2 * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3 * onboard audio. See notes in Documentation/sound/oss/vwsnd .
5 * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #undef VWSND_DEBUG /* define for debugging */
28 * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29 * Bug - if select() called before read(), pcm_setup() not called.
30 * Bug - output doesn't stop soon enough if process killed.
36 * Will readv/writev work? Write a test.
38 * insmod/rmmod 100 million times.
40 * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
43 * Concurrent threads banging on mixer simultaneously, both UP
44 * and SMP kernels. Especially, watch for thread A changing
45 * OUTSRC while thread B changes gain -- both write to the same
48 * What happens if a client opens /dev/audio then forks?
49 * Do two procs have /dev/audio open? Test.
51 * Pump audio through the CD, MIC and line inputs and verify that
52 * they mix/mute into the output.
61 * need more input apps
63 * Run tests while bombarding with signals. setitimer(2) will do it... */
66 * This driver is organized in nine sections.
67 * The nine sections are:
70 * low level lithium access
71 * high level lithium access
77 * initialization and loadable kernel module interface
79 * That is roughly the order of increasing abstraction, so forward
80 * dependencies are minimal.
86 * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87 * open descriptors to this driver. They store it in vwsnd_use_count.
88 * The global device list, vwsnd_dev_list, is immutable when the IN_USE
91 * devc->open_lock is a semaphore that is used to enforce the
92 * single reader/single writer rule for /dev/audio. The rule is
93 * that each device may have at most one reader and one writer.
94 * Open will block until the previous client has closed the
95 * device, unless O_NONBLOCK is specified.
97 * The semaphore devc->io_mutex serializes PCM I/O syscalls. This
98 * is unnecessary in Linux 2.2, because the kernel lock
99 * serializes read, write, and ioctl globally, but it's there,
100 * ready for the brave, new post-kernel-lock world.
102 * Locking between interrupt and baselevel is handled by the
103 * "lock" spinlock in vwsnd_port (one lock each for read and
104 * write). Each half holds the lock just long enough to see what
105 * area it owns and update its pointers. See pcm_output() and
106 * pcm_input() for most of the gory stuff.
108 * devc->mix_mutex serializes all mixer ioctls. This is also
109 * redundant because of the kernel lock.
111 * The lowest level lock is lith->lithium_lock. It is a
112 * spinlock which is held during the two-register tango of
113 * reading/writing an AD1843 register. See
114 * li_{read,write}_ad1843_reg().
118 * Sample Format Notes
120 * Lithium's DMA engine has two formats: 16-bit 2's complement
121 * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
122 * bytes per sample. 8-bit unsigned transfers 1 byte per sample
123 * and XORs each byte with 0x80. Lithium can input or output
124 * either mono or stereo in either format.
126 * The AD1843 has four formats: 16-bit 2's complement, 8-bit
127 * unsigned, 8-bit mu-Law and 8-bit A-Law.
129 * This driver supports five formats: AFMT_S8, AFMT_U8,
130 * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
132 * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133 * rely on Lithium's XOR to translate between U8 and S8.
135 * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136 * the 0x80 bit in software to compensate for Lithium's XOR.
137 * This happens in pcm_copy_{in,out}().
140 * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
141 * Added some __init/__exit
144 #include <linux/module.h>
145 #include <linux/init.h>
147 #include <linux/spinlock.h>
148 #include <linux/wait.h>
149 #include <linux/interrupt.h>
150 #include <linux/mutex.h>
151 #include <linux/slab.h>
152 #include <linux/delay.h>
154 #include <asm/visws/cobalt.h>
156 #include "sound_config.h"
158 static DEFINE_MUTEX(vwsnd_mutex);
160 /*****************************************************************************/
165 static int shut_up = 1;
168 * dbgassert - called when an assertion fails.
171 static void dbgassert(const char *fcn, int line, const char *expr)
174 panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
175 __FILE__, fcn, line, expr);
178 printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
179 __FILE__, fcn, line, expr);
180 x = * (volatile int *) 0; /* force proc to exit */
185 * Bunch of useful debug macros:
187 * ASSERT - print unless e nonzero (panic if in interrupt)
188 * DBGDO - include arbitrary code if debugging
189 * DBGX - debug print raw (w/o function name)
190 * DBGP - debug print w/ function name
191 * DBGE - debug print function entry
192 * DBGC - debug print function call
193 * DBGR - debug print function return
194 * DBGXV - debug print raw when verbose
195 * DBGPV - debug print when verbose
196 * DBGEV - debug print function entry when verbose
197 * DBGRV - debug print function return when verbose
200 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e))
202 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
203 #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args))
204 #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args))
205 #define DBGC(rtn) (DBGP("calling %s\n", rtn))
206 #define DBGR() (DBGP("returning\n"))
207 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
208 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
209 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
210 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
211 #define DBGRV() (shut_up ? 0 : DBGR())
213 #else /* !VWSND_DEBUG */
215 #define ASSERT(e) ((void) 0)
216 #define DBGDO(x) /* don't */
217 #define DBGX(fmt, args...) ((void) 0)
218 #define DBGP(fmt, args...) ((void) 0)
219 #define DBGE(fmt, args...) ((void) 0)
220 #define DBGC(rtn) ((void) 0)
221 #define DBGR() ((void) 0)
222 #define DBGPV(fmt, args...) ((void) 0)
223 #define DBGXV(fmt, args...) ((void) 0)
224 #define DBGEV(fmt, args...) ((void) 0)
225 #define DBGCV(rtn) ((void) 0)
226 #define DBGRV() ((void) 0)
228 #endif /* !VWSND_DEBUG */
230 /*****************************************************************************/
231 /* low level lithium access */
234 * We need to talk to Lithium registers on three pages. Here are
235 * the pages' offsets from the base address (0xFF001000).
239 LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
240 LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
241 LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
244 /* low-level lithium data */
246 typedef struct lithium {
247 void * page0; /* virtual addresses */
250 spinlock_t lock; /* protects codec and UST/MSC access */
254 * li_destroy destroys the lithium_t structure and vm mappings.
257 static void li_destroy(lithium_t *lith)
260 iounmap(lith->page0);
264 iounmap(lith->page1);
268 iounmap(lith->page2);
274 * li_create initializes the lithium_t structure and sets up vm mappings
275 * to access the registers.
276 * Returns 0 on success, -errno on failure.
279 static int __init li_create(lithium_t *lith, unsigned long baseaddr)
281 spin_lock_init(&lith->lock);
282 lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
283 lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
284 lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
285 if (!lith->page0 || !lith->page1 || !lith->page2) {
293 * basic register accessors - read/write long/byte
296 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
298 return * (volatile unsigned long *) (lith->page0 + off);
301 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
303 return * (volatile unsigned char *) (lith->page0 + off);
306 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
308 * (volatile unsigned long *) (lith->page0 + off) = val;
311 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
313 * (volatile unsigned char *) (lith->page0 + off) = val;
316 /*****************************************************************************/
317 /* High Level Lithium Access */
322 * Lithium has two dedicated DMA channels for audio. They are known
323 * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
324 * input, and comm2 is for output. Each is controlled by three
325 * registers: BASE (base address), CFG (config) and CCTL
328 * Each DMA channel points to a physically contiguous ring buffer in
329 * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
330 * There are three pointers into the ring buffer: read, write, and
331 * trigger. The pointers are 8 bits each. Each pointer points to
332 * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
333 * so there is no finer-granularity control.
335 * In comm1, the hardware updates the write ptr, and software updates
336 * the read ptr. In comm2, it's the opposite: hardware updates the
337 * read ptr, and software updates the write ptr. I designate the
338 * hardware-updated ptr as the hwptr, and the software-updated ptr as
341 * The trigger ptr and trigger mask are used to trigger interrupts.
342 * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
346 * A three bit wide field that represents a power of two mask
347 * that is used whenever the trigger pointer is compared to its
348 * respective read or write pointer. A value of zero here
349 * implies a mask of 0xFF and a value of seven implies a mask
350 * 0x01. This value can be used to sub-divide the ring buffer
351 * into pie sections so that interrupts monitor the progress of
352 * hardware from section to section.
354 * My interpretation of that is, whenever the hw ptr is updated, it is
355 * compared with the trigger ptr, and the result is masked by the
356 * trigger mask. (Actually, by the complement of the trigger mask.)
357 * If the result is zero, an interrupt is triggered. I.e., interrupt
358 * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
359 * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
361 * In yet different words, setting tmreg to 0 causes an interrupt after
362 * every 256 DMA chunks (8192 bytes) or once per traversal of the
363 * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
364 * (64 bytes) or 128 times per traversal of the ring buffer.
367 /* Lithium register offsets and bit definitions */
369 #define LI_HOST_CONTROLLER 0x000
370 # define LI_HC_RESET 0x00008000
371 # define LI_HC_LINK_ENABLE 0x00004000
372 # define LI_HC_LINK_FAILURE 0x00000004
373 # define LI_HC_LINK_CODEC 0x00000002
374 # define LI_HC_LINK_READY 0x00000001
376 #define LI_INTR_STATUS 0x010
377 #define LI_INTR_MASK 0x014
378 # define LI_INTR_LINK_ERR 0x00008000
379 # define LI_INTR_COMM2_TRIG 0x00000008
380 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
381 # define LI_INTR_COMM1_TRIG 0x00000002
382 # define LI_INTR_COMM1_OVERFLOW 0x00000001
384 #define LI_CODEC_COMMAND 0x018
385 # define LI_CC_BUSY 0x00008000
386 # define LI_CC_DIR 0x00000080
387 # define LI_CC_DIR_RD LI_CC_DIR
388 # define LI_CC_DIR_WR (!LI_CC_DIR)
389 # define LI_CC_ADDR_MASK 0x0000007F
391 #define LI_CODEC_DATA 0x01C
393 #define LI_COMM1_BASE 0x100
394 #define LI_COMM1_CTL 0x104
395 # define LI_CCTL_RESET 0x80000000
396 # define LI_CCTL_SIZE 0x70000000
397 # define LI_CCTL_DMA_ENABLE 0x08000000
398 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */
399 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
400 # define LI_CCTL_RPTR 0x0000FF00
401 # define LI_CCTL_WPTR 0x000000FF
402 #define LI_COMM1_CFG 0x108
403 # define LI_CCFG_LOCK 0x00008000
404 # define LI_CCFG_SLOT 0x00000070
405 # define LI_CCFG_DIRECTION 0x00000008
406 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
407 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
408 # define LI_CCFG_MODE 0x00000004
409 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
410 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE
411 # define LI_CCFG_FORMAT 0x00000003
412 # define LI_CCFG_FMT_8BIT 0x00000000
413 # define LI_CCFG_FMT_16BIT 0x00000001
414 #define LI_COMM2_BASE 0x10C
415 #define LI_COMM2_CTL 0x110
416 /* bit definitions are the same as LI_COMM1_CTL */
417 #define LI_COMM2_CFG 0x114
418 /* bit definitions are the same as LI_COMM1_CFG */
420 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
421 #define LI_UST_HIGH 0x204 /* microseconds since boot */
423 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
424 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
425 #define LI_AUDIO2_UST 0x308 /* counts samples actually */
426 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
429 * Lithium's DMA engine operates on chunks of 32 bytes. We call that
433 #define DMACHUNK_SHIFT 5
434 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
435 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
436 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
439 * Two convenient macros to shift bitfields into/out of position.
