags);
1681         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1682         reg &= ~(1 << pin);
1683         reg &= ~(1 << (pin + 8));
1684         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1685         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1686         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1687         spin_unlock_irqrestore(&chip->reg_lock, flags);
1688
1689         return 0;
1690 }
1691
1692 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1693
1694 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1695 {
1696         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1697         int pin = (int)kcontrol->private_value;
1698         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1699         return 0;
1700 }
1701
1702 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1703 {
1704         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1705         int pin = (int)kcontrol->private_value;
1706
1707         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1708                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1709                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1710                 return 1;
1711         }
1712         return 0;
1713 }
1714
1715 static struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1716         .name = "Shared Rear/Line-In Switch",
1717         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1718         .info = snd_ymfpci_gpio_sw_info,
1719         .get = snd_ymfpci_gpio_sw_get,
1720         .put = snd_ymfpci_gpio_sw_put,
1721         .private_value = 2,
1722 };
1723
1724 /*
1725  * PCM voice volume
1726  */
1727
1728 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1729                                    struct snd_ctl_elem_info *uinfo)
1730 {
1731         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1732         uinfo->count = 2;
1733         uinfo->value.integer.min = 0;
1734         uinfo->value.integer.max = 0x8000;
1735         return 0;
1736 }
1737
1738 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1739                                   struct snd_ctl_elem_value *ucontrol)
1740 {
1741         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1742         unsigned int subs = kcontrol->id.subdevice;
1743
1744         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1745         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1746         return 0;
1747 }
1748
1749 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1750                                   struct snd_ctl_elem_value *ucontrol)
1751 {
1752         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1753         unsigned int subs = kcontrol->id.subdevice;
1754         struct snd_pcm_substream *substream;
1755         unsigned long flags;
1756
1757         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1758             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1759                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1760                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1761                 if (chip->pcm_mixer[subs].left > 0x8000)
1762                         chip->pcm_mixer[subs].left = 0x8000;
1763                 if (chip->pcm_mixer[subs].right > 0x8000)
1764                         chip->pcm_mixer[subs].right = 0x8000;
1765
1766                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1767                 spin_lock_irqsave(&chip->voice_lock, flags);
1768                 if (substream->runtime && substream->runtime->private_data) {
1769                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1770                         if (!ypcm->use_441_slot)
1771                                 ypcm->update_pcm_vol = 2;
1772                 }
1773                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1774                 return 1;
1775         }
1776         return 0;
1777 }
1778
1779 static struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1780         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1781         .name = "PCM Playback Volume",
1782         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1783                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1784         .info = snd_ymfpci_pcm_vol_info,
1785         .get = snd_ymfpci_pcm_vol_get,
1786         .put = snd_ymfpci_pcm_vol_put,
1787 };
1788
1789
1790 /*
1791  *  Mixer routines
1792  */
1793
1794 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1795 {
1796         struct snd_ymfpci *chip = bus->private_data;
1797         chip->ac97_bus = NULL;
1798 }
1799
1800 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1801 {
1802         struct snd_ymfpci *chip = ac97->private_data;
1803         chip->ac97 = NULL;
1804 }
1805
1806 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1807 {
1808         struct snd_ac97_template ac97;
1809         struct snd_kcontrol *kctl;
1810         struct snd_pcm_substream *substream;
1811         unsigned int idx;
1812         int err;
1813         static struct snd_ac97_bus_ops ops = {
1814                 .write = snd_ymfpci_codec_write,
1815                 .read = snd_ymfpci_codec_read,
1816         };
1817
1818         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1819                 return err;
1820         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1821         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1822
1823         memset(&ac97, 0, sizeof(ac97));
1824         ac97.private_data = chip;
1825         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1826         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1827                 return err;
1828
1829         /* to be sure */
1830         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1831                              AC97_EA_VRA|AC97_EA_VRM, 0);
1832
1833         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1834                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1835                         return err;
1836         }
1837         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1838                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1839                 err = snd_ctl_add(chip->card, kctl);
1840                 if (err < 0)
1841                         return err;
1842         }
1843
1844         /* add S/PDIF control */
1845         if (snd_BUG_ON(!chip->pcm_spdif))
1846                 return -ENXIO;
1847         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1848                 return err;
1849         kctl->id.device = chip->pcm_spdif->device;
1850         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1851                 return err;
1852         kctl->id.device = chip->pcm_spdif->device;
1853         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1854                 return err;
1855         kctl->id.device = chip->pcm_spdif->device;
1856         chip->spdif_pcm_ctl = kctl;
1857
1858         /* direct recording source */
1859         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1860             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1861                 return err;
1862
1863         /*
1864          * shared rear/line-in
1865          */
1866         if (rear_switch) {
1867                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1868                         return err;
1869         }
1870
1871         /* per-voice volume */
1872         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1873         for (idx = 0; idx < 32; ++idx) {
