Merge tag 'gfs2-nopid-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / sound / pci / sis7019.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27
28 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
32
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41
42 static const struct pci_device_id snd_sis7019_ids[] = {
43         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44         { 0, }
45 };
46
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48
49 /* There are three timing modes for the voices.
50  *
51  * For both playback and capture, when the buffer is one or two periods long,
52  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53  * to let us know when the periods have ended.
54  *
55  * When performing playback with more than two periods per buffer, we set
56  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57  * reach it. We then update the offset and continue on until we are
58  * interrupted for the next period.
59  *
60  * Capture channels do not have a SSO, so we allocate a playback channel to
61  * use as a timer for the capture periods. We use the SSO on the playback
62  * channel to clock out virtual periods, and adjust the virtual period length
63  * to maintain synchronization. This algorithm came from the Trident driver.
64  *
65  * FIXME: It'd be nice to make use of some of the synth features in the
66  * hardware, but a woeful lack of documentation is a significant roadblock.
67  */
68 struct voice {
69         u16 flags;
70 #define         VOICE_IN_USE            1
71 #define         VOICE_CAPTURE           2
72 #define         VOICE_SSO_TIMING        4
73 #define         VOICE_SYNC_TIMING       8
74         u16 sync_cso;
75         u16 period_size;
76         u16 buffer_size;
77         u16 sync_period_size;
78         u16 sync_buffer_size;
79         u32 sso;
80         u32 vperiod;
81         struct snd_pcm_substream *substream;
82         struct voice *timing;
83         void __iomem *ctrl_base;
84         void __iomem *wave_base;
85         void __iomem *sync_base;
86         int num;
87 };
88
89 /* We need four pages to store our wave parameters during a suspend. If
90  * we're not doing power management, we still need to allocate a page
91  * for the silence buffer.
92  */
93 #ifdef CONFIG_PM_SLEEP
94 #define SIS_SUSPEND_PAGES       4
95 #else
96 #define SIS_SUSPEND_PAGES       1
97 #endif
98
99 struct sis7019 {
100         unsigned long ioport;
101         void __iomem *ioaddr;
102         int irq;
103         int codecs_present;
104
105         struct pci_dev *pci;
106         struct snd_pcm *pcm;
107         struct snd_card *card;
108         struct snd_ac97 *ac97[3];
109
110         /* Protect against more than one thread hitting the AC97
111          * registers (in a more polite manner than pounding the hardware
112          * semaphore)
113          */
114         struct mutex ac97_mutex;
115
116         /* voice_lock protects allocation/freeing of the voice descriptions
117          */
118         spinlock_t voice_lock;
119
120         struct voice voices[64];
121         struct voice capture_voice;
122
123         /* Allocate pages to store the internal wave state during
124          * suspends. When we're operating, this can be used as a silence
125          * buffer for a timing channel.
126          */
127         void *suspend_state[SIS_SUSPEND_PAGES];
128
129         int silence_users;
130         dma_addr_t silence_dma_addr;
131 };
132
133 /* These values are also used by the module param 'codecs' to indicate
134  * which codecs should be present.
135  */
136 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
137 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
138 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
139
140 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
141  * documented range of 8-0xfff8 samples. Given that they are 0-based,
142  * that places our period/buffer range at 9-0xfff9 samples. That makes the
143  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
144  * max samples / min samples gives us the max periods in a buffer.
145  *
146  * We'll add a constraint upon open that limits the period and buffer sample
147  * size to values that are legal for the hardware.
148  */
149 static const struct snd_pcm_hardware sis_playback_hw_info = {
150         .info = (SNDRV_PCM_INFO_MMAP |
151                  SNDRV_PCM_INFO_MMAP_VALID |
152                  SNDRV_PCM_INFO_INTERLEAVED |
153                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
154                  SNDRV_PCM_INFO_SYNC_START |
155                  SNDRV_PCM_INFO_RESUME),
156         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
157                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
158         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
159         .rate_min = 4000,
160         .rate_max = 48000,
161         .channels_min = 1,
162         .channels_max = 2,
163         .buffer_bytes_max = (0xfff9 * 4),
164         .period_bytes_min = 9,
165         .period_bytes_max = (0xfff9 * 4),
166         .periods_min = 1,
167         .periods_max = (0xfff9 / 9),
168 };
169
170 static const struct snd_pcm_hardware sis_capture_hw_info = {
171         .info = (SNDRV_PCM_INFO_MMAP |
172                  SNDRV_PCM_INFO_MMAP_VALID |
173                  SNDRV_PCM_INFO_INTERLEAVED |
174                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
175                  SNDRV_PCM_INFO_SYNC_START |
176                  SNDRV_PCM_INFO_RESUME),
177         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
178                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
179         .rates = SNDRV_PCM_RATE_48000,
180         .rate_min = 4000,
181         .rate_max = 48000,
182         .channels_min = 1,
183         .channels_max = 2,
184         .buffer_bytes_max = (0xfff9 * 4),
185         .period_bytes_min = 9,
186         .period_bytes_max = (0xfff9 * 4),
187         .periods_min = 1,
188         .periods_max = (0xfff9 / 9),
189 };
190
191 static void sis_update_sso(struct voice *voice, u16 period)
192 {
193         void __iomem *base = voice->ctrl_base;
194
195         voice->sso += period;
196         if (voice->sso >= voice->buffer_size)
197                 voice->sso -= voice->buffer_size;
198
199         /* Enforce the documented hardware minimum offset */
200         if (voice->sso < 8)
201                 voice->sso = 8;
202
203         /* The SSO is in the upper 16 bits of the register. */
204         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
205 }
206
207 static void sis_update_voice(struct voice *voice)
208 {
209         if (voice->flags & VOICE_SSO_TIMING) {
210                 sis_update_sso(voice, voice->period_size);
211         } else if (voice->flags & VOICE_SYNC_TIMING) {
212                 int sync;
213
214                 /* If we've not hit the end of the virtual period, update
215                  * our records and keep going.
