1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for SiS7019 Audio Accelerator
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
28 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42 static const struct pci_device_id snd_sis7019_ids[] = {
43 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49 /* There are three timing modes for the voices.
51 * For both playback and capture, when the buffer is one or two periods long,
52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53 * to let us know when the periods have ended.
55 * When performing playback with more than two periods per buffer, we set
56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57 * reach it. We then update the offset and continue on until we are
58 * interrupted for the next period.
60 * Capture channels do not have a SSO, so we allocate a playback channel to
61 * use as a timer for the capture periods. We use the SSO on the playback
62 * channel to clock out virtual periods, and adjust the virtual period length
63 * to maintain synchronization. This algorithm came from the Trident driver.
65 * FIXME: It'd be nice to make use of some of the synth features in the
66 * hardware, but a woeful lack of documentation is a significant roadblock.
70 #define VOICE_IN_USE 1
71 #define VOICE_CAPTURE 2
72 #define VOICE_SSO_TIMING 4
73 #define VOICE_SYNC_TIMING 8
81 struct snd_pcm_substream *substream;
83 void __iomem *ctrl_base;
84 void __iomem *wave_base;
85 void __iomem *sync_base;
89 /* We need four pages to store our wave parameters during a suspend. If
90 * we're not doing power management, we still need to allocate a page
91 * for the silence buffer.
93 #ifdef CONFIG_PM_SLEEP
94 #define SIS_SUSPEND_PAGES 4
96 #define SIS_SUSPEND_PAGES 1
100 unsigned long ioport;
101 void __iomem *ioaddr;
107 struct snd_card *card;
108 struct snd_ac97 *ac97[3];
110 /* Protect against more than one thread hitting the AC97
111 * registers (in a more polite manner than pounding the hardware
114 struct mutex ac97_mutex;
116 /* voice_lock protects allocation/freeing of the voice descriptions
118 spinlock_t voice_lock;
120 struct voice voices[64];
121 struct voice capture_voice;
123 /* Allocate pages to store the internal wave state during
124 * suspends. When we're operating, this can be used as a silence
125 * buffer for a timing channel.
127 void *suspend_state[SIS_SUSPEND_PAGES];
130 dma_addr_t silence_dma_addr;
133 /* These values are also used by the module param 'codecs' to indicate
134 * which codecs should be present.
136 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
137 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
138 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
140 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
141 * documented range of 8-0xfff8 samples. Given that they are 0-based,
142 * that places our period/buffer range at 9-0xfff9 samples. That makes the
143 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
144 * max samples / min samples gives us the max periods in a buffer.
146 * We'll add a constraint upon open that limits the period and buffer sample
147 * size to values that are legal for the hardware.
149 static const struct snd_pcm_hardware sis_playback_hw_info = {
150 .info = (SNDRV_PCM_INFO_MMAP |
151 SNDRV_PCM_INFO_MMAP_VALID |
152 SNDRV_PCM_INFO_INTERLEAVED |
153 SNDRV_PCM_INFO_BLOCK_TRANSFER |
154 SNDRV_PCM_INFO_SYNC_START |
155 SNDRV_PCM_INFO_RESUME),
156 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
157 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
158 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
163 .buffer_bytes_max = (0xfff9 * 4),
164 .period_bytes_min = 9,
165 .period_bytes_max = (0xfff9 * 4),
167 .periods_max = (0xfff9 / 9),
170 static const struct snd_pcm_hardware sis_capture_hw_info = {
171 .info = (SNDRV_PCM_INFO_MMAP |
172 SNDRV_PCM_INFO_MMAP_VALID |
173 SNDRV_PCM_INFO_INTERLEAVED |
174 SNDRV_PCM_INFO_BLOCK_TRANSFER |
175 SNDRV_PCM_INFO_SYNC_START |
176 SNDRV_PCM_INFO_RESUME),
177 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
178 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
179 .rates = SNDRV_PCM_RATE_48000,
184 .buffer_bytes_max = (0xfff9 * 4),
185 .period_bytes_min = 9,
186 .period_bytes_max = (0xfff9 * 4),
188 .periods_max = (0xfff9 / 9),
191 static void sis_update_sso(struct voice *voice, u16 period)
193 void __iomem *base = voice->ctrl_base;
195 voice->sso += period;
196 if (voice->sso >= voice->buffer_size)
197 voice->sso -= voice->buffer_size;
199 /* Enforce the documented hardware minimum offset */
203 /* The SSO is in the upper 16 bits of the register. */
204 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
207 static void sis_update_voice(struct voice *voice)
209 if (voice->flags & VOICE_SSO_TIMING) {
210 sis_update_sso(voice, voice->period_size);
211 } else if (voice->flags & VOICE_SYNC_TIMING) {
214 /* If we've not hit the end of the virtual period, update
215 * our records and keep going.