1874                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1875                 if (!kctl)
1876                         return -ENOMEM;
1877                 kctl->id.device = chip->pcm->device;
1878                 kctl->id.subdevice = idx;
1879                 kctl->private_value = (unsigned long)substream;
1880                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1881                         return err;
1882                 chip->pcm_mixer[idx].left = 0x8000;
1883                 chip->pcm_mixer[idx].right = 0x8000;
1884                 chip->pcm_mixer[idx].ctl = kctl;
1885                 substream = substream->next;
1886         }
1887
1888         return 0;
1889 }
1890
1891
1892 /*
1893  * timer
1894  */
1895
1896 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1897 {
1898         struct snd_ymfpci *chip;
1899         unsigned long flags;
1900         unsigned int count;
1901
1902         chip = snd_timer_chip(timer);
1903         spin_lock_irqsave(&chip->reg_lock, flags);
1904         if (timer->sticks > 1) {
1905                 chip->timer_ticks = timer->sticks;
1906                 count = timer->sticks - 1;
1907         } else {
1908                 /*
1909                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1910                  * counting two ticks for each interrupt.
1911                  */
1912                 chip->timer_ticks = 2;
1913                 count = 2 - 1;
1914         }
1915         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1916         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1917         spin_unlock_irqrestore(&chip->reg_lock, flags);
1918         return 0;
1919 }
1920
1921 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1922 {
1923         struct snd_ymfpci *chip;
1924         unsigned long flags;
1925
1926         chip = snd_timer_chip(timer);
1927         spin_lock_irqsave(&chip->reg_lock, flags);
1928         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1929         spin_unlock_irqrestore(&chip->reg_lock, flags);
1930         return 0;
1931 }
1932
1933 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1934                                                unsigned long *num, unsigned long *den)
1935 {
1936         *num = 1;
1937         *den = 96000;
1938         return 0;
1939 }
1940
1941 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1942         .flags = SNDRV_TIMER_HW_AUTO,
1943         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1944         .ticks = 0x10000,
1945         .start = snd_ymfpci_timer_start,
1946         .stop = snd_ymfpci_timer_stop,
1947         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1948 };
1949
1950 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1951 {
1952         struct snd_timer *timer = NULL;
1953         struct snd_timer_id tid;
1954         int err;
1955
1956         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1957         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1958         tid.card = chip->card->number;
1959         tid.device = device;
1960         tid.subdevice = 0;
1961         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1962                 strcpy(timer->name, "YMFPCI timer");
1963                 timer->private_data = chip;
1964                 timer->hw = snd_ymfpci_timer_hw;
1965         }
1966         chip->timer = timer;
1967         return err;
1968 }
1969
1970
1971 /*
1972  *  proc interface
1973  */
1974
1975 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1976                                  struct snd_info_buffer *buffer)
1977 {
1978         struct snd_ymfpci *chip = entry->private_data;
1979         int i;
1980         
1981         snd_iprintf(buffer, "YMFPCI\n\n");
1982         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1983                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1984 }
1985
1986 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1987 {
1988         struct snd_info_entry *entry;
1989         
1990         if (! snd_card_proc_new(card, "ymfpci", &entry))
1991                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1992         return 0;
1993 }
1994
1995 /*
1996  *  initialization routines
1997  */
1998
1999 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
2000 {
2001         u8 cmd;
2002
2003         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
2004 #if 0 // force to reset
2005         if (cmd & 0x03) {
2006 #endif
2007                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2008                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
2009                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
2010                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
2011                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
2012 #if 0
2013         }
2014 #endif
2015 }
2016
2017 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2018 {
2019         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2020 }
2021
2022 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2023 {
2024         u32 val;
2025         int timeout = 1000;
2026
2027         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2028         if (val)
2029                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2030         while (timeout-- > 0) {
2031                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2032                 if ((val & 0x00000002) == 0)
2033                         break;
2034         }
2035 }
2036
2037 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2038 {
2039         int err, is_1e;
2040         const char *name;
2041
2042         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2043                                &chip->pci->dev);
2044         if (err >= 0) {
2045                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2046                         dev_err(chip->card->dev,
2047                                 "DSP microcode has wrong size\n");
2048                         err = -EINVAL;
2049                 }
2050         }
2051         if (err < 0)
2052                 return err;
2053         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2054                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2055                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2056                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2057         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2058         err = request_firmware(&chip->controller_microcode, name,
2059                                &chip->pci->dev);
2060         if (err >= 0) {
2061                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2062                         dev_err(chip->card->dev,
2063                                 "controller microcode has wrong size\n");
2064                         err = -EINVAL;
2065                 }
2066         }
2067         if (err < 0)
2068                 return err;
2069         return 0;
2070 }
2071
2072 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2073 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2074 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2075
2076 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2077 {
2078         int i;
2079         u16 ctrl;
2080         const __le32 *inst;
2081
2082         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2083         snd_ymfpci_disable_dsp(chip);