216                  */
217                 if (voice->vperiod > voice->period_size) {
218                         voice->vperiod -= voice->period_size;
219                         if (voice->vperiod < voice->period_size)
220                                 sis_update_sso(voice, voice->vperiod);
221                         else
222                                 sis_update_sso(voice, voice->period_size);
223                         return;
224                 }
225
226                 /* Calculate our relative offset between the target and
227                  * the actual CSO value. Since we're operating in a loop,
228                  * if the value is more than half way around, we can
229                  * consider ourselves wrapped.
230                  */
231                 sync = voice->sync_cso;
232                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
233                 if (sync > (voice->sync_buffer_size / 2))
234                         sync -= voice->sync_buffer_size;
235
236                 /* If sync is positive, then we interrupted too early, and
237                  * we'll need to come back in a few samples and try again.
238                  * There's a minimum wait, as it takes some time for the DMA
239                  * engine to startup, etc...
240                  */
241                 if (sync > 0) {
242                         if (sync < 16)
243                                 sync = 16;
244                         sis_update_sso(voice, sync);
245                         return;
246                 }
247
248                 /* Ok, we interrupted right on time, or (hopefully) just
249                  * a bit late. We'll adjst our next waiting period based
250                  * on how close we got.
251                  *
252                  * We need to stay just behind the actual channel to ensure
253                  * it really is past a period when we get our interrupt --
254                  * otherwise we'll fall into the early code above and have
255                  * a minimum wait time, which makes us quite late here,
256                  * eating into the user's time to refresh the buffer, esp.
257                  * if using small periods.
258                  *
259                  * If we're less than 9 samples behind, we're on target.
260                  * Otherwise, shorten the next vperiod by the amount we've
261                  * been delayed.
262                  */
263                 if (sync > -9)
264                         voice->vperiod = voice->sync_period_size + 1;
265                 else
266                         voice->vperiod = voice->sync_period_size + sync + 10;
267
268                 if (voice->vperiod < voice->buffer_size) {
269                         sis_update_sso(voice, voice->vperiod);
270                         voice->vperiod = 0;
271                 } else
272                         sis_update_sso(voice, voice->period_size);
273
274                 sync = voice->sync_cso + voice->sync_period_size;
275                 if (sync >= voice->sync_buffer_size)
276                         sync -= voice->sync_buffer_size;
277                 voice->sync_cso = sync;
278         }
279
280         snd_pcm_period_elapsed(voice->substream);
281 }
282
283 static void sis_voice_irq(u32 status, struct voice *voice)
284 {
285         int bit;
286
287         while (status) {
288                 bit = __ffs(status);
289                 status >>= bit + 1;
290                 voice += bit;
291                 sis_update_voice(voice);
292                 voice++;
293         }
294 }
295
296 static irqreturn_t sis_interrupt(int irq, void *dev)
297 {
298         struct sis7019 *sis = dev;
299         unsigned long io = sis->ioport;
300         struct voice *voice;
301         u32 intr, status;
302
303         /* We only use the DMA interrupts, and we don't enable any other
304          * source of interrupts. But, it is possible to see an interrupt
305          * status that didn't actually interrupt us, so eliminate anything
306          * we're not expecting to avoid falsely claiming an IRQ, and an
307          * ensuing endless loop.
308          */
309         intr = inl(io + SIS_GISR);
310         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
311                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
312         if (!intr)
313                 return IRQ_NONE;
314
315         do {
316                 status = inl(io + SIS_PISR_A);
317                 if (status) {
318                         sis_voice_irq(status, sis->voices);
319                         outl(status, io + SIS_PISR_A);
320                 }
321
322                 status = inl(io + SIS_PISR_B);
323                 if (status) {
324                         sis_voice_irq(status, &sis->voices[32]);
325                         outl(status, io + SIS_PISR_B);
326                 }
327
328                 status = inl(io + SIS_RISR);
329                 if (status) {
330                         voice = &sis->capture_voice;
331                         if (!voice->timing)
332                                 snd_pcm_period_elapsed(voice->substream);
333
334                         outl(status, io + SIS_RISR);
335                 }
336
337                 outl(intr, io + SIS_GISR);
338                 intr = inl(io + SIS_GISR);
339                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
340                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
341         } while (intr);
342
343         return IRQ_HANDLED;
344 }
345
346 static u32 sis_rate_to_delta(unsigned int rate)
347 {
348         u32 delta;
349
350         /* This was copied from the trident driver, but it seems its gotten
351          * around a bit... nevertheless, it works well.