441 * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
442 * As long as mask is constant, we trust the compiler will change the
443 * multiply and divide into shifts.
446 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
447 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
450 * dma_chan_desc is invariant information about a Lithium
451 * DMA channel. There are two instances, li_comm1 and li_comm2.
453 * Note that the CCTL register fields are write ptr and read ptr, but what
454 * we care about are which pointer is updated by software and which by
458 typedef struct dma_chan_desc {
466 unsigned long swptrmask;
468 int direction; /* LI_CCTL_DIR_IN/OUT */
471 static const dma_chan_desc_t li_comm1 = {
472 LI_COMM1_BASE, /* base register offset */
473 LI_COMM1_CFG, /* config register offset */
474 LI_COMM1_CTL, /* control register offset */
475 LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
476 LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
477 LI_AUDIO1_UST, /* ust reg offset */
478 LI_AUDIO1_MSC, /* msc reg offset */
479 LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
480 2, /* ad1843 serial slot */
481 LI_CCFG_DIR_IN /* direction */
484 static const dma_chan_desc_t li_comm2 = {
485 LI_COMM2_BASE, /* base register offset */
486 LI_COMM2_CFG, /* config register offset */
487 LI_COMM2_CTL, /* control register offset */
488 LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
489 LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
490 LI_AUDIO2_UST, /* ust reg offset */
491 LI_AUDIO2_MSC, /* msc reg offset */
492 LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
493 2, /* ad1843 serial slot */
494 LI_CCFG_DIR_OUT /* direction */
498 * dma_chan is variable information about a Lithium DMA channel.
500 * The desc field points to invariant information.
501 * The lith field points to a lithium_t which is passed
502 * to li_read* and li_write* to access the registers.
503 * The *val fields shadow the lithium registers' contents.
506 typedef struct dma_chan {
507 const dma_chan_desc_t *desc;
509 unsigned long baseval;
510 unsigned long cfgval;
511 unsigned long ctlval;
515 * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
516 * UST is time in microseconds since the system booted, and MSC is a
517 * counter that increments with every audio sample.
520 typedef struct ustmsc {
521 unsigned long long ust;
526 * li_ad1843_wait waits until lithium says the AD1843 register
527 * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
529 * Locking: must be called with lithium_lock held.
532 static int li_ad1843_wait(lithium_t *lith)
534 unsigned long later = jiffies + 2;
535 while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
536 if (time_after_eq(jiffies, later))
542 * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
544 * Returns unsigned register value on success, -errno on failure.
547 static int li_read_ad1843_reg(lithium_t *lith, int reg)
551 ASSERT(!in_interrupt());
552 spin_lock(&lith->lock);
554 val = li_ad1843_wait(lith);
556 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
557 val = li_ad1843_wait(lith);
560 val = li_readl(lith, LI_CODEC_DATA);
562 spin_unlock(&lith->lock);
564 DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
571 * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
574 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
576 spin_lock(&lith->lock);
578 if (li_ad1843_wait(lith) == 0) {
579 li_writel(lith, LI_CODEC_DATA, newval);
580 li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
583 spin_unlock(&lith->lock);
587 * li_setup_dma calculates all the register settings for DMA in a particular
588 * mode. It takes too many arguments.
591 static void li_setup_dma(dma_chan_t *chan,
592 const dma_chan_desc_t *desc,
594 unsigned long buffer_paddr,
600 unsigned long mode, format;
601 unsigned long size, tmask;
603 DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
604 "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
605 chan, desc, lith, buffer_paddr,
606 bufshift, fragshift, channels, sampsize);
608 /* Reset the channel first. */
610 li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
612 ASSERT(channels == 1 || channels == 2);
614 mode = LI_CCFG_MODE_STEREO;
616 mode = LI_CCFG_MODE_MONO;
617 ASSERT(sampsize == 1 || sampsize == 2);
619 format = LI_CCFG_FMT_16BIT;
621 format = LI_CCFG_FMT_8BIT;
626 * Lithium DMA address register takes a 40-bit physical
627 * address, right-shifted by 8 so it fits in 32 bits. Bit 37
628 * must be set -- it enables cache coherence.
631 ASSERT(!(buffer_paddr & 0xFF));
632 chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
634 chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) |
635 SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
641 tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
642 ASSERT(size >= 2 && size <= 7);
643 ASSERT(tmask >= 1 && tmask <= 7);
644 chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) |
645 SHIFT_FIELD(size, LI_CCTL_SIZE) |
646 (chan->ctlval & ~LI_CCTL_DMA_ENABLE) |
647 SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
648 SHIFT_FIELD(0, LI_CCTL_TPTR));
650 DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
651 DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
652 DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
654 li_writel(lith, desc->basereg, chan->baseval);
655 li_writel(lith, desc->cfgreg, chan->cfgval);
656 li_writel(lith, desc->ctlreg, chan->ctlval);
661 static void li_shutdown_dma(dma_chan_t *chan)
663 lithium_t *lith = chan->lith;
664 void * lith1 = lith->page1;
666 DBGEV("(chan=0x%p)\n", chan);
668 chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
669 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
670 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
673 * Offset 0x500 on Lithium page 1 is an undocumented,
674 * unsupported register that holds the zero sample value.
675 * Lithium is supposed to output zero samples when DMA is
676 * inactive, and repeat the last sample when DMA underflows.
677 * But it has a bug, where, after underflow occurs, the zero
678 * sample is not reset.
680 * I expect this to break in a future rev of Lithium.
683 if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
684 * (volatile unsigned long *) (lith1 + 0x500) = 0;
688 * li_activate_dma always starts dma at the beginning of the buffer.
690 * N.B., these may be called from interrupt.
693 static __inline__ void li_activate_dma(dma_chan_t *chan)
695 chan->ctlval |= LI_CCTL_DMA_ENABLE;
696 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
697 li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
700 static void li_deactivate_dma(dma_chan_t *chan)
702 lithium_t *lith = chan->lith;
703 void * lith2 = lith->page2;
705 chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
706 DBGPV("ctlval = 0x%lx\n", chan->ctlval);
707 DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
708 li_writel(lith, chan->desc->ctlreg, chan->ctlval);
711 * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
712 * unsupported registers that are internal copies of the DMA
713 * read and write pointers. Because of a Lithium bug, these
714 * registers aren't zeroed correctly when DMA is shut off. So
715 * we whack them directly.
717 * I expect this to break in a future rev of Lithium.
720 if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
721 * (volatile unsigned long *) (lith2 + 0x98) = 0;
722 * (volatile unsigned long *) (lith2 + 0x9C) = 0;
727 * read/write the ring buffer pointers. These routines' arguments and results
728 * are byte offsets from the beginning of the ring buffer.
731 static __inline__ int li_read_swptr(dma_chan_t *chan)
733 const unsigned long mask = chan->desc->swptrmask;
735 return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
738 static __inline__ int li_read_hwptr(dma_chan_t *chan)
740 return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
743 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
745 const unsigned long mask = chan->desc->swptrmask;
747 ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
748 val = BYTES_TO_CHUNKS(val);
749 chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
750 li_writeb(chan->lith, chan->desc->swptrreg, val);
753 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
755 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
757 lithium_t *lith = chan->lith;
758 const dma_chan_desc_t *desc = chan->desc;
759 unsigned long now_low, now_high0, now_high1, chan_ust;
761 spin_lock(&lith->lock);
764 * retry until we do all five reads without the
765 * high word changing. (High word increments
766 * every 2^32 microseconds, i.e., not often)
769 now_high0 = li_readl(lith, LI_UST_HIGH);
770 now_low = li_readl(lith, LI_UST_LOW);
773 * Lithium guarantees these two reads will be
774 * atomic -- ust will not increment after msc
778 ustmsc->msc = li_readl(lith, desc->mscreg);
779 chan_ust = li_readl(lith, desc->ustreg);
781 now_high1 = li_readl(lith, LI_UST_HIGH);
782 } while (now_high0 != now_high1);
784 spin_unlock(&lith->lock);
785 ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
788 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
790 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
792 /* clear any already-pending interrupts. */
794 li_writel(lith, LI_INTR_STATUS, mask);
796 /* enable the interrupts. */
798 mask |= li_readl(lith, LI_INTR_MASK);
799 li_writel(lith, LI_INTR_MASK, mask);
802 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
804 unsigned int keepmask;
806 DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
808 /* disable the interrupts */
810 keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
811 li_writel(lith, LI_INTR_MASK, keepmask);
813 /* clear any pending interrupts. */
815 li_writel(lith, LI_INTR_STATUS, mask);
818 /* Get the interrupt status and clear all pending interrupts. */
820 static unsigned int li_get_clear_intr_status(lithium_t *lith)
824 status = li_readl(lith, LI_INTR_STATUS);
825 li_writel(lith, LI_INTR_STATUS, ~0);
826 return status & li_readl(lith, LI_INTR_MASK);
829 static int li_init(lithium_t *lith)
831 /* 1. System power supplies stabilize. */
833 /* 2. Assert the ~RESET signal. */
835 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
838 /* 3. Deassert the ~RESET signal and enter a wait period to allow
839 the AD1843 internal clocks and the external crystal oscillator
842 li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
848 /*****************************************************************************/
852 * AD1843 bitfield definitions. All are named as in the AD1843 data
853 * sheet, with ad1843_ prepended and individual bit numbers removed.
855 * E.g., bits LSS0 through LSS2 become ad1843_LSS.