217 if (voice->vperiod > voice->period_size) {
218 voice->vperiod -= voice->period_size;
219 if (voice->vperiod < voice->period_size)
220 sis_update_sso(voice, voice->vperiod);
222 sis_update_sso(voice, voice->period_size);
226 /* Calculate our relative offset between the target and
227 * the actual CSO value. Since we're operating in a loop,
228 * if the value is more than half way around, we can
229 * consider ourselves wrapped.
231 sync = voice->sync_cso;
232 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
233 if (sync > (voice->sync_buffer_size / 2))
234 sync -= voice->sync_buffer_size;
236 /* If sync is positive, then we interrupted too early, and
237 * we'll need to come back in a few samples and try again.
238 * There's a minimum wait, as it takes some time for the DMA
239 * engine to startup, etc...
244 sis_update_sso(voice, sync);
248 /* Ok, we interrupted right on time, or (hopefully) just
249 * a bit late. We'll adjst our next waiting period based
250 * on how close we got.
252 * We need to stay just behind the actual channel to ensure
253 * it really is past a period when we get our interrupt --
254 * otherwise we'll fall into the early code above and have
255 * a minimum wait time, which makes us quite late here,
256 * eating into the user's time to refresh the buffer, esp.
257 * if using small periods.
259 * If we're less than 9 samples behind, we're on target.
260 * Otherwise, shorten the next vperiod by the amount we've
264 voice->vperiod = voice->sync_period_size + 1;
266 voice->vperiod = voice->sync_period_size + sync + 10;
268 if (voice->vperiod < voice->buffer_size) {
269 sis_update_sso(voice, voice->vperiod);
272 sis_update_sso(voice, voice->period_size);
274 sync = voice->sync_cso + voice->sync_period_size;
275 if (sync >= voice->sync_buffer_size)
276 sync -= voice->sync_buffer_size;
277 voice->sync_cso = sync;
280 snd_pcm_period_elapsed(voice->substream);
283 static void sis_voice_irq(u32 status, struct voice *voice)
291 sis_update_voice(voice);
296 static irqreturn_t sis_interrupt(int irq, void *dev)
298 struct sis7019 *sis = dev;
299 unsigned long io = sis->ioport;
303 /* We only use the DMA interrupts, and we don't enable any other
304 * source of interrupts. But, it is possible to see an interrupt
305 * status that didn't actually interrupt us, so eliminate anything
306 * we're not expecting to avoid falsely claiming an IRQ, and an
307 * ensuing endless loop.
309 intr = inl(io + SIS_GISR);
310 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
311 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
316 status = inl(io + SIS_PISR_A);
318 sis_voice_irq(status, sis->voices);
319 outl(status, io + SIS_PISR_A);
322 status = inl(io + SIS_PISR_B);
324 sis_voice_irq(status, &sis->voices[32]);
325 outl(status, io + SIS_PISR_B);
328 status = inl(io + SIS_RISR);
330 voice = &sis->capture_voice;
332 snd_pcm_period_elapsed(voice->substream);
334 outl(status, io + SIS_RISR);
337 outl(intr, io + SIS_GISR);
338 intr = inl(io + SIS_GISR);
339 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
340 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
346 static u32 sis_rate_to_delta(unsigned int rate)
350 /* This was copied from the trident driver, but it seems its gotten
351 * around a bit... nevertheless, it works well.