352          *
353          * We special case 44100 and 8000 since rounding with the equation
354          * does not give us an accurate enough value. For 11025 and 22050
355          * the equation gives us the best answer. All other frequencies will
356          * also use the equation. JDW
357          */
358         if (rate == 44100)
359                 delta = 0xeb3;
360         else if (rate == 8000)
361                 delta = 0x2ab;
362         else if (rate == 48000)
363                 delta = 0x1000;
364         else
365                 delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
366         return delta;
367 }
368
369 static void __sis_map_silence(struct sis7019 *sis)
370 {
371         /* Helper function: must hold sis->voice_lock on entry */
372         if (!sis->silence_users)
373                 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
374                                                 sis->suspend_state[0],
375                                                 4096, DMA_TO_DEVICE);
376         sis->silence_users++;
377 }
378
379 static void __sis_unmap_silence(struct sis7019 *sis)
380 {
381         /* Helper function: must hold sis->voice_lock on entry */
382         sis->silence_users--;
383         if (!sis->silence_users)
384                 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
385                                         DMA_TO_DEVICE);
386 }
387
388 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
389 {
390         unsigned long flags;
391
392         spin_lock_irqsave(&sis->voice_lock, flags);
393         if (voice->timing) {
394                 __sis_unmap_silence(sis);
395                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
396                                                 VOICE_SYNC_TIMING);
397                 voice->timing = NULL;
398         }
399         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
400         spin_unlock_irqrestore(&sis->voice_lock, flags);
401 }
402
403 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
404 {
405         /* Must hold the voice_lock on entry */
406         struct voice *voice;
407         int i;
408
409         for (i = 0; i < 64; i++) {
410                 voice = &sis->voices[i];
411                 if (voice->flags & VOICE_IN_USE)
412                         continue;
413                 voice->flags |= VOICE_IN_USE;
414                 goto found_one;
415         }
416         voice = NULL;
417
418 found_one:
419         return voice;
420 }
421
422 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
423 {
424         struct voice *voice;
425         unsigned long flags;
426
427         spin_lock_irqsave(&sis->voice_lock, flags);
428         voice = __sis_alloc_playback_voice(sis);
429         spin_unlock_irqrestore(&sis->voice_lock, flags);
430
431         return voice;
432 }
433
434 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
435                                         struct snd_pcm_hw_params *hw_params)
436 {
437         struct sis7019 *sis = snd_pcm_substream_chip(substream);
438         struct snd_pcm_runtime *runtime = substream->runtime;
439         struct voice *voice = runtime->private_data;
440         unsigned int period_size, buffer_size;
441         unsigned long flags;
442         int needed;
443
444         /* If there are one or two periods per buffer, we don't need a
445          * timing voice, as we can use the capture channel's interrupts
446          * to clock out the periods.
447          */
448         period_size = params_period_size(hw_params);
449         buffer_size = params_buffer_size(hw_params);
450         needed = (period_size != buffer_size &&
451                         period_size != (buffer_size / 2));
452
453         if (needed && !voice->timing) {
454                 spin_lock_irqsave(&sis->voice_lock, flags);
455                 voice->timing = __sis_alloc_playback_voice(sis);
456                 if (voice->timing)
457                         __sis_map_silence(sis);
458                 spin_unlock_irqrestore(&sis->voice_lock, flags);
459                 if (!voice->timing)
460                         return -ENOMEM;
461                 voice->timing->substream = substream;
462         } else if (!needed && voice->timing) {
463                 sis_free_voice(sis, voice);
464                 voice->timing = NULL;
465         }
466
467         return 0;
468 }
469
470 static int sis_playback_open(struct snd_pcm_substream *substream)
471 {
472         struct sis7019 *sis = snd_pcm_substream_chip(substream);
473         struct snd_pcm_runtime *runtime = substream->runtime;
474         struct voice *voice;
475
476         voice = sis_alloc_playback_voice(sis);
477         if (!voice)
478                 return -EAGAIN;
479
480         voice->substream = substream;
481         runtime->private_data = voice;
482         runtime->hw = sis_playback_hw_info;
483         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
484                                                 9, 0xfff9);
485         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
486                                                 9, 0xfff9);
487         snd_pcm_set_sync(substream);
488         return 0;
489 }
490
491 static int sis_substream_close(struct snd_pcm_substream *substream)
492 {
493         struct sis7019 *sis = snd_pcm_substream_chip(substream);
494         struct snd_pcm_runtime *runtime = substream->runtime;
495         struct voice *voice = runtime->private_data;
496
497         sis_free_voice(sis, voice);
498         return 0;
499 }
500
501 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
502 {
503         struct snd_pcm_runtime *runtime = substream->runtime;
504         struct voice *voice = runtime->private_data;
505         void __iomem *ctrl_base = voice->ctrl_base;
506         void __iomem *wave_base = voice->wave_base;
507         u32 format, dma_addr, control, sso_eso, delta, reg;
508         u16 leo;
509
510         /* We rely on the PCM core to ensure that the parameters for this
511          * substream do not change on us while we're programming the HW.