857 * Only the bitfields we need are defined.
860 typedef struct ad1843_bitfield {
866 static const ad1843_bitfield_t
867 ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
868 ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
869 ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
870 ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
871 ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
872 ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
873 ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
874 ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
875 ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
876 ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
877 ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
878 ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
879 ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
880 ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
881 ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
882 ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
883 ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
884 ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
885 ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
886 ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
887 ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
888 ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
889 ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
890 ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
891 ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
892 ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
893 ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
894 ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
895 ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
896 ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
897 ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
898 ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
899 ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
900 ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
901 ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
902 ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
903 ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
904 ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
905 ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
906 ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
907 ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
908 ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
909 ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
910 ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
911 ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
912 ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
913 ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
914 ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
915 ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
916 ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
917 ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
920 * The various registers of the AD1843 use three different formats for
921 * specifying gain. The ad1843_gain structure parameterizes the
925 typedef struct ad1843_gain {
927 int negative; /* nonzero if gain is negative. */
928 const ad1843_bitfield_t *lfield;
929 const ad1843_bitfield_t *rfield;
933 static const ad1843_gain_t ad1843_gain_RECLEV
934 = { 0, &ad1843_LIG, &ad1843_RIG };
935 static const ad1843_gain_t ad1843_gain_LINE
936 = { 1, &ad1843_LX1M, &ad1843_RX1M };
937 static const ad1843_gain_t ad1843_gain_CD
938 = { 1, &ad1843_LX2M, &ad1843_RX2M };
939 static const ad1843_gain_t ad1843_gain_MIC
940 = { 1, &ad1843_LMCM, &ad1843_RMCM };
941 static const ad1843_gain_t ad1843_gain_PCM
942 = { 1, &ad1843_LDA1G, &ad1843_RDA1G };
944 /* read the current value of an AD1843 bitfield. */
946 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
948 int w = li_read_ad1843_reg(lith, field->reg);
949 int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
951 DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
952 lith, field->reg, field->lo_bit, field->nbits, val);
958 * write a new value to an AD1843 bitfield and return the old value.
961 static int ad1843_write_bits(lithium_t *lith,
962 const ad1843_bitfield_t *field,
965 int w = li_read_ad1843_reg(lith, field->reg);
966 int mask = ((1 << field->nbits) - 1) << field->lo_bit;
967 int oldval = (w & mask) >> field->lo_bit;
968 int newbits = (newval << field->lo_bit) & mask;
969 w = (w & ~mask) | newbits;
970 (void) li_write_ad1843_reg(lith, field->reg, w);
972 DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
974 lith, field->reg, field->lo_bit, field->nbits, newval,
981 * ad1843_read_multi reads multiple bitfields from the same AD1843
982 * register. It uses a single read cycle to do it. (Reading the
983 * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
988 * ad1843_read_multi(lith, nfields,
989 * &ad1843_FIELD1, &val1,
990 * &ad1843_FIELD2, &val2, ...);
993 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
996 const ad1843_bitfield_t *fp;
997 int w = 0, mask, *value, reg = -1;
999 va_start(ap, argcount);
1000 while (--argcount >= 0) {
1001 fp = va_arg(ap, const ad1843_bitfield_t *);
1002 value = va_arg(ap, int *);
1005 w = li_read_ad1843_reg(lith, reg);
1007 ASSERT(reg == fp->reg);
1008 mask = (1 << fp->nbits) - 1;
1009 *value = w >> fp->lo_bit & mask;
1015 * ad1843_write_multi stores multiple bitfields into the same AD1843
1016 * register. It uses one read and one write cycle to do it.
1020 * ad1843_write_multi(lith, nfields,
1021 * &ad1843_FIELD1, val1,
1022 * &ad1843_FIELF2, val2, ...);
1025 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1029 const ad1843_bitfield_t *fp;
1031 int w, m, mask, bits;
1037 va_start(ap, argcount);
1038 while (--argcount >= 0) {
1039 fp = va_arg(ap, const ad1843_bitfield_t *);
1040 value = va_arg(ap, int);
1043 ASSERT(fp->reg == reg);
1044 m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1046 bits |= (value << fp->lo_bit) & m;
1049 ASSERT(!(bits & ~mask));
1051 w = li_read_ad1843_reg(lith, reg);
1054 w = (w & ~mask) | bits;
1055 (void) li_write_ad1843_reg(lith, reg, w);
1059 * ad1843_get_gain reads the specified register and extracts the gain value
1060 * using the supplied gain type. It returns the gain in OSS format.
1063 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1066 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1068 ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1073 lg = (lg * 100 + (mask >> 1)) / mask;
1074 rg = (rg * 100 + (mask >> 1)) / mask;
1075 return lg << 0 | rg << 8;
1079 * Set an audio channel's gain. Converts from OSS format to AD1843's
1082 * Returns the new gain, which may be lower than the old gain.
1085 static int ad1843_set_gain(lithium_t *lith,
1086 const ad1843_gain_t *gp,
1089 unsigned short mask = (1 << gp->lfield->nbits) - 1;
1091 int lg = newval >> 0 & 0xFF;
1092 int rg = newval >> 8;
1093 if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1095 lg = (lg * mask + (mask >> 1)) / 100;
1096 rg = (rg * mask + (mask >> 1)) / 100;
1101 ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1102 return ad1843_get_gain(lith, gp);
1105 /* Returns the current recording source, in OSS format. */
1107 static int ad1843_get_recsrc(lithium_t *lith)
1109 int ls = ad1843_read_bits(lith, &ad1843_LSS);
1113 return SOUND_MASK_MIC;
1115 return SOUND_MASK_LINE;
1117 return SOUND_MASK_CD;
1119 return SOUND_MASK_PCM;
1127 * Enable/disable digital resample mode in the AD1843.
1129 * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1130 * while switching modes. So we save DA1's state (DA2's state is not
1131 * interesting), power them down, switch into/out of resample mode,
1132 * power them up, and restore state.
1134 * This will cause audible glitches if D/A or A/D is going on, so the
1135 * driver disallows that (in mixer_write_ioctl()).
1137 * The open question is, is this worth doing? I'm leaving it in,
1138 * because it's written, but...
1141 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1143 /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1144 int save_da1 = li_read_ad1843_reg(lith, 9);
1146 /* Power down A/D and D/A. */
1147 ad1843_write_multi(lith, 4,
1154 ASSERT(onoff == 0 || onoff == 1);
1155 ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1157 /* Power up A/D and D/A. */
1158 ad1843_write_multi(lith, 3,
1163 /* Restore DA1 mute and gain. */
1164 li_write_ad1843_reg(lith, 9, save_da1);
1168 * Set recording source. Arg newsrc specifies an OSS channel mask.
1170 * The complication is that when we switch into/out of loopback mode
1171 * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1172 * digital resampling mode.
1174 * Returns newsrc on success, -errno on failure.
1177 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1183 case SOUND_MASK_PCM:
1187 case SOUND_MASK_MIC:
1191 case SOUND_MASK_LINE:
1202 oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1203 if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1204 DBGP("enabling digital resample mode\n");
1205 ad1843_set_resample_mode(lith, 1);
1206 ad1843_write_multi(lith, 2,
1209 } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1210 DBGP("disabling digital resample mode\n");
1211 ad1843_set_resample_mode(lith, 0);
1212 ad1843_write_multi(lith, 2,
1216 ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1221 * Return current output sources, in OSS format.
1224 static int ad1843_get_outsrc(lithium_t *lith)
1226 int pcm, line, mic, cd;
1228 pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1229 line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
1230 cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
1231 mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
1233 return pcm | line | cd | mic;
1237 * Set output sources. Arg is a mask of active sources in OSS format.
1239 * Returns source mask on success, -errno on failure.
1242 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1244 int pcm, line, mic, cd;
1246 if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1247 SOUND_MASK_CD | SOUND_MASK_MIC))
1249 pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
1250 line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1251 mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
1252 cd = (mask & SOUND_MASK_CD) ? 0 : 1;
1254 ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1255 ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1256 ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
1257 ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
1262 /* Setup ad1843 for D/A conversion. */
1264 static void ad1843_setup_dac(lithium_t *lith,
1269 int ad_fmt = 0, ad_mode = 0;
1271 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1272 lith, framerate, fmt, channels);
1275 case AFMT_S8: ad_fmt = 1; break;
1276 case AFMT_U8: ad_fmt = 1; break;
1277 case AFMT_S16_LE: ad_fmt = 1; break;
1278 case AFMT_MU_LAW: ad_fmt = 2; break;
1279 case AFMT_A_LAW: ad_fmt = 3; break;
1284 case 2: ad_mode = 0; break;
1285 case 1: ad_mode = 1; break;
1289 DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1290 ASSERT(framerate >= 4000 && framerate <= 49000);
1291 ad1843_write_bits(lith, &ad1843_C1C, framerate);
1292 ad1843_write_multi(lith, 2,
1293 &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1296 static void ad1843_shutdown_dac(lithium_t *lith)
1298 ad1843_write_bits(lith, &ad1843_DA1F, 1);
1301 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1305 DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1306 lith, framerate, fmt, channels);
1309 case AFMT_S8: da_fmt = 1; break;
1310 case AFMT_U8: da_fmt = 1; break;
1311 case AFMT_S16_LE: da_fmt = 1; break;
1312 case AFMT_MU_LAW: da_fmt = 2; break;
1313 case AFMT_A_LAW: da_fmt = 3; break;
1317 DBGPV("da_fmt = %d\n", da_fmt);
1318 ASSERT(framerate >= 4000 && framerate <= 49000);
1319 ad1843_write_bits(lith, &ad1843_C2C, framerate);
1320 ad1843_write_multi(lith, 2,
1321 &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1324 static void ad1843_shutdown_adc(lithium_t *lith)
1330 * Fully initialize the ad1843. As described in the AD1843 data
1331 * sheet, section "START-UP SEQUENCE". The numbered comments are
1332 * subsection headings from the data sheet. See the data sheet, pages
1333 * 52-54, for more info.