2084         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2085         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2086         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2087         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2088         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2089         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2090         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2091         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2092         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2093
2094         /* setup DSP instruction code */
2095         inst = (const __le32 *)chip->dsp_microcode->data;
2096         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2097                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2098                                   le32_to_cpu(inst[i]));
2099
2100         /* setup control instruction code */
2101         inst = (const __le32 *)chip->controller_microcode->data;
2102         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2103                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2104                                   le32_to_cpu(inst[i]));
2105
2106         snd_ymfpci_enable_dsp(chip);
2107 }
2108
2109 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2110 {
2111         long size, playback_ctrl_size;
2112         int voice, bank, reg;
2113         u8 *ptr;
2114         dma_addr_t ptr_addr;
2115
2116         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2117         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2118         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2119         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2120         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2121         
2122         size = ALIGN(playback_ctrl_size, 0x100) +
2123                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2124                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2125                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2126                chip->work_size;
2127         /* work_ptr must be aligned to 256 bytes, but it's already
2128            covered with the kernel page allocation mechanism */
2129         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2130                                 size, &chip->work_ptr) < 0) 
2131                 return -ENOMEM;
2132         ptr = chip->work_ptr.area;
2133         ptr_addr = chip->work_ptr.addr;
2134         memset(ptr, 0, size);   /* for sure */
2135
2136         chip->bank_base_playback = ptr;
2137         chip->bank_base_playback_addr = ptr_addr;
2138         chip->ctrl_playback = (u32 *)ptr;
2139         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2140         ptr += ALIGN(playback_ctrl_size, 0x100);
2141         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2142         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2143                 chip->voices[voice].number = voice;
2144                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2145                 chip->voices[voice].bank_addr = ptr_addr;
2146                 for (bank = 0; bank < 2; bank++) {
2147                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2148                         ptr += chip->bank_size_playback;
2149                         ptr_addr += chip->bank_size_playback;
2150                 }
2151         }
2152         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2153         ptr_addr = ALIGN(ptr_addr, 0x100);
2154         chip->bank_base_capture = ptr;
2155         chip->bank_base_capture_addr = ptr_addr;
2156         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2157                 for (bank = 0; bank < 2; bank++) {
2158                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2159                         ptr += chip->bank_size_capture;
2160                         ptr_addr += chip->bank_size_capture;
2161                 }
2162         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2163         ptr_addr = ALIGN(ptr_addr, 0x100);
2164         chip->bank_base_effect = ptr;
2165         chip->bank_base_effect_addr = ptr_addr;
2166         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2167                 for (bank = 0; bank < 2; bank++) {
2168                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2169                         ptr += chip->bank_size_effect;
2170                         ptr_addr += chip->bank_size_effect;
2171                 }
2172         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2173         ptr_addr = ALIGN(ptr_addr, 0x100);
2174         chip->work_base = ptr;
2175         chip->work_base_addr = ptr_addr;
2176         
2177         snd_BUG_ON(ptr + chip->work_size !=
2178                    chip->work_ptr.area + chip->work_ptr.bytes);
2179
2180         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2181         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2182         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2183         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2184         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2185
2186         /* S/PDIF output initialization */
2187         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2188         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2189         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2190
2191         /* S/PDIF input initialization */
2192         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2193
2194         /* digital mixer setup */
2195         for (reg = 0x80; reg < 0xc0; reg += 4)
2196                 snd_ymfpci_writel(chip, reg, 0);
2197         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2198         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2199         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2200         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2201         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2202         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2203         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2204         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2205         
2206         return 0;
2207 }
2208
2209 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2210 {
2211         u16 ctrl;
2212
2213         if (snd_BUG_ON(!chip))
2214                 return -EINVAL;
2215
2216         if (chip->res_reg_area) {       /* don't touch busy hardware */
2217                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2218                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2219                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2220                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2221                 snd_ymfpci_disable_dsp(chip);
2222                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2223                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2224                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2225                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2226                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2227                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2228                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2229         }
2230
2231         snd_ymfpci_ac3_done(chip);
2232
2233         /* Set PCI device to D3 state */
2234 #if 0
2235         /* FIXME: temporarily disabled, otherwise we cannot fire up
2236          * the chip again unless reboot.  ACPI bug?