512          */
513         format = 0;
514         if (snd_pcm_format_width(runtime->format) == 8)
515                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
516         if (!snd_pcm_format_signed(runtime->format))
517                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
518         if (runtime->channels == 1)
519                 format |= SIS_PLAY_DMA_FORMAT_MONO;
520
521         /* The baseline setup is for a single period per buffer, and
522          * we add bells and whistles as needed from there.
523          */
524         dma_addr = runtime->dma_addr;
525         leo = runtime->buffer_size - 1;
526         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
527         sso_eso = leo;
528
529         if (runtime->period_size == (runtime->buffer_size / 2)) {
530                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
531         } else if (runtime->period_size != runtime->buffer_size) {
532                 voice->flags |= VOICE_SSO_TIMING;
533                 voice->sso = runtime->period_size - 1;
534                 voice->period_size = runtime->period_size;
535                 voice->buffer_size = runtime->buffer_size;
536
537                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
538                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
539                 sso_eso |= (runtime->period_size - 1) << 16;
540         }
541
542         delta = sis_rate_to_delta(runtime->rate);
543
544         /* Ok, we're ready to go, set up the channel.
545          */
546         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
547         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
548         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
549         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
550
551         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
552                 writel(0, wave_base + reg);
553
554         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
555         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
556         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
557                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
558                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
559                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
560
561         /* Force PCI writes to post. */
562         readl(ctrl_base);
563
564         return 0;
565 }
566
567 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
568 {
569         struct sis7019 *sis = snd_pcm_substream_chip(substream);
570         unsigned long io = sis->ioport;
571         struct snd_pcm_substream *s;
572         struct voice *voice;
573         void *chip;
574         int starting;
575         u32 record = 0;
576         u32 play[2] = { 0, 0 };
577
578         /* No locks needed, as the PCM core will hold the locks on the
579          * substreams, and the HW will only start/stop the indicated voices
580          * without changing the state of the others.
581          */
582         switch (cmd) {
583         case SNDRV_PCM_TRIGGER_START:
584         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
585         case SNDRV_PCM_TRIGGER_RESUME:
586                 starting = 1;
587                 break;
588         case SNDRV_PCM_TRIGGER_STOP:
589         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
590         case SNDRV_PCM_TRIGGER_SUSPEND:
591                 starting = 0;
592                 break;
593         default:
594                 return -EINVAL;
595         }
596
597         snd_pcm_group_for_each_entry(s, substream) {
598                 /* Make sure it is for us... */
599                 chip = snd_pcm_substream_chip(s);
600                 if (chip != sis)
601                         continue;
602
603                 voice = s->runtime->private_data;
604                 if (voice->flags & VOICE_CAPTURE) {
605                         record |= 1 << voice->num;
606                         voice = voice->timing;
607                 }
608
609                 /* voice could be NULL if this a recording stream, and it
610                  * doesn't have an external timing channel.
611                  */
612                 if (voice)
613                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
614
615                 snd_pcm_trigger_done(s, substream);
616         }
617
618         if (starting) {
619                 if (record)
620                         outl(record, io + SIS_RECORD_START_REG);
621                 if (play[0])
622                         outl(play[0], io + SIS_PLAY_START_A_REG);
623                 if (play[1])
624                         outl(play[1], io + SIS_PLAY_START_B_REG);
625         } else {
626                 if (record)
627                         outl(record, io + SIS_RECORD_STOP_REG);
628                 if (play[0])
629                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
630                 if (play[1])
631                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
632         }
633         return 0;
634 }
635
636 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
637 {
638         struct snd_pcm_runtime *runtime = substream->runtime;
639         struct voice *voice = runtime->private_data;
640         u32 cso;
641
642         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
643         cso &= 0xffff;
644         return cso;
645 }
646
647 static int sis_capture_open(struct snd_pcm_substream *substream)
648 {
649         struct sis7019 *sis = snd_pcm_substream_chip(substream);
650         struct snd_pcm_runtime *runtime = substream->runtime;
651         struct voice *voice = &sis->capture_voice;
652         unsigned long flags;
653
654         /* FIXME: The driver only supports recording from one channel
655          * at the moment, but it could support more.