1335 * return 0 on success, -errno on failure. */
1337 static int __init ad1843_init(lithium_t *lith)
1339 unsigned long later;
1342 err = li_init(lith);
1346 if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1347 printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1351 ad1843_write_bits(lith, &ad1843_SCF, 1);
1353 /* 4. Put the conversion resources into standby. */
1355 ad1843_write_bits(lith, &ad1843_PDNI, 0);
1356 later = jiffies + HZ / 2; /* roughly half a second */
1358 while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1359 if (time_after(jiffies, later)) {
1361 "vwsnd audio: AD1843 won't power up\n");
1368 /* 5. Power up the clock generators and enable clock output pins. */
1370 ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1372 /* 6. Configure conversion resources while they are in standby. */
1374 /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
1376 ad1843_write_multi(lith, 3,
1381 /* 7. Enable conversion resources. */
1383 ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1384 ad1843_write_multi(lith, 5,
1391 /* 8. Configure conversion resources while they are enabled. */
1393 ad1843_write_bits(lith, &ad1843_DA1C, 1);
1395 /* Unmute all channels. */
1397 ad1843_set_outsrc(lith,
1398 (SOUND_MASK_PCM | SOUND_MASK_LINE |
1399 SOUND_MASK_MIC | SOUND_MASK_CD));
1400 ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1402 /* Set default recording source to Line In and set
1403 * mic gain to +20 dB.
1406 ad1843_set_recsrc(lith, SOUND_MASK_LINE);
1407 ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1409 /* Set Speaker Out level to +/- 4V and unmute it. */
1411 ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1416 /*****************************************************************************/
1419 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1420 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1422 typedef enum vwsnd_port_swstate { /* software state */
1427 } vwsnd_port_swstate_t;
1429 typedef enum vwsnd_port_hwstate { /* hardware state */
1432 } vwsnd_port_hwstate_t;
1435 * These flags are read by ISR, but only written at baseline.
1438 typedef enum vwsnd_port_flags {
1440 ERFLOWN = 1 << 1, /* overflown or underflown */
1442 } vwsnd_port_flags_t;
1445 * vwsnd_port is the per-port data structure. Each device has two
1446 * ports, one for input and one for output.
1450 * port->lock protects: hwstate, flags, swb_[iu]_avail.
1452 * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
1454 * everything else is only written by open/release or
1455 * pcm_{setup,shutdown}(), which are serialized by a
1456 * combination of devc->open_mutex and devc->io_mutex.
1459 typedef struct vwsnd_port {
1462 wait_queue_head_t queue;
1463 vwsnd_port_swstate_t swstate;
1464 vwsnd_port_hwstate_t hwstate;
1465 vwsnd_port_flags_t flags;
1472 unsigned int zero_word; /* zero for the sample format */
1478 unsigned int hw_fragshift;
1479 unsigned int hw_fragsize;
1480 unsigned int hw_fragcount;
1483 unsigned long hwbuf_paddr;
1484 unsigned long hwbuf_vaddr;
1485 void * hwbuf; /* hwbuf == hwbuf_vaddr */
1486 int hwbuf_max; /* max bytes to preload */
1489 unsigned int swbuf_size; /* size in bytes */
1490 unsigned int swb_u_idx; /* index of next user byte */
1491 unsigned int swb_i_idx; /* index of next intr byte */
1492 unsigned int swb_u_avail; /* # bytes avail to user */
1493 unsigned int swb_i_avail; /* # bytes avail to intr */
1505 /* vwsnd_dev is the per-device data structure. */
1507 typedef struct vwsnd_dev {
1508 struct vwsnd_dev *next_dev;
1509 int audio_minor; /* minor number of audio device */
1510 int mixer_minor; /* minor number of mixer device */
1512 struct mutex open_mutex;
1513 struct mutex io_mutex;
1514 struct mutex mix_mutex;
1516 wait_queue_head_t open_wait;
1524 static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
1526 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1528 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1529 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1530 # define IN_USE (atomic_read(&vwsnd_use_count) != 0)
1533 * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
1534 * be up to 8 Kb. This driver always uses 8 Kb.
1536 * Memory bug workaround -- I'm not sure what's going on here, but
1537 * somehow pcm_copy_out() was triggering segv's going on to the next
1538 * page of the hw buffer. So, I make the hw buffer one size bigger
1539 * than we actually use. That way, the following page is allocated
1540 * and mapped, and no error. I suspect that something is broken
1541 * in Cobalt, but haven't really investigated. HBO is the actual
1542 * size of the buffer, and HWBUF_ORDER is what we allocate.
1545 #define HWBUF_SHIFT 13
1546 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1547 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1548 # define HWBUF_ORDER (HBO + 1) /* next size bigger */
1549 #define MIN_SPEED 4000
1550 #define MAX_SPEED 49000
1552 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
1553 #define MAX_FRAGSHIFT (PAGE_SHIFT)
1554 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
1555 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
1556 #define MIN_FRAGCOUNT(fragsize) 3
1557 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
1558 #define DEFAULT_FRAGSHIFT 12
1559 #define DEFAULT_FRAGCOUNT 16
1560 #define DEFAULT_SUBDIVSHIFT 0
1563 * The software buffer (swbuf) is a ring buffer shared between user
1564 * level and interrupt level. Each level owns some of the bytes in
1565 * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1566 * User level calls _u for user, and interrupt level calls _i for
1569 * port->swb_{u,i}_avail is the number of bytes available to that level.
1571 * port->swb_{u,i}_idx is the index of the first available byte in the
1574 * Each level calls swb_inc_{u,i}() to atomically increment its index,
1575 * recalculate the number of bytes available for both sides, and
1576 * return the number of bytes available. Since each side can only
1577 * give away bytes, the other side can only increase the number of
1578 * bytes available to this side. Each side updates its own index
1579 * variable, swb_{u,i}_idx, so no lock is needed to read it.
1581 * To query the number of bytes available, call swb_inc_{u,i} with an
1582 * increment of zero.
1585 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1588 port->swb_u_idx += inc;
1589 port->swb_u_idx %= port->swbuf_size;
1590 port->swb_u_avail -= inc;
1591 port->swb_i_avail += inc;
1593 return port->swb_u_avail;
1596 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1598 unsigned long flags;
1601 spin_lock_irqsave(&port->lock, flags);
1603 ret = __swb_inc_u(port, inc);
1605 spin_unlock_irqrestore(&port->lock, flags);
1609 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1612 port->swb_i_idx += inc;
1613 port->swb_i_idx %= port->swbuf_size;
1614 port->swb_i_avail -= inc;
1615 port->swb_u_avail += inc;
1617 return port->swb_i_avail;
1620 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1622 unsigned long flags;
1625 spin_lock_irqsave(&port->lock, flags);
1627 ret = __swb_inc_i(port, inc);
1629 spin_unlock_irqrestore(&port->lock, flags);
1634 * pcm_setup - this routine initializes all port state after
1635 * mode-setting ioctls have been done, but before the first I/O is
1638 * Locking: called with devc->io_mutex held.
1640 * Returns 0 on success, -errno on failure.
1643 static int pcm_setup(vwsnd_dev_t *devc,
1644 vwsnd_port_t *rport,
1645 vwsnd_port_t *wport)
1647 vwsnd_port_t *aport = rport ? rport : wport;
1649 unsigned int zero_word;
1651 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1653 ASSERT(aport != NULL);
1654 if (aport->swbuf != NULL)
1656 switch (aport->sw_samplefmt) {
1659 zero_word = 0xFFFFFFFF ^ 0x80808080;
1664 zero_word = 0xD5D5D5D5 ^ 0x80808080;
1669 zero_word = 0x80808080;
1674 zero_word = 0x00000000;
1679 zero_word = 0x00000000;
1683 sample_size = 0; /* prevent compiler warning */
1687 aport->sample_size = sample_size;
1688 aport->zero_word = zero_word;
1689 aport->frame_size = aport->sw_channels * aport->sample_size;
1690 aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1691 aport->hw_fragsize = 1 << aport->hw_fragshift;
1692 aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1693 ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1694 ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1695 ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1696 ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1698 int hwfrags, swfrags;
1699 rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1700 hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1701 swfrags = aport->hw_fragcount - hwfrags;
1704 rport->swbuf_size = swfrags * aport->hw_fragsize;
1705 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1706 DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1707 rport->hwbuf_max, rport->swbuf_size);
1710 int hwfrags, swfrags;
1711 int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1712 wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1713 if (wport->hwbuf_max > total_bytes)
1714 wport->hwbuf_max = total_bytes;
1715 hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1716 DBGPV("hwfrags = %d\n", hwfrags);
1717 swfrags = aport->hw_fragcount - hwfrags;
1720 wport->swbuf_size = swfrags * aport->hw_fragsize;
1721 DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1722 DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1723 wport->hwbuf_max, wport->swbuf_size);
1726 aport->swb_u_idx = 0;
1727 aport->swb_i_idx = 0;
1728 aport->byte_count = 0;
1731 * Is this a Cobalt bug? We need to make this buffer extend
1732 * one page further than we actually use -- somehow memcpy
1733 * causes an exceptoin otherwise. I suspect there's a bug in
1734 * Cobalt (or somewhere) where it's generating a fault on a
1735 * speculative load or something. Obviously, I haven't taken
1736 * the time to track it down.
1739 aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1742 if (rport && wport) {
1743 ASSERT(aport == rport);
1744 ASSERT(wport->swbuf == NULL);
1745 /* One extra page - see comment above. */
1746 wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1747 if (!wport->swbuf) {
1748 vfree(aport->swbuf);
1749 aport->swbuf = NULL;
1752 wport->sample_size = rport->sample_size;
1753 wport->zero_word = rport->zero_word;
1754 wport->frame_size = rport->frame_size;
1755 wport->hw_fragshift = rport->hw_fragshift;
1756 wport->hw_fragsize = rport->hw_fragsize;
1757 wport->hw_fragcount = rport->hw_fragcount;
1758 wport->swbuf_size = rport->swbuf_size;
1759 wport->hwbuf_max = rport->hwbuf_max;
1760 wport->swb_u_idx = rport->swb_u_idx;
1761 wport->swb_i_idx = rport->swb_i_idx;
1762 wport->byte_count = rport->byte_count;
1765 rport->swb_u_avail = 0;
1766 rport->swb_i_avail = rport->swbuf_size;
1767 rport->swstate = SW_RUN;
1768 li_setup_dma(&rport->chan,
1773 rport->hw_fragshift,
1775 rport->sample_size);
1776 ad1843_setup_adc(&devc->lith,
1777 rport->sw_framerate,
1778 rport->sw_samplefmt,
1779 rport->sw_channels);
1780 li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1781 if (!(rport->flags & DISABLED)) {
1783 rport->hwstate = HW_RUNNING;
1784 li_activate_dma(&rport->chan);
1785 li_read_USTMSC(&rport->chan, &ustmsc);
1786 rport->MSC_offset = ustmsc.msc;
1790 if (wport->hwbuf_max > wport->swbuf_size)
1791 wport->hwbuf_max = wport->swbuf_size;
1792 wport->flags &= ~ERFLOWN;
1793 wport->swb_u_avail = wport->swbuf_size;
1794 wport->swb_i_avail = 0;
1795 wport->swstate = SW_RUN;
1796 li_setup_dma(&wport->chan,
1801 wport->hw_fragshift,
1803 wport->sample_size);
1804 ad1843_setup_dac(&devc->lith,
1805 wport->sw_framerate,
1806 wport->sw_samplefmt,
1807 wport->sw_channels);
1808 li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1815 * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1816 * Only called from pcm_shutdown.