2237          */
2238         pci_set_power_state(chip->pci, PCI_D3hot);
2239 #endif
2240
2241 #ifdef CONFIG_PM_SLEEP
2242         kfree(chip->saved_regs);
2243 #endif
2244         if (chip->irq >= 0)
2245                 free_irq(chip->irq, chip);
2246         release_and_free_resource(chip->mpu_res);
2247         release_and_free_resource(chip->fm_res);
2248         snd_ymfpci_free_gameport(chip);
2249         iounmap(chip->reg_area_virt);
2250         if (chip->work_ptr.area)
2251                 snd_dma_free_pages(&chip->work_ptr);
2252         
2253         release_and_free_resource(chip->res_reg_area);
2254
2255         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2256         
2257         pci_disable_device(chip->pci);
2258         release_firmware(chip->dsp_microcode);
2259         release_firmware(chip->controller_microcode);
2260         kfree(chip);
2261         return 0;
2262 }
2263
2264 static int snd_ymfpci_dev_free(struct snd_device *device)
2265 {
2266         struct snd_ymfpci *chip = device->device_data;
2267         return snd_ymfpci_free(chip);
2268 }
2269
2270 #ifdef CONFIG_PM_SLEEP
2271 static int saved_regs_index[] = {
2272         /* spdif */
2273         YDSXGR_SPDIFOUTCTRL,
2274         YDSXGR_SPDIFOUTSTATUS,
2275         YDSXGR_SPDIFINCTRL,
2276         /* volumes */
2277         YDSXGR_PRIADCLOOPVOL,
2278         YDSXGR_NATIVEDACINVOL,
2279         YDSXGR_NATIVEDACOUTVOL,
2280         YDSXGR_BUF441OUTVOL,
2281         YDSXGR_NATIVEADCINVOL,
2282         YDSXGR_SPDIFLOOPVOL,
2283         YDSXGR_SPDIFOUTVOL,
2284         YDSXGR_ZVOUTVOL,
2285         YDSXGR_LEGACYOUTVOL,
2286         /* address bases */
2287         YDSXGR_PLAYCTRLBASE,
2288         YDSXGR_RECCTRLBASE,
2289         YDSXGR_EFFCTRLBASE,
2290         YDSXGR_WORKBASE,
2291         /* capture set up */
2292         YDSXGR_MAPOFREC,
2293         YDSXGR_RECFORMAT,
2294         YDSXGR_RECSLOTSR,
2295         YDSXGR_ADCFORMAT,
2296         YDSXGR_ADCSLOTSR,
2297 };
2298 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2299
2300 static int snd_ymfpci_suspend(struct device *dev)
2301 {
2302         struct snd_card *card = dev_get_drvdata(dev);
2303         struct snd_ymfpci *chip = card->private_data;
2304         unsigned int i;
2305         
2306         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2307         snd_pcm_suspend_all(chip->pcm);
2308         snd_pcm_suspend_all(chip->pcm2);
2309         snd_pcm_suspend_all(chip->pcm_spdif);
2310         snd_pcm_suspend_all(chip->pcm_4ch);
2311         snd_ac97_suspend(chip->ac97);
2312         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2313                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2314         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2315         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2316                              &chip->saved_dsxg_legacy);
2317         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2318                              &chip->saved_dsxg_elegacy);
2319         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2320         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2321         snd_ymfpci_disable_dsp(chip);
2322         return 0;
2323 }
2324
2325 static int snd_ymfpci_resume(struct device *dev)
2326 {
2327         struct pci_dev *pci = to_pci_dev(dev);
2328         struct snd_card *card = dev_get_drvdata(dev);
2329         struct snd_ymfpci *chip = card->private_data;
2330         unsigned int i;
2331
2332         snd_ymfpci_aclink_reset(pci);
2333         snd_ymfpci_codec_ready(chip, 0);
2334         snd_ymfpci_download_image(chip);
2335         udelay(100);
2336
2337         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2338                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2339
2340         snd_ac97_resume(chip->ac97);
2341
2342         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2343                               chip->saved_dsxg_legacy);
2344         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2345                               chip->saved_dsxg_elegacy);
2346