353 * We special case 44100 and 8000 since rounding with the equation
354 * does not give us an accurate enough value. For 11025 and 22050
355 * the equation gives us the best answer. All other frequencies will
356 * also use the equation. JDW
360 else if (rate == 8000)
362 else if (rate == 48000)
365 delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
369 static void __sis_map_silence(struct sis7019 *sis)
371 /* Helper function: must hold sis->voice_lock on entry */
372 if (!sis->silence_users)
373 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
374 sis->suspend_state[0],
375 4096, DMA_TO_DEVICE);
376 sis->silence_users++;
379 static void __sis_unmap_silence(struct sis7019 *sis)
381 /* Helper function: must hold sis->voice_lock on entry */
382 sis->silence_users--;
383 if (!sis->silence_users)
384 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
388 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
392 spin_lock_irqsave(&sis->voice_lock, flags);
394 __sis_unmap_silence(sis);
395 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397 voice->timing = NULL;
399 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
400 spin_unlock_irqrestore(&sis->voice_lock, flags);
403 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405 /* Must hold the voice_lock on entry */
409 for (i = 0; i < 64; i++) {
410 voice = &sis->voices[i];
411 if (voice->flags & VOICE_IN_USE)
413 voice->flags |= VOICE_IN_USE;
422 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
427 spin_lock_irqsave(&sis->voice_lock, flags);
428 voice = __sis_alloc_playback_voice(sis);
429 spin_unlock_irqrestore(&sis->voice_lock, flags);
434 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
435 struct snd_pcm_hw_params *hw_params)
437 struct sis7019 *sis = snd_pcm_substream_chip(substream);
438 struct snd_pcm_runtime *runtime = substream->runtime;
439 struct voice *voice = runtime->private_data;
440 unsigned int period_size, buffer_size;
444 /* If there are one or two periods per buffer, we don't need a
445 * timing voice, as we can use the capture channel's interrupts
446 * to clock out the periods.
448 period_size = params_period_size(hw_params);
449 buffer_size = params_buffer_size(hw_params);
450 needed = (period_size != buffer_size &&
451 period_size != (buffer_size / 2));
453 if (needed && !voice->timing) {
454 spin_lock_irqsave(&sis->voice_lock, flags);
455 voice->timing = __sis_alloc_playback_voice(sis);
457 __sis_map_silence(sis);
458 spin_unlock_irqrestore(&sis->voice_lock, flags);
461 voice->timing->substream = substream;
462 } else if (!needed && voice->timing) {
463 sis_free_voice(sis, voice);
464 voice->timing = NULL;
470 static int sis_playback_open(struct snd_pcm_substream *substream)
472 struct sis7019 *sis = snd_pcm_substream_chip(substream);
473 struct snd_pcm_runtime *runtime = substream->runtime;
476 voice = sis_alloc_playback_voice(sis);
480 voice->substream = substream;
481 runtime->private_data = voice;
482 runtime->hw = sis_playback_hw_info;
483 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487 snd_pcm_set_sync(substream);
491 static int sis_substream_close(struct snd_pcm_substream *substream)
493 struct sis7019 *sis = snd_pcm_substream_chip(substream);
494 struct snd_pcm_runtime *runtime = substream->runtime;
495 struct voice *voice = runtime->private_data;
497 sis_free_voice(sis, voice);
501 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
503 struct snd_pcm_runtime *runtime = substream->runtime;
504 struct voice *voice = runtime->private_data;
505 void __iomem *ctrl_base = voice->ctrl_base;
506 void __iomem *wave_base = voice->wave_base;
507 u32 format, dma_addr, control, sso_eso, delta, reg;
510 /* We rely on the PCM core to ensure that the parameters for this
511 * substream do not change on us while we're programming the HW.