656          */
657         spin_lock_irqsave(&sis->voice_lock, flags);
658         if (voice->flags & VOICE_IN_USE)
659                 voice = NULL;
660         else
661                 voice->flags |= VOICE_IN_USE;
662         spin_unlock_irqrestore(&sis->voice_lock, flags);
663
664         if (!voice)
665                 return -EAGAIN;
666
667         voice->substream = substream;
668         runtime->private_data = voice;
669         runtime->hw = sis_capture_hw_info;
670         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
671         snd_pcm_limit_hw_rates(runtime);
672         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
673                                                 9, 0xfff9);
674         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
675                                                 9, 0xfff9);
676         snd_pcm_set_sync(substream);
677         return 0;
678 }
679
680 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
681                                         struct snd_pcm_hw_params *hw_params)
682 {
683         struct sis7019 *sis = snd_pcm_substream_chip(substream);
684         int rc;
685
686         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
687                                                 params_rate(hw_params));
688         if (rc)
689                 goto out;
690
691         rc = sis_alloc_timing_voice(substream, hw_params);
692
693 out:
694         return rc;
695 }
696
697 static void sis_prepare_timing_voice(struct voice *voice,
698                                         struct snd_pcm_substream *substream)
699 {
700         struct sis7019 *sis = snd_pcm_substream_chip(substream);
701         struct snd_pcm_runtime *runtime = substream->runtime;
702         struct voice *timing = voice->timing;
703         void __iomem *play_base = timing->ctrl_base;
704         void __iomem *wave_base = timing->wave_base;
705         u16 buffer_size, period_size;
706         u32 format, control, sso_eso, delta;
707         u32 vperiod, sso, reg;
708
709         /* Set our initial buffer and period as large as we can given a
710          * single page of silence.
711          */
712         buffer_size = 4096 / runtime->channels;
713         buffer_size /= snd_pcm_format_size(runtime->format, 1);
714         period_size = buffer_size;
715
716         /* Initially, we want to interrupt just a bit behind the end of
717          * the period we're clocking out. 12 samples seems to give a good
718          * delay.
719          *
720          * We want to spread our interrupts throughout the virtual period,
721          * so that we don't end up with two interrupts back to back at the
722          * end -- this helps minimize the effects of any jitter. Adjust our
723          * clocking period size so that the last period is at least a fourth
724          * of a full period.
725          *
726          * This is all moot if we don't need to use virtual periods.
727          */
728         vperiod = runtime->period_size + 12;
729         if (vperiod > period_size) {
730                 u16 tail = vperiod % period_size;
731                 u16 quarter_period = period_size / 4;
732
733                 if (tail && tail < quarter_period) {
734                         u16 loops = vperiod / period_size;
735
736                         tail = quarter_period - tail;
737                         tail += loops - 1;
738                         tail /= loops;
739                         period_size -= tail;
740                 }
741
742                 sso = period_size - 1;
743         } else {
744                 /* The initial period will fit inside the buffer, so we
745                  * don't need to use virtual periods -- disable them.
746                  */
747                 period_size = runtime->period_size;
748                 sso = vperiod - 1;
749                 vperiod = 0;
750         }
751
752         /* The interrupt handler implements the timing synchronization, so
753          * setup its state.
754          */
755         timing->flags |= VOICE_SYNC_TIMING;
756         timing->sync_base = voice->ctrl_base;
757         timing->sync_cso = runtime->period_size;
758         timing->sync_period_size = runtime->period_size;
759         timing->sync_buffer_size = runtime->buffer_size;
760         timing->period_size = period_size;
761         timing->buffer_size = buffer_size;
762         timing->sso = sso;
763         timing->vperiod = vperiod;
764
765         /* Using unsigned samples with the all-zero silence buffer
766          * forces the output to the lower rail, killing playback.
767          * So ignore unsigned vs signed -- it doesn't change the timing.
768          */
769         format = 0;
770         if (snd_pcm_format_width(runtime->format) == 8)
771                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
772         if (runtime->channels == 1)
773                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
774
775         control = timing->buffer_size - 1;
776         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
777         sso_eso = timing->buffer_size - 1;
778         sso_eso |= timing->sso << 16;
779
780         delta = sis_rate_to_delta(runtime->rate);
781
782         /* We've done the math, now configure the channel.
783          */
784         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
785         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
786         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
787         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
788
789         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
790                 writel(0, wave_base + reg);
791
792         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
793         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
794         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
795                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
796                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
797                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
798 }
799
800 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
801 {
802         struct snd_pcm_runtime *runtime = substream->runtime;
803         struct voice *voice = runtime->private_data;
804         void __iomem *rec_base = voice->ctrl_base;
805         u32 format, dma_addr, control;
806         u16 leo;
807
808         /* We rely on the PCM core to ensure that the parameters for this
809          * substream do not change on us while we're programming the HW.
810          */
811         format = 0;
812         if (snd_pcm_format_width(runtime->format) == 8)
813                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
814         if (!snd_pcm_format_signed(runtime->format))
815                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
816         if (runtime->channels == 1)
817                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
818
819         dma_addr = runtime->dma_addr;
820         leo = runtime->buffer_size - 1;
821         control = leo | SIS_CAPTURE_DMA_LOOP;
822
823         /* If we've got more than two periods per buffer, then we have
824          * use a timing voice to clock out the periods. Otherwise, we can
825          * use the capture channel's interrupts.