2347         /* start hw again */
2348         if (chip->start_count > 0) {
2349                 spin_lock_irq(&chip->reg_lock);
2350                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2351                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2352                 spin_unlock_irq(&chip->reg_lock);
2353         }
2354         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2355         return 0;
2356 }
2357
2358 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2359 #endif /* CONFIG_PM_SLEEP */
2360
2361 int snd_ymfpci_create(struct snd_card *card,
2362                       struct pci_dev *pci,
2363                       unsigned short old_legacy_ctrl,
2364                       struct snd_ymfpci **rchip)
2365 {
2366         struct snd_ymfpci *chip;
2367         int err;
2368         static struct snd_device_ops ops = {
2369                 .dev_free =     snd_ymfpci_dev_free,
2370         };
2371         
2372         *rchip = NULL;
2373
2374         /* enable PCI device */
2375         if ((err = pci_enable_device(pci)) < 0)
2376                 return err;
2377
2378         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2379         if (chip == NULL) {
2380                 pci_disable_device(pci);
2381                 return -ENOMEM;
2382         }
2383         chip->old_legacy_ctrl = old_legacy_ctrl;
2384         spin_lock_init(&chip->reg_lock);
2385         spin_lock_init(&chip->voice_lock);
2386         init_waitqueue_head(&chip->interrupt_sleep);
2387         atomic_set(&chip->interrupt_sleep_count, 0);
2388         chip->card = card;
2389         chip->pci = pci;
2390         chip->irq = -1;
2391         chip->device_id = pci->device;
2392         chip->rev = pci->revision;
2393         chip->reg_area_phys = pci_resource_start(pci, 0);
2394         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2395         pci_set_master(pci);
2396         chip->src441_used = -1;
2397
2398         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2399                 dev_err(chip->card->dev,
2400                         "unable to grab memory region 0x%lx-0x%lx\n",
2401                         chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2402                 snd_ymfpci_free(chip);
2403                 return -EBUSY;
2404         }
2405         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2406                         KBUILD_MODNAME, chip)) {
2407                 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2408                 snd_ymfpci_free(chip);
2409                 return -EBUSY;
2410         }
2411         chip->irq = pci->irq;
2412
2413         snd_ymfpci_aclink_reset(pci);
2414         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2415                 snd_ymfpci_free(chip);
2416                 return -EIO;
2417         }
2418
2419         err = snd_ymfpci_request_firmware(chip);
2420         if (err < 0) {
2421                 dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2422                 snd_ymfpci_free(chip);
2423                 return err;
2424         }
2425         snd_ymfpci_download_image(chip);
2426
2427         udelay(100); /* seems we need a delay after downloading image.. */
2428
2429         if (snd_ymfpci_memalloc(chip) < 0) {
2430                 snd_ymfpci_free(chip);
2431                 return -EIO;
2432         }
2433
2434         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2435                 snd_ymfpci_free(chip);
2436                 return err;
2437         }
2438
2439 #ifdef CONFIG_PM_SLEEP
2440         chip->saved_regs = kmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32),
2441                                    GFP_KERNEL);
2442         if (chip->saved_regs == NULL) {
2443                 snd_ymfpci_free(chip);
2444                 return -ENOMEM;
2445         }
2446 #endif
2447
2448         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2449                 snd_ymfpci_free(chip);
2450                 return err;
2451         }
2452
2453         snd_ymfpci_proc_init(card, chip);
2454
2455         *rchip = chip;
2456         return 0;
2457 }