1819 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1820 vwsnd_port_t *aport,
1823 unsigned long flags;
1824 vwsnd_port_hwstate_t hwstate;
1825 DECLARE_WAITQUEUE(wait, current);
1827 aport->swstate = SW_INITIAL;
1828 add_wait_queue(&aport->queue, &wait);
1830 set_current_state(TASK_UNINTERRUPTIBLE);
1831 spin_lock_irqsave(&aport->lock, flags);
1833 hwstate = aport->hwstate;
1835 spin_unlock_irqrestore(&aport->lock, flags);
1836 if (hwstate == HW_STOPPED)
1840 current->state = TASK_RUNNING;
1841 remove_wait_queue(&aport->queue, &wait);
1842 li_disable_interrupts(&devc->lith, mask);
1843 if (aport == &devc->rport)
1844 ad1843_shutdown_adc(&devc->lith);
1845 else /* aport == &devc->wport) */
1846 ad1843_shutdown_dac(&devc->lith);
1847 li_shutdown_dma(&aport->chan);
1848 vfree(aport->swbuf);
1849 aport->swbuf = NULL;
1850 aport->byte_count = 0;
1854 * pcm_shutdown undoes what pcm_setup did.
1855 * Also sets the ports' swstate to newstate.
1858 static void pcm_shutdown(vwsnd_dev_t *devc,
1859 vwsnd_port_t *rport,
1860 vwsnd_port_t *wport)
1862 DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1864 if (rport && rport->swbuf) {
1865 DBGPV("shutting down rport\n");
1866 pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1868 if (wport && wport->swbuf) {
1869 DBGPV("shutting down wport\n");
1870 pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1875 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1877 char *src = rport->hwbuf + hwidx;
1878 char *dst = rport->swbuf + swidx;
1879 int fmt = rport->sw_samplefmt;
1881 DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1882 ASSERT(rport->hwbuf != NULL);
1883 ASSERT(rport->swbuf != NULL);
1884 ASSERT(nb > 0 && (nb % 32) == 0);
1885 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1886 ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1887 ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1889 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1891 /* See Sample Format Notes above. */
1893 char *end = src + nb;
1895 *dst++ = *src++ ^ 0x80;
1897 memcpy(dst, src, nb);
1900 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1902 char *src = wport->swbuf + swidx;
1903 char *dst = wport->hwbuf + hwidx;
1904 int fmt = wport->sw_samplefmt;
1906 ASSERT(nb > 0 && (nb % 32) == 0);
1907 ASSERT(wport->hwbuf != NULL);
1908 ASSERT(wport->swbuf != NULL);
1909 ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1910 ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1911 ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1912 if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1914 /* See Sample Format Notes above. */
1916 char *end = src + nb;
1918 *dst++ = *src++ ^ 0x80;
1920 memcpy(dst, src, nb);
1924 * pcm_output() is called both from baselevel and from interrupt level.
1925 * This is where audio frames are copied into the hardware-accessible
1928 * Locking note: The part of this routine that figures out what to do
1929 * holds wport->lock. The longer part releases wport->lock, but sets
1930 * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
1931 * checks for more work to do.
1933 * If another thread calls pcm_output() while HW_BUSY is set, it
1934 * returns immediately, knowing that the thread that set HW_BUSY will
1935 * look for more work to do before returning.
1937 * This has the advantage that port->lock is held for several short
1938 * periods instead of one long period. Also, when pcm_output is
1939 * called from base level, it reenables interrupts.
1942 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1944 vwsnd_port_t *wport = &devc->wport;
1945 const int hwmax = wport->hwbuf_max;
1946 const int hwsize = wport->hwbuf_size;
1947 const int swsize = wport->swbuf_size;
1948 const int fragsize = wport->hw_fragsize;
1949 unsigned long iflags;
1951 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1952 spin_lock_irqsave(&wport->lock, iflags);
1954 wport->flags |= ERFLOWN;
1955 (void) __swb_inc_u(wport, nb);
1956 if (wport->flags & HW_BUSY) {
1957 spin_unlock_irqrestore(&wport->lock, iflags);
1958 DBGPV("returning: HW BUSY\n");
1961 if (wport->flags & DISABLED) {
1962 spin_unlock_irqrestore(&wport->lock, iflags);
1963 DBGPV("returning: DISABLED\n");
1966 wport->flags |= HW_BUSY;
1968 int swptr, hwptr, hw_avail, sw_avail, swidx;
1969 vwsnd_port_hwstate_t hwstate = wport->hwstate;
1970 vwsnd_port_swstate_t swstate = wport->swstate;
1974 hwptr = li_read_hwptr(&wport->chan);
1975 swptr = li_read_swptr(&wport->chan);
1976 hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1977 hw_avail = (hwmax - hw_unavail) & -fragsize;
1978 sw_avail = wport->swb_i_avail & -fragsize;
1979 if (sw_avail && swstate == SW_RUN) {
1980 if (wport->flags & ERFLOWN) {
1981 wport->flags &= ~ERFLOWN;
1983 } else if (swstate == SW_INITIAL ||
1984 swstate == SW_OFF ||
1985 (swstate == SW_DRAIN &&
1987 (wport->flags & ERFLOWN))) {
1988 DBGP("stopping. hwstate = %d\n", hwstate);
1989 if (hwstate != HW_STOPPED) {
1990 li_deactivate_dma(&wport->chan);
1991 wport->hwstate = HW_STOPPED;
1993 wake_up(&wport->queue);
1996 if (!sw_avail || !hw_avail)
1998 spin_unlock_irqrestore(&wport->lock, iflags);
2001 * We gave up the port lock, but we have the HW_BUSY flag.
2002 * Proceed without accessing any nonlocal state.
2003 * Do not exit the loop -- must check for more work.
2006 swidx = wport->swb_i_idx;
2010 if (nb > hwsize - swptr)
2011 nb = hwsize - swptr; /* don't overflow hwbuf */
2012 if (nb > swsize - swidx)
2013 nb = swsize - swidx; /* don't overflow swbuf */
2015 if (nb % fragsize) {
2016 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2017 DBGP("hw_avail = %d\n", hw_avail);
2018 DBGP("sw_avail = %d\n", sw_avail);
2019 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2020 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2022 ASSERT(!(nb % fragsize));
2023 DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2024 swidx, swidx + nb, swptr, swptr + nb);
2025 pcm_copy_out(wport, swidx, swptr, nb);
2026 li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2027 spin_lock_irqsave(&wport->lock, iflags);
2028 if (hwstate == HW_STOPPED) {
2029 DBGPV("starting\n");
2030 li_activate_dma(&wport->chan);
2031 wport->hwstate = HW_RUNNING;
2032 li_read_USTMSC(&wport->chan, &ustmsc);
2033 ASSERT(wport->byte_count % wport->frame_size == 0);
2034 wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2036 __swb_inc_i(wport, nb);
2037 wport->byte_count += nb;
2038 wport->frag_count += nb / fragsize;
2039 ASSERT(nb % fragsize == 0);
2040 wake_up(&wport->queue);
2042 wport->flags &= ~HW_BUSY;
2043 spin_unlock_irqrestore(&wport->lock, iflags);
2048 * pcm_input() is called both from baselevel and from interrupt level.
2049 * This is where audio frames are copied out of the hardware-accessible
2052 * Locking note: The part of this routine that figures out what to do
2053 * holds rport->lock. The longer part releases rport->lock, but sets
2054 * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
2055 * checks for more work to do.
2057 * If another thread calls pcm_input() while HW_BUSY is set, it
2058 * returns immediately, knowing that the thread that set HW_BUSY will
2059 * look for more work to do before returning.
2061 * This has the advantage that port->lock is held for several short
2062 * periods instead of one long period. Also, when pcm_input is
2063 * called from base level, it reenables interrupts.
2066 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2068 vwsnd_port_t *rport = &devc->rport;
2069 const int hwmax = rport->hwbuf_max;
2070 const int hwsize = rport->hwbuf_size;
2071 const int swsize = rport->swbuf_size;
2072 const int fragsize = rport->hw_fragsize;
2073 unsigned long iflags;
2075 DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2077 spin_lock_irqsave(&rport->lock, iflags);
2079 rport->flags |= ERFLOWN;
2080 (void) __swb_inc_u(rport, nb);
2081 if (rport->flags & HW_BUSY || !rport->swbuf) {
2082 spin_unlock_irqrestore(&rport->lock, iflags);
2083 DBGPV("returning: HW BUSY or !swbuf\n");
2086 if (rport->flags & DISABLED) {
2087 spin_unlock_irqrestore(&rport->lock, iflags);
2088 DBGPV("returning: DISABLED\n");
2091 rport->flags |= HW_BUSY;
2093 int swptr, hwptr, hw_avail, sw_avail, swidx;
2094 vwsnd_port_hwstate_t hwstate = rport->hwstate;
2095 vwsnd_port_swstate_t swstate = rport->swstate;
2097 hwptr = li_read_hwptr(&rport->chan);
2098 swptr = li_read_swptr(&rport->chan);
2099 hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2100 if (hw_avail > hwmax)
2102 sw_avail = rport->swb_i_avail & -fragsize;
2103 if (swstate != SW_RUN) {
2104 DBGP("stopping. hwstate = %d\n", hwstate);
2105 if (hwstate != HW_STOPPED) {
2106 li_deactivate_dma(&rport->chan);
2107 rport->hwstate = HW_STOPPED;
2109 wake_up(&rport->queue);
2112 if (!sw_avail || !hw_avail)
2114 spin_unlock_irqrestore(&rport->lock, iflags);
2117 * We gave up the port lock, but we have the HW_BUSY flag.
2118 * Proceed without accessing any nonlocal state.
2119 * Do not exit the loop -- must check for more work.