826          */
827         if (voice->timing) {
828                 sis_prepare_timing_voice(voice, substream);
829         } else {
830                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
831                 if (runtime->period_size != runtime->buffer_size)
832                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
833         }
834
835         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
836         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
837         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
838
839         /* Force the writes to post. */
840         readl(rec_base);
841
842         return 0;
843 }
844
845 static const struct snd_pcm_ops sis_playback_ops = {
846         .open = sis_playback_open,
847         .close = sis_substream_close,
848         .prepare = sis_pcm_playback_prepare,
849         .trigger = sis_pcm_trigger,
850         .pointer = sis_pcm_pointer,
851 };
852
853 static const struct snd_pcm_ops sis_capture_ops = {
854         .open = sis_capture_open,
855         .close = sis_substream_close,
856         .hw_params = sis_capture_hw_params,
857         .prepare = sis_pcm_capture_prepare,
858         .trigger = sis_pcm_trigger,
859         .pointer = sis_pcm_pointer,
860 };
861
862 static int sis_pcm_create(struct sis7019 *sis)
863 {
864         struct snd_pcm *pcm;
865         int rc;
866
867         /* We have 64 voices, and the driver currently records from
868          * only one channel, though that could change in the future.
869          */
870         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
871         if (rc)
872                 return rc;
873
874         pcm->private_data = sis;
875         strcpy(pcm->name, "SiS7019");
876         sis->pcm = pcm;
877
878         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
879         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
880
881         /* Try to preallocate some memory, but it's not the end of the
882          * world if this fails.
883          */
884         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
885                                        &sis->pci->dev, 64*1024, 128*1024);
886
887         return 0;
888 }
889
890 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
891 {
892         unsigned long io = sis->ioport;
893         unsigned short val = 0xffff;
894         u16 status;
895         u16 rdy;
896         int count;
897         static const u16 codec_ready[3] = {
898                 SIS_AC97_STATUS_CODEC_READY,
899                 SIS_AC97_STATUS_CODEC2_READY,
900                 SIS_AC97_STATUS_CODEC3_READY,
901         };
902
903         rdy = codec_ready[codec];
904
905
906         /* Get the AC97 semaphore -- software first, so we don't spin
907          * pounding out IO reads on the hardware semaphore...
908          */
909         mutex_lock(&sis->ac97_mutex);
910
911         count = 0xffff;
912         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
913                 udelay(1);
914
915         if (!count)
916                 goto timeout;
917
918         /* ... and wait for any outstanding commands to complete ...
919          */
920         count = 0xffff;
921         do {
922                 status = inw(io + SIS_AC97_STATUS);
923                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
924                         break;
925
926                 udelay(1);
927         } while (--count);
928
929         if (!count)
930                 goto timeout_sema;
931
932         /* ... before sending our command and waiting for it to finish ...
933          */
934         outl(cmd, io + SIS_AC97_CMD);
935         udelay(10);
936
937         count = 0xffff;
938         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
939                 udelay(1);
940
941         /* ... and reading the results (if any).
942          */
943         val = inl(io + SIS_AC97_CMD) >> 16;
944
945 timeout_sema:
946         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
947 timeout:
948         mutex_unlock(&sis->ac97_mutex);
949
950         if (!count) {
951                 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
952                                         codec, cmd);
953         }
954
955         return val;
956 }
957
958 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
959                                 unsigned short val)
960 {
961         static const u32 cmd[3] = {
962                 SIS_AC97_CMD_CODEC_WRITE,
963                 SIS_AC97_CMD_CODEC2_WRITE,
964                 SIS_AC97_CMD_CODEC3_WRITE,
965         };
966         sis_ac97_rw(ac97->private_data, ac97->num,
967                         (val << 16) | (reg << 8) | cmd[ac97->num]);
968 }
969
970 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
971 {
972         static const u32 cmd[3] = {
973                 SIS_AC97_CMD_CODEC_READ,
974                 SIS_AC97_CMD_CODEC2_READ,
975                 SIS_AC97_CMD_CODEC3_READ,
976         };
977         return sis_ac97_rw(ac97->private_data, ac97->num,
978                                         (reg << 8) | cmd[ac97->num]);
979 }
980
981 static int sis_mixer_create(struct sis7019 *sis)
982 {
983         struct snd_ac97_bus *bus;
984         struct snd_ac97_template ac97;
985         static const struct snd_ac97_bus_ops ops = {
986                 .write = sis_ac97_write,
987                 .read = sis_ac97_read,
988         };
989         int rc;
990
991         memset(&ac97, 0, sizeof(ac97));
992         ac97.private_data = sis;
993
994         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
995         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
996                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
997         ac97.num = 1;
998         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
999                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1000         ac97.num = 2;
1001         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1002                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1003
1004         /* If we return an error here, then snd_card_free() should
1005          * free up any ac97 codecs that got created, as well as the bus.
1006          */
1007         return rc;
1008 }
1009
1010 static void sis_chip_free(struct snd_card *card)
1011 {
1012         struct sis7019 *sis = card->private_data;
1013
1014         /* Reset the chip, and disable all interrputs.
1015          */
1016         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1017         udelay(25);
1018         outl(0, sis->ioport + SIS_GCR);
1019         outl(0, sis->ioport + SIS_GIER);
1020
1021         /* Now, free everything we allocated.