514 if (snd_pcm_format_width(runtime->format) == 8)
515 format |= SIS_PLAY_DMA_FORMAT_8BIT;
516 if (!snd_pcm_format_signed(runtime->format))
517 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
518 if (runtime->channels == 1)
519 format |= SIS_PLAY_DMA_FORMAT_MONO;
521 /* The baseline setup is for a single period per buffer, and
522 * we add bells and whistles as needed from there.
524 dma_addr = runtime->dma_addr;
525 leo = runtime->buffer_size - 1;
526 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
529 if (runtime->period_size == (runtime->buffer_size / 2)) {
530 control |= SIS_PLAY_DMA_INTR_AT_MLP;
531 } else if (runtime->period_size != runtime->buffer_size) {
532 voice->flags |= VOICE_SSO_TIMING;
533 voice->sso = runtime->period_size - 1;
534 voice->period_size = runtime->period_size;
535 voice->buffer_size = runtime->buffer_size;
537 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
538 control |= SIS_PLAY_DMA_INTR_AT_SSO;
539 sso_eso |= (runtime->period_size - 1) << 16;
542 delta = sis_rate_to_delta(runtime->rate);
544 /* Ok, we're ready to go, set up the channel.
546 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
547 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
548 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
549 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
551 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
552 writel(0, wave_base + reg);
554 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
555 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
556 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
557 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
558 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
559 wave_base + SIS_WAVE_CHANNEL_CONTROL);
561 /* Force PCI writes to post. */
567 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
569 struct sis7019 *sis = snd_pcm_substream_chip(substream);
570 unsigned long io = sis->ioport;
571 struct snd_pcm_substream *s;
576 u32 play[2] = { 0, 0 };
578 /* No locks needed, as the PCM core will hold the locks on the
579 * substreams, and the HW will only start/stop the indicated voices
580 * without changing the state of the others.
583 case SNDRV_PCM_TRIGGER_START:
584 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
585 case SNDRV_PCM_TRIGGER_RESUME:
588 case SNDRV_PCM_TRIGGER_STOP:
589 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
590 case SNDRV_PCM_TRIGGER_SUSPEND:
597 snd_pcm_group_for_each_entry(s, substream) {
598 /* Make sure it is for us... */
599 chip = snd_pcm_substream_chip(s);
603 voice = s->runtime->private_data;
604 if (voice->flags & VOICE_CAPTURE) {
605 record |= 1 << voice->num;
606 voice = voice->timing;
609 /* voice could be NULL if this a recording stream, and it
610 * doesn't have an external timing channel.
613 play[voice->num / 32] |= 1 << (voice->num & 0x1f);
615 snd_pcm_trigger_done(s, substream);
620 outl(record, io + SIS_RECORD_START_REG);
622 outl(play[0], io + SIS_PLAY_START_A_REG);
624 outl(play[1], io + SIS_PLAY_START_B_REG);
627 outl(record, io + SIS_RECORD_STOP_REG);
629 outl(play[0], io + SIS_PLAY_STOP_A_REG);
631 outl(play[1], io + SIS_PLAY_STOP_B_REG);
636 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
638 struct snd_pcm_runtime *runtime = substream->runtime;
639 struct voice *voice = runtime->private_data;
642 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
647 static int sis_capture_open(struct snd_pcm_substream *substream)
649 struct sis7019 *sis = snd_pcm_substream_chip(substream);
650 struct snd_pcm_runtime *runtime = substream->runtime;
651 struct voice *voice = &sis->capture_voice;
654 /* FIXME: The driver only supports recording from one channel
655 * at the moment, but it could support more.