2122 swidx = rport->swb_i_idx;
2126 if (nb > hwsize - swptr)
2127 nb = hwsize - swptr; /* don't overflow hwbuf */
2128 if (nb > swsize - swidx)
2129 nb = swsize - swidx; /* don't overflow swbuf */
2131 if (nb % fragsize) {
2132 DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2133 DBGP("hw_avail = %d\n", hw_avail);
2134 DBGP("sw_avail = %d\n", sw_avail);
2135 DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2136 DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2138 ASSERT(!(nb % fragsize));
2139 DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2140 swptr, swptr + nb, swidx, swidx + nb);
2141 pcm_copy_in(rport, swidx, swptr, nb);
2142 li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2143 spin_lock_irqsave(&rport->lock, iflags);
2144 __swb_inc_i(rport, nb);
2145 rport->byte_count += nb;
2146 rport->frag_count += nb / fragsize;
2147 ASSERT(nb % fragsize == 0);
2148 wake_up(&rport->queue);
2150 rport->flags &= ~HW_BUSY;
2151 spin_unlock_irqrestore(&rport->lock, iflags);
2156 * pcm_flush_frag() writes zero samples to fill the current fragment,
2157 * then flushes it to the hardware.
2159 * It is only meaningful to flush output, not input.
2162 static void pcm_flush_frag(vwsnd_dev_t *devc)
2164 vwsnd_port_t *wport = &devc->wport;
2166 DBGPV("swstate = %d\n", wport->swstate);
2167 if (wport->swstate == SW_RUN) {
2168 int idx = wport->swb_u_idx;
2169 int end = (idx + wport->hw_fragsize - 1)
2170 >> wport->hw_fragshift
2171 << wport->hw_fragshift;
2173 DBGPV("clearing %d bytes\n", nb);
2175 memset(wport->swbuf + idx,
2176 (char) wport->zero_word,
2178 wport->swstate = SW_DRAIN;
2179 pcm_output(devc, 0, nb);
2185 * Wait for output to drain. This sleeps uninterruptibly because
2186 * there is nothing intelligent we can do if interrupted. This
2187 * means the process will be delayed in responding to the signal.
2190 static void pcm_write_sync(vwsnd_dev_t *devc)
2192 vwsnd_port_t *wport = &devc->wport;
2193 DECLARE_WAITQUEUE(wait, current);
2194 unsigned long flags;
2195 vwsnd_port_hwstate_t hwstate;
2197 DBGEV("(devc=0x%p)\n", devc);
2198 add_wait_queue(&wport->queue, &wait);
2200 set_current_state(TASK_UNINTERRUPTIBLE);
2201 spin_lock_irqsave(&wport->lock, flags);
2203 hwstate = wport->hwstate;
2205 spin_unlock_irqrestore(&wport->lock, flags);
2206 if (hwstate == HW_STOPPED)
2210 current->state = TASK_RUNNING;
2211 remove_wait_queue(&wport->queue, &wait);
2212 DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2216 /*****************************************************************************/
2220 * seek on an audio device always fails.
2223 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2225 int overflown = status & LI_INTR_COMM1_OVERFLOW;
2227 if (status & READ_INTR_MASK)
2228 pcm_input(devc, overflown, 0);
2231 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2233 int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2235 if (status & WRITE_INTR_MASK)
2236 pcm_output(devc, underflown, 0);
2239 static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id)
2241 vwsnd_dev_t *devc = dev_id;
2242 unsigned int status;
2244 DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id);
2246 status = li_get_clear_intr_status(&devc->lith);
2247 vwsnd_audio_read_intr(devc, status);
2248 vwsnd_audio_write_intr(devc, status);
2252 static ssize_t vwsnd_audio_do_read(struct file *file,
2257 vwsnd_dev_t *devc = file->private_data;
2258 vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2259 &devc->rport : NULL);
2262 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2263 file, buffer, count, ppos);
2268 if (rport->swbuf == NULL) {
2269 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2270 &devc->wport : NULL;
2271 ret = pcm_setup(devc, rport, wport);
2276 if (!access_ok(VERIFY_READ, buffer, count))
2280 DECLARE_WAITQUEUE(wait, current);
2281 add_wait_queue(&rport->queue, &wait);
2282 while ((nb = swb_inc_u(rport, 0)) == 0) {
2283 DBGPV("blocking\n");
2284 set_current_state(TASK_INTERRUPTIBLE);
2285 if (rport->flags & DISABLED ||
2286 file->f_flags & O_NONBLOCK) {
2287 current->state = TASK_RUNNING;
2288 remove_wait_queue(&rport->queue, &wait);
2289 return ret ? ret : -EAGAIN;
2292 if (signal_pending(current)) {
2293 current->state = TASK_RUNNING;
2294 remove_wait_queue(&rport->queue, &wait);
2295 return ret ? ret : -ERESTARTSYS;
2298 current->state = TASK_RUNNING;
2299 remove_wait_queue(&rport->queue, &wait);
2300 pcm_input(devc, 0, 0);
2301 /* nb bytes are available in userbuf. */
2304 DBGPV("nb = %d\n", nb);
2305 if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
2307 (void) swb_inc_u(rport, nb);
2312 DBGPV("returning %d\n", ret);
2316 static ssize_t vwsnd_audio_read(struct file *file,
2321 vwsnd_dev_t *devc = file->private_data;
2324 mutex_lock(&devc->io_mutex);
2325 ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2326 mutex_unlock(&devc->io_mutex);
2330 static ssize_t vwsnd_audio_do_write(struct file *file,
2335 vwsnd_dev_t *devc = file->private_data;
2336 vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2337 &devc->wport : NULL);
2340 DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2341 file, buffer, count, ppos);
2346 if (wport->swbuf == NULL) {
2347 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2348 &devc->rport : NULL;
2349 ret = pcm_setup(devc, rport, wport);
2353 if (!access_ok(VERIFY_WRITE, buffer, count))
2357 DECLARE_WAITQUEUE(wait, current);
2358 add_wait_queue(&wport->queue, &wait);
2359 while ((nb = swb_inc_u(wport, 0)) == 0) {
2360 set_current_state(TASK_INTERRUPTIBLE);
2361 if (wport->flags & DISABLED ||
2362 file->f_flags & O_NONBLOCK) {
2363 current->state = TASK_RUNNING;
2364 remove_wait_queue(&wport->queue, &wait);
2365 return ret ? ret : -EAGAIN;
2368 if (signal_pending(current)) {
2369 current->state = TASK_RUNNING;
2370 remove_wait_queue(&wport->queue, &wait);
2371 return ret ? ret : -ERESTARTSYS;
2374 current->state = TASK_RUNNING;
2375 remove_wait_queue(&wport->queue, &wait);
2376 /* nb bytes are available in userbuf. */
2379 DBGPV("nb = %d\n", nb);
2380 if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
2382 pcm_output(devc, 0, nb);
2387 DBGPV("returning %d\n", ret);
2391 static ssize_t vwsnd_audio_write(struct file *file,
2396 vwsnd_dev_t *devc = file->private_data;
2399 mutex_lock(&devc->io_mutex);
2400 ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2401 mutex_unlock(&devc->io_mutex);
2405 /* No kernel lock - fine */
2406 static unsigned int vwsnd_audio_poll(struct file *file,
2407 struct poll_table_struct *wait)
2409 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2410 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2411 &devc->rport : NULL;
2412 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2413 &devc->wport : NULL;
2414 unsigned int mask = 0;
2416 DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2418 ASSERT(rport || wport);
2420 poll_wait(file, &rport->queue, wait);
2421 if (swb_inc_u(rport, 0))
2422 mask |= (POLLIN | POLLRDNORM);
2425 poll_wait(file, &wport->queue, wait);
2426 if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2427 mask |= (POLLOUT | POLLWRNORM);
2430 DBGPV("returning 0x%x\n", mask);
2434 static int vwsnd_audio_do_ioctl(struct file *file,
2438 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2439 vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2440 &devc->rport : NULL;
2441 vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2442 &devc->wport : NULL;
2443 vwsnd_port_t *aport = rport ? rport : wport;
2444 struct audio_buf_info buf_info;
2445 struct count_info info;
2446 unsigned long flags;
2450 DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2453 case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
2454 DBGX("OSS_GETVERSION\n");
2455 ival = SOUND_VERSION;
2456 return put_user(ival, (int *) arg);
2458 case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
2459 DBGX("SNDCTL_DSP_GETCAPS\n");
2460 ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
2461 return put_user(ival, (int *) arg);
2463 case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
2464 DBGX("SNDCTL_DSP_GETFMTS\n");
2465 ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2467 return put_user(ival, (int *) arg);
2470 case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
2471 DBGX("SOUND_PCM_READ_RATE\n");
2472 ival = aport->sw_framerate;
2473 return put_user(ival, (int *) arg);
2475 case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
2476 DBGX("SOUND_PCM_READ_CHANNELS\n");
2477 ival = aport->sw_channels;
2478 return put_user(ival, (int *) arg);
2480 case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
2481 if (get_user(ival, (int *) arg))
2483 DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2485 if (aport->swstate != SW_INITIAL) {
2486 DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2490 if (ival < MIN_SPEED)
2492 if (ival > MAX_SPEED)
2495 rport->sw_framerate = ival;
2497 wport->sw_framerate = ival;
2499 ival = aport->sw_framerate;
2500 return put_user(ival, (int *) arg);
2502 case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
2503 if (get_user(ival, (int *) arg))
2505 DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2506 if (ival != 0 && ival != 1)
2508 if (aport->swstate != SW_INITIAL)
2511 rport->sw_channels = ival + 1;
2513 wport->sw_channels = ival + 1;
2514 return put_user(ival, (int *) arg);
2516 case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
2517 if (get_user(ival, (int *) arg))
2519 DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2520 if (ival != 1 && ival != 2)
2522 if (aport->swstate != SW_INITIAL)
2525 rport->sw_channels = ival;
2527 wport->sw_channels = ival;
2528 return put_user(ival, (int *) arg);
2530 case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