1022          */
1023         if (sis->irq >= 0)
1024                 free_irq(sis->irq, sis);
1025 }
1026
1027 static int sis_chip_init(struct sis7019 *sis)
1028 {
1029         unsigned long io = sis->ioport;
1030         void __iomem *ioaddr = sis->ioaddr;
1031         unsigned long timeout;
1032         u16 status;
1033         int count;
1034         int i;
1035
1036         /* Reset the audio controller
1037          */
1038         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1039         udelay(25);
1040         outl(0, io + SIS_GCR);
1041
1042         /* Get the AC-link semaphore, and reset the codecs
1043          */
1044         count = 0xffff;
1045         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1046                 udelay(1);
1047
1048         if (!count)
1049                 return -EIO;
1050
1051         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1052         udelay(250);
1053
1054         count = 0xffff;
1055         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1056                 udelay(1);
1057
1058         /* Command complete, we can let go of the semaphore now.
1059          */
1060         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1061         if (!count)
1062                 return -EIO;
1063
1064         /* Now that we've finished the reset, find out what's attached.
1065          * There are some codec/board combinations that take an extremely
1066          * long time to come up. 350+ ms has been observed in the field,
1067          * so we'll give them up to 500ms.
1068          */
1069         sis->codecs_present = 0;
1070         timeout = msecs_to_jiffies(500) + jiffies;
1071         while (time_before_eq(jiffies, timeout)) {
1072                 status = inl(io + SIS_AC97_STATUS);
1073                 if (status & SIS_AC97_STATUS_CODEC_READY)
1074                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1075                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1076                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1077                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1078                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1079
1080                 if (sis->codecs_present == codecs)
1081                         break;
1082
1083                 msleep(1);
1084         }
1085
1086         /* All done, check for errors.
1087          */
1088         if (!sis->codecs_present) {
1089                 dev_err(&sis->pci->dev, "could not find any codecs\n");
1090                 return -EIO;
1091         }
1092
1093         if (sis->codecs_present != codecs) {
1094                 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1095                                          sis->codecs_present, codecs);
1096         }
1097
1098         /* Let the hardware know that the audio driver is alive,
1099          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1100          * record channels. We're going to want to use Variable Rate Audio
1101          * for recording, to avoid needlessly resampling from 48kHZ.
1102          */
1103         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1104         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1105                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1106                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1107                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1108
1109         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1110          */
1111         outl(0, io + SIS_AC97_PSR);
1112
1113         /* There is only one valid DMA setup for a PCI environment.
1114          */
1115         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1116
1117         /* Reset the synchronization groups for all of the channels
1118          * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1119          * we'll need to change how we handle these. Until then, we just
1120          * assign sub-mixer 0 to all playback channels, and avoid any
1121          * attenuation on the audio.
1122          */
1123         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1124         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1125         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1126         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1127         outl(0, io + SIS_MIXER_SYNC_GROUP);
1128
1129         for (i = 0; i < 64; i++) {
1130                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1131                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1132                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1133         }
1134
1135         /* Don't attenuate any audio set for the wave amplifier.
1136          *
1137          * FIXME: Maximum attenuation is set for the music amp, which will
1138          * need to change if we start using the synth engine.
1139          */
1140         outl(0xffff0000, io + SIS_WEVCR);
1141
1142         /* Ensure that the wave engine is in normal operating mode.
1143          */
1144         outl(0, io + SIS_WECCR);
1145
1146         /* Go ahead and enable the DMA interrupts. They won't go live
1147          * until we start a channel.
1148          */
1149         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1150                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1151
1152         return 0;
1153 }
1154
1155 #ifdef CONFIG_PM_SLEEP
1156 static int sis_suspend(struct device *dev)
1157 {
1158         struct snd_card *card = dev_get_drvdata(dev);
1159         struct sis7019 *sis = card->private_data;
1160         void __iomem *ioaddr = sis->ioaddr;
1161         int i;
1162
1163         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1164         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1165                 snd_ac97_suspend(sis->ac97[0]);
1166         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1167                 snd_ac97_suspend(sis->ac97[1]);
1168         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1169                 snd_ac97_suspend(sis->ac97[2]);
1170
1171         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1172          */
1173         if (sis->irq >= 0) {
1174                 free_irq(sis->irq, sis);
1175                 sis->irq = -1;
1176         }
1177
1178         /* Save the internal state away
1179          */
1180         for (i = 0; i < 4; i++) {
1181                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1182                 ioaddr += 4096;
1183         }
1184
1185         return 0;
1186 }
1187
1188 static int sis_resume(struct device *dev)
1189 {
1190         struct pci_dev *pci = to_pci_dev(dev);
1191         struct snd_card *card = dev_get_drvdata(dev);
1192         struct sis7019 *sis = card->private_data;
1193         void __iomem *ioaddr = sis->ioaddr;
1194         int i;
1195
1196         if (sis_chip_init(sis)) {
1197                 dev_err(&pci->dev, "unable to re-init controller\n");
1198                 goto error;
1199         }
1200
1201         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1202                         KBUILD_MODNAME, sis)) {
1203                 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1204                 goto error;
1205         }
1206
1207         /* Restore saved state, then clear out the page we use for the
1208          * silence buffer.