657 spin_lock_irqsave(&sis->voice_lock, flags);
658 if (voice->flags & VOICE_IN_USE)
661 voice->flags |= VOICE_IN_USE;
662 spin_unlock_irqrestore(&sis->voice_lock, flags);
667 voice->substream = substream;
668 runtime->private_data = voice;
669 runtime->hw = sis_capture_hw_info;
670 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
671 snd_pcm_limit_hw_rates(runtime);
672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
674 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
676 snd_pcm_set_sync(substream);
680 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
681 struct snd_pcm_hw_params *hw_params)
683 struct sis7019 *sis = snd_pcm_substream_chip(substream);
686 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
687 params_rate(hw_params));
691 rc = sis_alloc_timing_voice(substream, hw_params);
697 static void sis_prepare_timing_voice(struct voice *voice,
698 struct snd_pcm_substream *substream)
700 struct sis7019 *sis = snd_pcm_substream_chip(substream);
701 struct snd_pcm_runtime *runtime = substream->runtime;
702 struct voice *timing = voice->timing;
703 void __iomem *play_base = timing->ctrl_base;
704 void __iomem *wave_base = timing->wave_base;
705 u16 buffer_size, period_size;
706 u32 format, control, sso_eso, delta;
707 u32 vperiod, sso, reg;
709 /* Set our initial buffer and period as large as we can given a
710 * single page of silence.
712 buffer_size = 4096 / runtime->channels;
713 buffer_size /= snd_pcm_format_size(runtime->format, 1);
714 period_size = buffer_size;
716 /* Initially, we want to interrupt just a bit behind the end of
717 * the period we're clocking out. 12 samples seems to give a good
720 * We want to spread our interrupts throughout the virtual period,
721 * so that we don't end up with two interrupts back to back at the
722 * end -- this helps minimize the effects of any jitter. Adjust our
723 * clocking period size so that the last period is at least a fourth
726 * This is all moot if we don't need to use virtual periods.
728 vperiod = runtime->period_size + 12;
729 if (vperiod > period_size) {
730 u16 tail = vperiod % period_size;
731 u16 quarter_period = period_size / 4;
733 if (tail && tail < quarter_period) {
734 u16 loops = vperiod / period_size;
736 tail = quarter_period - tail;
742 sso = period_size - 1;
744 /* The initial period will fit inside the buffer, so we
745 * don't need to use virtual periods -- disable them.
747 period_size = runtime->period_size;
752 /* The interrupt handler implements the timing synchronization, so
755 timing->flags |= VOICE_SYNC_TIMING;
756 timing->sync_base = voice->ctrl_base;
757 timing->sync_cso = runtime->period_size;
758 timing->sync_period_size = runtime->period_size;
759 timing->sync_buffer_size = runtime->buffer_size;
760 timing->period_size = period_size;
761 timing->buffer_size = buffer_size;
763 timing->vperiod = vperiod;
765 /* Using unsigned samples with the all-zero silence buffer
766 * forces the output to the lower rail, killing playback.
767 * So ignore unsigned vs signed -- it doesn't change the timing.
770 if (snd_pcm_format_width(runtime->format) == 8)
771 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
772 if (runtime->channels == 1)
773 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
775 control = timing->buffer_size - 1;
776 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
777 sso_eso = timing->buffer_size - 1;
778 sso_eso |= timing->sso << 16;
780 delta = sis_rate_to_delta(runtime->rate);
782 /* We've done the math, now configure the channel.
784 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
785 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
786 writel(control, play_base + SIS_PLAY_DMA_CONTROL);
787 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
789 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
790 writel(0, wave_base + reg);
792 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
793 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
794 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
795 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
796 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
797 wave_base + SIS_WAVE_CHANNEL_CONTROL);
800 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
802 struct snd_pcm_runtime *runtime = substream->runtime;
803 struct voice *voice = runtime->private_data;
804 void __iomem *rec_base = voice->ctrl_base;
805 u32 format, dma_addr, control;
808 /* We rely on the PCM core to ensure that the parameters for this
809 * substream do not change on us while we're programming the HW.