2531 ival = pcm_setup(devc, rport, wport);
2533 DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2536 ival = 1 << aport->sw_fragshift;
2537 DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2538 return put_user(ival, (int *) arg);
2540 case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
2541 if (get_user(ival, (int *) arg))
2543 DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2544 ival >> 16, ival & 0xFFFF);
2545 if (aport->swstate != SW_INITIAL)
2548 int sw_fragshift = ival & 0xFFFF;
2549 int sw_subdivshift = aport->sw_subdivshift;
2550 int hw_fragshift = sw_fragshift - sw_subdivshift;
2551 int sw_fragcount = (ival >> 16) & 0xFFFF;
2553 if (hw_fragshift < MIN_FRAGSHIFT)
2554 hw_fragshift = MIN_FRAGSHIFT;
2555 if (hw_fragshift > MAX_FRAGSHIFT)
2556 hw_fragshift = MAX_FRAGSHIFT;
2557 sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2558 hw_fragsize = 1 << hw_fragshift;
2559 if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2560 sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2561 if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2562 sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2563 DBGPV("sw_fragshift = %d\n", sw_fragshift);
2564 DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2566 rport->sw_fragshift = sw_fragshift;
2567 rport->sw_fragcount = sw_fragcount;
2570 wport->sw_fragshift = sw_fragshift;
2571 wport->sw_fragcount = sw_fragcount;
2573 ival = sw_fragcount << 16 | sw_fragshift;
2575 DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2576 ival >> 16, ival & 0xFFFF);
2577 return put_user(ival, (int *) arg);
2579 case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
2580 if (get_user(ival, (int *) arg))
2582 DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2583 if (aport->swstate != SW_INITIAL)
2587 int hw_fragshift, hw_fragsize, hw_fragcount;
2589 case 1: subdivshift = 0; break;
2590 case 2: subdivshift = 1; break;
2591 case 4: subdivshift = 2; break;
2592 default: return -EINVAL;
2594 hw_fragshift = aport->sw_fragshift - subdivshift;
2595 if (hw_fragshift < MIN_FRAGSHIFT ||
2596 hw_fragshift > MAX_FRAGSHIFT)
2598 hw_fragsize = 1 << hw_fragshift;
2599 hw_fragcount = aport->sw_fragcount >> subdivshift;
2600 if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2601 hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2604 rport->sw_subdivshift = subdivshift;
2606 wport->sw_subdivshift = subdivshift;
2610 case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
2611 if (get_user(ival, (int *) arg))
2613 DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2614 if (ival != AFMT_QUERY) {
2615 if (aport->swstate != SW_INITIAL) {
2616 DBGP("SETFMT failed, swstate = %d\n",
2627 rport->sw_samplefmt = ival;
2629 wport->sw_samplefmt = ival;
2635 ival = aport->sw_samplefmt;
2636 return put_user(ival, (int *) arg);
2638 case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
2639 DBGXV("SNDCTL_DSP_GETOSPACE\n");
2642 ival = pcm_setup(devc, rport, wport);
2645 ival = swb_inc_u(wport, 0);
2646 buf_info.fragments = ival >> wport->sw_fragshift;
2647 buf_info.fragstotal = wport->sw_fragcount;
2648 buf_info.fragsize = 1 << wport->sw_fragshift;
2649 buf_info.bytes = ival;
2650 DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2651 buf_info.fragments, buf_info.fragstotal,
2652 buf_info.fragsize, buf_info.bytes);
2653 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2657 case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
2658 DBGX("SNDCTL_DSP_GETISPACE\n");
2661 ival = pcm_setup(devc, rport, wport);
2664 ival = swb_inc_u(rport, 0);
2665 buf_info.fragments = ival >> rport->sw_fragshift;
2666 buf_info.fragstotal = rport->sw_fragcount;
2667 buf_info.fragsize = 1 << rport->sw_fragshift;
2668 buf_info.bytes = ival;
2669 DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2670 buf_info.fragments, buf_info.fragstotal,
2671 buf_info.fragsize, buf_info.bytes);
2672 if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2676 case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
2677 DBGX("SNDCTL_DSP_NONBLOCK\n");
2678 spin_lock(&file->f_lock);
2679 file->f_flags |= O_NONBLOCK;
2680 spin_unlock(&file->f_lock);
2683 case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
2684 DBGX("SNDCTL_DSP_RESET\n");
2686 * Nothing special needs to be done for input. Input
2687 * samples sit in swbuf, but it will be reinitialized
2688 * to empty when pcm_setup() is called.
2690 if (wport && wport->swbuf) {
2691 wport->swstate = SW_INITIAL;
2692 pcm_output(devc, 0, 0);
2693 pcm_write_sync(devc);
2695 pcm_shutdown(devc, rport, wport);
2698 case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
2699 DBGX("SNDCTL_DSP_SYNC\n");
2701 pcm_flush_frag(devc);
2702 pcm_write_sync(devc);
2704 pcm_shutdown(devc, rport, wport);
2707 case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
2708 DBGX("SNDCTL_DSP_POST\n");
2711 pcm_flush_frag(devc);
2714 case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
2715 DBGX("SNDCTL_DSP_GETIPTR\n");
2718 spin_lock_irqsave(&rport->lock, flags);
2721 if (rport->hwstate == HW_RUNNING) {
2722 ASSERT(rport->swstate == SW_RUN);
2723 li_read_USTMSC(&rport->chan, &ustmsc);
2724 info.bytes = ustmsc.msc - rport->MSC_offset;
2725 info.bytes *= rport->frame_size;
2727 info.bytes = rport->byte_count;
2729 info.blocks = rport->frag_count;
2730 info.ptr = 0; /* not implemented */
2731 rport->frag_count = 0;
2733 spin_unlock_irqrestore(&rport->lock, flags);
2734 if (copy_to_user((void *) arg, &info, sizeof info))
2738 case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */
2739 DBGX("SNDCTL_DSP_GETOPTR\n");
2742 spin_lock_irqsave(&wport->lock, flags);
2745 if (wport->hwstate == HW_RUNNING) {
2746 ASSERT(wport->swstate == SW_RUN);
2747 li_read_USTMSC(&wport->chan, &ustmsc);
2748 info.bytes = ustmsc.msc - wport->MSC_offset;
2749 info.bytes *= wport->frame_size;
2751 info.bytes = wport->byte_count;
2753 info.blocks = wport->frag_count;
2754 info.ptr = 0; /* not implemented */
2755 wport->frag_count = 0;
2757 spin_unlock_irqrestore(&wport->lock, flags);
2758 if (copy_to_user((void *) arg, &info, sizeof info))
2762 case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */
2763 DBGX("SNDCTL_DSP_GETODELAY\n");
2766 spin_lock_irqsave(&wport->lock, flags);
2768 int fsize = wport->frame_size;
2769 ival = wport->swb_i_avail / fsize;
2770 if (wport->hwstate == HW_RUNNING) {
2771 int swptr, hwptr, hwframes, hwbytes, hwsize;
2775 hwsize = wport->hwbuf_size;
2776 swptr = li_read_swptr(&wport->chan);
2777 li_read_USTMSC(&wport->chan, &ustmsc);
2778 hwframes = ustmsc.msc - wport->MSC_offset;
2779 totalhwbytes = hwframes * fsize;
2780 hwptr = totalhwbytes % hwsize;
2781 hwbytes = (swptr - hwptr + hwsize) % hwsize;
2782 ival += hwbytes / fsize;
2785 spin_unlock_irqrestore(&wport->lock, flags);
2786 return put_user(ival, (int *) arg);
2788 case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */
2789 DBGX("SNDCTL_DSP_PROFILE\n");
2792 * Thomas Sailer explains SNDCTL_DSP_PROFILE
2793 * (private email, March 24, 1999):
2795 * This gives the sound driver a hint on what it
2796 * should do with partial fragments
2797 * (i.e. fragments partially filled with write).
2798 * This can direct the driver to zero them or
2799 * leave them alone. But don't ask me what this
2800 * is good for, my driver just zeroes the last
2801 * fragment before the receiver stops, no idea
2802 * what good for any other behaviour could
2803 * be. Implementing it as NOP seems safe.
2808 case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */
2809 DBGX("SNDCTL_DSP_GETTRIGGER\n");
2812 spin_lock_irqsave(&rport->lock, flags);
2814 if (!(rport->flags & DISABLED))
2815 ival |= PCM_ENABLE_INPUT;
2817 spin_unlock_irqrestore(&rport->lock, flags);
2820 spin_lock_irqsave(&wport->lock, flags);
2822 if (!(wport->flags & DISABLED))
2823 ival |= PCM_ENABLE_OUTPUT;
2825 spin_unlock_irqrestore(&wport->lock, flags);
2827 return put_user(ival, (int *) arg);
2829 case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */
2830 if (get_user(ival, (int *) arg))
2832 DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2835 * If user is disabling I/O and port is not in initial
2836 * state, fail with EINVAL.
2839 if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2840 (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2841 aport->swstate != SW_INITIAL)
2845 vwsnd_port_hwstate_t hwstate;
2846 spin_lock_irqsave(&rport->lock, flags);
2848 hwstate = rport->hwstate;
2849 if (ival & PCM_ENABLE_INPUT)
2850 rport->flags &= ~DISABLED;
2852 rport->flags |= DISABLED;
2854 spin_unlock_irqrestore(&rport->lock, flags);
2855 if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2857 if (rport->swstate == SW_INITIAL)
2858 pcm_setup(devc, rport, wport);
2860 li_activate_dma(&rport->chan);
2864 vwsnd_port_flags_t pflags;
2865 spin_lock_irqsave(&wport->lock, flags);
2867 pflags = wport->flags;
2868 if (ival & PCM_ENABLE_OUTPUT)
2869 wport->flags &= ~DISABLED;
2871 wport->flags |= DISABLED;
2873 spin_unlock_irqrestore(&wport->lock, flags);
2874 if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2875 if (wport->swstate == SW_RUN)
2876 pcm_output(devc, 0, 0);
2882 DBGP("unknown ioctl 0x%x\n", cmd);
2885 DBGP("unimplemented ioctl 0x%x\n", cmd);
2889 static long vwsnd_audio_ioctl(struct file *file,
2893 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2896 mutex_lock(&vwsnd_mutex);
2897 mutex_lock(&devc->io_mutex);
2898 ret = vwsnd_audio_do_ioctl(file, cmd, arg);
2899 mutex_unlock(&devc->io_mutex);
2900 mutex_unlock(&vwsnd_mutex);
2907 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2909 DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2914 * Open the audio device for read and/or write.
2916 * Returns 0 on success, -errno on failure.