1209          */
1210         for (i = 0; i < 4; i++) {
1211                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1212                 ioaddr += 4096;
1213         }
1214
1215         memset(sis->suspend_state[0], 0, 4096);
1216
1217         sis->irq = pci->irq;
1218
1219         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1220                 snd_ac97_resume(sis->ac97[0]);
1221         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1222                 snd_ac97_resume(sis->ac97[1]);
1223         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1224                 snd_ac97_resume(sis->ac97[2]);
1225
1226         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1227         return 0;
1228
1229 error:
1230         snd_card_disconnect(card);
1231         return -EIO;
1232 }
1233
1234 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1235 #define SIS_PM_OPS      &sis_pm
1236 #else
1237 #define SIS_PM_OPS      NULL
1238 #endif /* CONFIG_PM_SLEEP */
1239
1240 static int sis_alloc_suspend(struct sis7019 *sis)
1241 {
1242         int i;
1243
1244         /* We need 16K to store the internal wave engine state during a
1245          * suspend, but we don't need it to be contiguous, so play nice
1246          * with the memory system. We'll also use this area for a silence
1247          * buffer.
1248          */
1249         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1250                 sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1251                                                      GFP_KERNEL);
1252                 if (!sis->suspend_state[i])
1253                         return -ENOMEM;
1254         }
1255         memset(sis->suspend_state[0], 0, 4096);
1256
1257         return 0;
1258 }
1259
1260 static int sis_chip_create(struct snd_card *card,
1261                            struct pci_dev *pci)
1262 {
1263         struct sis7019 *sis = card->private_data;
1264         struct voice *voice;
1265         int rc;
1266         int i;
1267
1268         rc = pcim_enable_device(pci);
1269         if (rc)
1270                 return rc;
1271
1272         rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1273         if (rc < 0) {
1274                 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1275                 return -ENXIO;
1276         }
1277
1278         mutex_init(&sis->ac97_mutex);
1279         spin_lock_init(&sis->voice_lock);
1280         sis->card = card;
1281         sis->pci = pci;
1282         sis->irq = -1;
1283         sis->ioport = pci_resource_start(pci, 0);
1284
1285         rc = pci_request_regions(pci, "SiS7019");
1286         if (rc) {
1287                 dev_err(&pci->dev, "unable request regions\n");
1288                 return rc;
1289         }
1290
1291         sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1292         if (!sis->ioaddr) {
1293                 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1294                 return -EIO;
1295         }
1296
1297         rc = sis_alloc_suspend(sis);
1298         if (rc < 0) {
1299                 dev_err(&pci->dev, "unable to allocate state storage\n");
1300                 return rc;
1301         }
1302
1303         rc = sis_chip_init(sis);
1304         if (rc)
1305                 return rc;
1306         card->private_free = sis_chip_free;
1307
1308         rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1309                          sis);
1310         if (rc) {
1311                 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1312                 return rc;
1313         }
1314
1315         sis->irq = pci->irq;
1316         card->sync_irq = sis->irq;
1317         pci_set_master(pci);
1318
1319         for (i = 0; i < 64; i++) {
1320                 voice = &sis->voices[i];
1321                 voice->num = i;
1322                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1323                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1324         }
1325
1326         voice = &sis->capture_voice;
1327         voice->flags = VOICE_CAPTURE;
1328         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1329         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1330
1331         return 0;
1332 }
1333
1334 static int __snd_sis7019_probe(struct pci_dev *pci,
1335                                const struct pci_device_id *pci_id)
1336 {
1337         struct snd_card *card;
1338         struct sis7019 *sis;
1339         int rc;
1340
1341         if (!enable)
1342                 return -ENOENT;
1343
1344         /* The user can specify which codecs should be present so that we
1345          * can wait for them to show up if they are slow to recover from
1346          * the AC97 cold reset. We default to a single codec, the primary.
1347          *
1348          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1349          */
1350         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1351                   SIS_TERTIARY_CODEC_PRESENT;
1352         if (!codecs)
1353                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1354
1355         rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1356                                sizeof(*sis), &card);
1357         if (rc < 0)
1358                 return rc;
1359
1360         strcpy(card->driver, "SiS7019");
1361         strcpy(card->shortname, "SiS7019");
1362         rc = sis_chip_create(card, pci);
1363         if (rc)
1364                 return rc;
1365
1366         sis = card->private_data;
1367
1368         rc = sis_mixer_create(sis);
1369         if (rc)
1370                 return rc;
1371
1372         rc = sis_pcm_create(sis);
1373         if (rc)
1374                 return rc;
1375
1376         snprintf(card->longname, sizeof(card->longname),
1377                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1378                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1379                         sis->ioport, sis->irq);
1380
1381         rc = snd_card_register(card);
1382         if (rc)
1383                 return rc;
1384
1385         pci_set_drvdata(pci, card);
1386         return 0;
1387 }
1388
1389 static int snd_sis7019_probe(struct pci_dev *pci,
1390                              const struct pci_device_id *pci_id)
1391 {
1392         return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1393 }
1394
1395 static struct pci_driver sis7019_driver = {
1396         .name = KBUILD_MODNAME,
1397         .id_table = snd_sis7019_ids,
1398         .probe = snd_sis7019_probe,
1399         .driver = {
1400                 .pm = SIS_PM_OPS,
1401         },
1402 };
1403
1404 module_pci_driver(sis7019_driver);