812 if (snd_pcm_format_width(runtime->format) == 8)
813 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
814 if (!snd_pcm_format_signed(runtime->format))
815 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
816 if (runtime->channels == 1)
817 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
819 dma_addr = runtime->dma_addr;
820 leo = runtime->buffer_size - 1;
821 control = leo | SIS_CAPTURE_DMA_LOOP;
823 /* If we've got more than two periods per buffer, then we have
824 * use a timing voice to clock out the periods. Otherwise, we can
825 * use the capture channel's interrupts.
828 sis_prepare_timing_voice(voice, substream);
830 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
831 if (runtime->period_size != runtime->buffer_size)
832 control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
835 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
836 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
837 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
839 /* Force the writes to post. */
845 static const struct snd_pcm_ops sis_playback_ops = {
846 .open = sis_playback_open,
847 .close = sis_substream_close,
848 .prepare = sis_pcm_playback_prepare,
849 .trigger = sis_pcm_trigger,
850 .pointer = sis_pcm_pointer,
853 static const struct snd_pcm_ops sis_capture_ops = {
854 .open = sis_capture_open,
855 .close = sis_substream_close,
856 .hw_params = sis_capture_hw_params,
857 .prepare = sis_pcm_capture_prepare,
858 .trigger = sis_pcm_trigger,
859 .pointer = sis_pcm_pointer,
862 static int sis_pcm_create(struct sis7019 *sis)
867 /* We have 64 voices, and the driver currently records from
868 * only one channel, though that could change in the future.
870 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
874 pcm->private_data = sis;
875 strcpy(pcm->name, "SiS7019");
878 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
881 /* Try to preallocate some memory, but it's not the end of the
882 * world if this fails.
884 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
885 &sis->pci->dev, 64*1024, 128*1024);
890 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
892 unsigned long io = sis->ioport;
893 unsigned short val = 0xffff;
897 static const u16 codec_ready[3] = {
898 SIS_AC97_STATUS_CODEC_READY,
899 SIS_AC97_STATUS_CODEC2_READY,
900 SIS_AC97_STATUS_CODEC3_READY,
903 rdy = codec_ready[codec];
906 /* Get the AC97 semaphore -- software first, so we don't spin
907 * pounding out IO reads on the hardware semaphore...
909 mutex_lock(&sis->ac97_mutex);
912 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
918 /* ... and wait for any outstanding commands to complete ...
922 status = inw(io + SIS_AC97_STATUS);
923 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
932 /* ... before sending our command and waiting for it to finish ...
934 outl(cmd, io + SIS_AC97_CMD);
938 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
941 /* ... and reading the results (if any).
943 val = inl(io + SIS_AC97_CMD) >> 16;
946 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
948 mutex_unlock(&sis->ac97_mutex);
951 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
958 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
961 static const u32 cmd[3] = {
962 SIS_AC97_CMD_CODEC_WRITE,
963 SIS_AC97_CMD_CODEC2_WRITE,
964 SIS_AC97_CMD_CODEC3_WRITE,
966 sis_ac97_rw(ac97->private_data, ac97->num,
967 (val << 16) | (reg << 8) | cmd[ac97->num]);
970 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
972 static const u32 cmd[3] = {
973 SIS_AC97_CMD_CODEC_READ,
974 SIS_AC97_CMD_CODEC2_READ,
975 SIS_AC97_CMD_CODEC3_READ,
977 return sis_ac97_rw(ac97->private_data, ac97->num,
978 (reg << 8) | cmd[ac97->num]);
981 static int sis_mixer_create(struct sis7019 *sis)
983 struct snd_ac97_bus *bus;
984 struct snd_ac97_template ac97;
985 static const struct snd_ac97_bus_ops ops = {
986 .write = sis_ac97_write,
987 .read = sis_ac97_read,
991 memset(&ac97, 0, sizeof(ac97));
992 ac97.private_data = sis;
994 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
995 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
996 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
998 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
999 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004 /* If we return an error here, then snd_card_free() should
1005 * free up any ac97 codecs that got created, as well as the bus.
1010 static void sis_chip_free(struct snd_card *card)
1012 struct sis7019 *sis = card->private_data;
1014 /* Reset the chip, and disable all interrputs.
1016 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1018 outl(0, sis->ioport + SIS_GCR);
1019 outl(0, sis->ioport + SIS_GIER);
1021 /* Now, free everything we allocated.
1024 free_irq(sis->irq, sis);
1027 static int sis_chip_init(struct sis7019 *sis)
1029 unsigned long io = sis->ioport;
1030 void __iomem *ioaddr = sis->ioaddr;
1031 unsigned long timeout;
1036 /* Reset the audio controller
1038 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1040 outl(0, io + SIS_GCR);
1042 /* Get the AC-link semaphore, and reset the codecs
1045 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1051 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1055 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1058 /* Command complete, we can let go of the semaphore now.
1060 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1064 /* Now that we've finished the reset, find out what's attached.
1065 * There are some codec/board combinations that take an extremely
1066 * long time to come up. 350+ ms has been observed in the field,
1067 * so we'll give them up to 500ms.
1069 sis->codecs_present = 0;
1070 timeout = msecs_to_jiffies(500) + jiffies;
1071 while (time_before_eq(jiffies, timeout)) {
1072 status = inl(io + SIS_AC97_STATUS);
1073 if (status & SIS_AC97_STATUS_CODEC_READY)
1074 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1075 if (status & SIS_AC97_STATUS_CODEC2_READY)
1076 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1077 if (status & SIS_AC97_STATUS_CODEC3_READY)
1078 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1080 if (sis->codecs_present == codecs)
1086 /* All done, check for errors.
1088 if (!sis->codecs_present) {
1089 dev_err(&sis->pci->dev, "could not find any codecs\n");
1093 if (sis->codecs_present != codecs) {
1094 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1095 sis->codecs_present, codecs);
1098 /* Let the hardware know that the audio driver is alive,
1099 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1100 * record channels. We're going to want to use Variable Rate Audio
1101 * for recording, to avoid needlessly resampling from 48kHZ.
1103 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1104 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1105 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1106 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1107 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1109 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1111 outl(0, io + SIS_AC97_PSR);
1113 /* There is only one valid DMA setup for a PCI environment.
1115 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1117 /* Reset the synchronization groups for all of the channels
1118 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1119 * we'll need to change how we handle these. Until then, we just
1120 * assign sub-mixer 0 to all playback channels, and avoid any
1121 * attenuation on the audio.
1123 outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1124 outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1125 outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1126 outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1127 outl(0, io + SIS_MIXER_SYNC_GROUP);
1129 for (i = 0; i < 64; i++) {
1130 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1131 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1132 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1135 /* Don't attenuate any audio set for the wave amplifier.
1137 * FIXME: Maximum attenuation is set for the music amp, which will
1138 * need to change if we start using the synth engine.
1140 outl(0xffff0000, io + SIS_WEVCR);
1142 /* Ensure that the wave engine is in normal operating mode.
1144 outl(0, io + SIS_WECCR);
1146 /* Go ahead and enable the DMA interrupts. They won't go live
1147 * until we start a channel.
1149 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1150 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1155 #ifdef CONFIG_PM_SLEEP
1156 static int sis_suspend(struct device *dev)
1158 struct snd_card *card = dev_get_drvdata(dev);
1159 struct sis7019 *sis = card->private_data;
1160 void __iomem *ioaddr = sis->ioaddr;
1163 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1164 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1165 snd_ac97_suspend(sis->ac97[0]);
1166 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1167 snd_ac97_suspend(sis->ac97[1]);
1168 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1169 snd_ac97_suspend(sis->ac97[2]);
1171 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1173 if (sis->irq >= 0) {
1174 free_irq(sis->irq, sis);
1178 /* Save the internal state away
1180 for (i = 0; i < 4; i++) {
1181 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1188 static int sis_resume(struct device *dev)
1190 struct pci_dev *pci = to_pci_dev(dev);
1191 struct snd_card *card = dev_get_drvdata(dev);
1192 struct sis7019 *sis = card->private_data;
1193 void __iomem *ioaddr = sis->ioaddr;
1196 if (sis_chip_init(sis)) {
1197 dev_err(&pci->dev, "unable to re-init controller\n");
1201 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1202 KBUILD_MODNAME, sis)) {
1203 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1207 /* Restore saved state, then clear out the page we use for the
1210 for (i = 0; i < 4; i++) {
1211 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1215 memset(sis->suspend_state[0], 0, 4096);
1217 sis->irq = pci->irq;
1219 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1220 snd_ac97_resume(sis->ac97[0]);
1221 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1222 snd_ac97_resume(sis->ac97[1]);
1223 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1224 snd_ac97_resume(sis->ac97[2]);
1226 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1230 snd_card_disconnect(card);
1234 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1235 #define SIS_PM_OPS &sis_pm
1237 #define SIS_PM_OPS NULL
1238 #endif /* CONFIG_PM_SLEEP */
1240 static int sis_alloc_suspend(struct sis7019 *sis)
1244 /* We need 16K to store the internal wave engine state during a
1245 * suspend, but we don't need it to be contiguous, so play nice
1246 * with the memory system. We'll also use this area for a silence
1249 for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1250 sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1252 if (!sis->suspend_state[i])
1255 memset(sis->suspend_state[0], 0, 4096);
1260 static int sis_chip_create(struct snd_card *card,
1261 struct pci_dev *pci)
1263 struct sis7019 *sis = card->private_data;
1264 struct voice *voice;
1268 rc = pcim_enable_device(pci);
1272 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1274 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1278 mutex_init(&sis->ac97_mutex);
1279 spin_lock_init(&sis->voice_lock);
1283 sis->ioport = pci_resource_start(pci, 0);
1285 rc = pci_request_regions(pci, "SiS7019");
1287 dev_err(&pci->dev, "unable request regions\n");
1291 sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1293 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1297 rc = sis_alloc_suspend(sis);
1299 dev_err(&pci->dev, "unable to allocate state storage\n");
1303 rc = sis_chip_init(sis);
1306 card->private_free = sis_chip_free;
1308 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1311 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1315 sis->irq = pci->irq;
1316 card->sync_irq = sis->irq;
1317 pci_set_master(pci);
1319 for (i = 0; i < 64; i++) {
1320 voice = &sis->voices[i];
1322 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1323 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1326 voice = &sis->capture_voice;
1327 voice->flags = VOICE_CAPTURE;
1328 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1329 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1334 static int __snd_sis7019_probe(struct pci_dev *pci,
1335 const struct pci_device_id *pci_id)
1337 struct snd_card *card;
1338 struct sis7019 *sis;
1344 /* The user can specify which codecs should be present so that we
1345 * can wait for them to show up if they are slow to recover from
1346 * the AC97 cold reset. We default to a single codec, the primary.
1348 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1350 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1351 SIS_TERTIARY_CODEC_PRESENT;
1353 codecs = SIS_PRIMARY_CODEC_PRESENT;
1355 rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1356 sizeof(*sis), &card);
1360 strcpy(card->driver, "SiS7019");
1361 strcpy(card->shortname, "SiS7019");
1362 rc = sis_chip_create(card, pci);
1366 sis = card->private_data;
1368 rc = sis_mixer_create(sis);
1372 rc = sis_pcm_create(sis);
1376 snprintf(card->longname, sizeof(card->longname),
1377 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1378 card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1379 sis->ioport, sis->irq);
1381 rc = snd_card_register(card);
1385 pci_set_drvdata(pci, card);
1389 static int snd_sis7019_probe(struct pci_dev *pci,
1390 const struct pci_device_id *pci_id)
1392 return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1395 static struct pci_driver sis7019_driver = {
1396 .name = KBUILD_MODNAME,
1397 .id_table = snd_sis7019_ids,
1398 .probe = snd_sis7019_probe,
1404 module_pci_driver(sis7019_driver);