2919 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2922 int minor = iminor(inode);
2926 DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2928 mutex_lock(&vwsnd_mutex);
2930 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2931 if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2936 mutex_unlock(&vwsnd_mutex);
2940 mutex_lock(&devc->open_mutex);
2942 prepare_to_wait(&devc->open_wait, &wait, TASK_INTERRUPTIBLE);
2943 if (!(devc->open_mode & file->f_mode))
2946 mutex_unlock(&devc->open_mutex);
2947 mutex_unlock(&vwsnd_mutex);
2948 if (file->f_flags & O_NONBLOCK) {
2953 if (signal_pending(current)) {
2955 return -ERESTARTSYS;
2957 mutex_lock(&vwsnd_mutex);
2958 mutex_lock(&devc->open_mutex);
2960 finish_wait(&devc->open_wait, &wait);
2961 devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2962 mutex_unlock(&devc->open_mutex);
2964 /* get default sample format from minor number. */
2967 if ((minor & 0xF) == SND_DEV_DSP)
2968 sw_samplefmt = AFMT_U8;
2969 else if ((minor & 0xF) == SND_DEV_AUDIO)
2970 sw_samplefmt = AFMT_MU_LAW;
2971 else if ((minor & 0xF) == SND_DEV_DSP16)
2972 sw_samplefmt = AFMT_S16_LE;
2976 /* Initialize vwsnd_ports. */
2978 mutex_lock(&devc->io_mutex);
2980 if (file->f_mode & FMODE_READ) {
2981 devc->rport.swstate = SW_INITIAL;
2982 devc->rport.flags = 0;
2983 devc->rport.sw_channels = 1;
2984 devc->rport.sw_samplefmt = sw_samplefmt;
2985 devc->rport.sw_framerate = 8000;
2986 devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT;
2987 devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT;
2988 devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
2989 devc->rport.byte_count = 0;
2990 devc->rport.frag_count = 0;
2992 if (file->f_mode & FMODE_WRITE) {
2993 devc->wport.swstate = SW_INITIAL;
2994 devc->wport.flags = 0;
2995 devc->wport.sw_channels = 1;
2996 devc->wport.sw_samplefmt = sw_samplefmt;
2997 devc->wport.sw_framerate = 8000;
2998 devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT;
2999 devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT;
3000 devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
3001 devc->wport.byte_count = 0;
3002 devc->wport.frag_count = 0;
3005 mutex_unlock(&devc->io_mutex);
3007 file->private_data = devc;
3009 mutex_unlock(&vwsnd_mutex);
3014 * Release (close) the audio device.
3017 static int vwsnd_audio_release(struct inode *inode, struct file *file)
3019 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3020 vwsnd_port_t *wport = NULL, *rport = NULL;
3023 mutex_lock(&vwsnd_mutex);
3024 mutex_lock(&devc->io_mutex);
3026 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3028 if (file->f_mode & FMODE_READ)
3029 rport = &devc->rport;
3030 if (file->f_mode & FMODE_WRITE) {
3031 wport = &devc->wport;
3032 pcm_flush_frag(devc);
3033 pcm_write_sync(devc);
3035 pcm_shutdown(devc, rport, wport);
3037 rport->swstate = SW_OFF;
3039 wport->swstate = SW_OFF;
3041 mutex_unlock(&devc->io_mutex);
3043 mutex_lock(&devc->open_mutex);
3045 devc->open_mode &= ~file->f_mode;
3047 mutex_unlock(&devc->open_mutex);
3048 wake_up(&devc->open_wait);
3051 mutex_unlock(&vwsnd_mutex);
3055 static const struct file_operations vwsnd_audio_fops = {
3056 .owner = THIS_MODULE,
3057 .llseek = no_llseek,
3058 .read = vwsnd_audio_read,
3059 .write = vwsnd_audio_write,
3060 .poll = vwsnd_audio_poll,
3061 .unlocked_ioctl = vwsnd_audio_ioctl,
3062 .mmap = vwsnd_audio_mmap,
3063 .open = vwsnd_audio_open,
3064 .release = vwsnd_audio_release,
3067 /*****************************************************************************/
3070 /* open the mixer device. */
3072 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3076 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3079 mutex_lock(&vwsnd_mutex);
3080 for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3081 if (devc->mixer_minor == iminor(inode))
3086 mutex_unlock(&vwsnd_mutex);
3089 file->private_data = devc;
3090 mutex_unlock(&vwsnd_mutex);
3094 /* release (close) the mixer device. */
3096 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3098 DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3103 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3105 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3109 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3112 case SOUND_MIXER_CAPS:
3113 val = SOUND_CAP_EXCL_INPUT;
3116 case SOUND_MIXER_DEVMASK:
3117 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3118 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3121 case SOUND_MIXER_STEREODEVS:
3122 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3123 SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
3126 case SOUND_MIXER_OUTMASK:
3127 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3128 SOUND_MASK_MIC | SOUND_MASK_CD);
3131 case SOUND_MIXER_RECMASK:
3132 val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3133 SOUND_MASK_MIC | SOUND_MASK_CD);
3136 case SOUND_MIXER_PCM:
3137 val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3140 case SOUND_MIXER_LINE:
3141 val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3144 case SOUND_MIXER_MIC:
3145 val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3148 case SOUND_MIXER_CD:
3149 val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3152 case SOUND_MIXER_RECLEV:
3153 val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3156 case SOUND_MIXER_RECSRC:
3157 val = ad1843_get_recsrc(&devc->lith);
3160 case SOUND_MIXER_OUTSRC:
3161 val = ad1843_get_outsrc(&devc->lith);
3167 return put_user(val, (int __user *) arg);
3170 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3172 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3177 DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3179 err = get_user(val, (int __user *) arg);
3183 case SOUND_MIXER_PCM:
3184 val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3187 case SOUND_MIXER_LINE:
3188 val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3191 case SOUND_MIXER_MIC:
3192 val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3195 case SOUND_MIXER_CD:
3196 val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3199 case SOUND_MIXER_RECLEV:
3200 val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3203 case SOUND_MIXER_RECSRC:
3204 if (devc->rport.swbuf || devc->wport.swbuf)
3205 return -EBUSY; /* can't change recsrc while running */
3206 val = ad1843_set_recsrc(&devc->lith, val);
3209 case SOUND_MIXER_OUTSRC:
3210 val = ad1843_set_outsrc(&devc->lith, val);
3218 return put_user(val, (int __user *) arg);
3221 /* This is the ioctl entry to the mixer driver. */
3223 static long vwsnd_mixer_ioctl(struct file *file,
3227 vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3228 const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3229 const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3232 DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3234 mutex_lock(&vwsnd_mutex);
3235 mutex_lock(&devc->mix_mutex);
3237 if ((cmd & ~nrmask) == MIXER_READ(0))
3238 retval = mixer_read_ioctl(devc, nr, (void __user *) arg);
3239 else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3240 retval = mixer_write_ioctl(devc, nr, (void __user *) arg);
3244 mutex_unlock(&devc->mix_mutex);
3245 mutex_unlock(&vwsnd_mutex);
3249 static const struct file_operations vwsnd_mixer_fops = {
3250 .owner = THIS_MODULE,
3251 .llseek = no_llseek,
3252 .unlocked_ioctl = vwsnd_mixer_ioctl,
3253 .open = vwsnd_mixer_open,
3254 .release = vwsnd_mixer_release,
3257 /*****************************************************************************/
3258 /* probe/attach/unload */
3260 /* driver probe routine. Return nonzero if hardware is found. */
3262 static int __init probe_vwsnd(struct address_info *hw_config)
3266 unsigned long later;
3268 DBGEV("(hw_config=0x%p)\n", hw_config);
3270 /* XXX verify lithium present (to prevent crash on non-vw) */
3272 if (li_create(&lith, hw_config->io_base) != 0) {
3273 printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3276 later = jiffies + 2;
3277 li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3279 w = li_readl(&lith, LI_HOST_CONTROLLER);
3280 } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later));
3284 DBGPV("HC = 0x%04x\n", w);
3286 if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3288 /* This may indicate a beta machine with no audio,
3289 * or a future machine with different audio.
3290 * On beta-release 320 w/ no audio, HC == 0x4000 */
3292 printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3296 if (w & LI_HC_LINK_FAILURE) {
3297 printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3301 printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n",
3302 hw_config->io_base, hw_config->irq);
3308 * driver attach routine. Initialize driver data structures and
3309 * initialize hardware. A new vwsnd_dev_t is allocated and put
3310 * onto the global list, vwsnd_dev_list.
3312 * Return +minor_dev on success, -errno on failure.
3315 static int __init attach_vwsnd(struct address_info *hw_config)
3317 vwsnd_dev_t *devc = NULL;
3320 DBGEV("(hw_config=0x%p)\n", hw_config);
3322 devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3326 err = li_create(&devc->lith, hw_config->io_base);
3330 init_waitqueue_head(&devc->open_wait);
3332 devc->rport.hwbuf_size = HWBUF_SIZE;
3333 devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3334 if (!devc->rport.hwbuf_vaddr)
3336 devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr;
3337 devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3340 * Quote from the NT driver:
3342 * // WARNING!!! HACK to setup output dma!!!
3343 * // This is required because even on output there is some data
3344 * // trickling into the input DMA channel. This is a bug in the
3345 * // Lithium microcode.
3348 * We set the input side's DMA base address here. It will remain
3349 * valid until the driver is unloaded.
3352 li_writel(&devc->lith, LI_COMM1_BASE,
3353 devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3355 devc->wport.hwbuf_size = HWBUF_SIZE;
3356 devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
3357 if (!devc->wport.hwbuf_vaddr)
3359 devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr;
3360 devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3361 DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3364 err = ad1843_init(&devc->lith);
3369 /* install interrupt handler */
3371 err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3375 /* register this device's drivers. */
3377 devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3378 if ((err = devc->audio_minor) < 0) {
3379 DBGDO(printk(KERN_WARNING
3380 "attach_vwsnd: register_sound_dsp error %d\n",
3384 devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3385 devc->audio_minor >> 4);
3386 if ((err = devc->mixer_minor) < 0) {
3387 DBGDO(printk(KERN_WARNING
3388 "attach_vwsnd: register_sound_mixer error %d\n",
3393 /* Squirrel away device indices for unload routine. */
3395 hw_config->slots[0] = devc->audio_minor;
3397 /* Initialize as much of *devc as possible */
3399 mutex_init(&devc->open_mutex);
3400 mutex_init(&devc->io_mutex);
3401 mutex_init(&devc->mix_mutex);
3402 devc->open_mode = 0;
3403 spin_lock_init(&devc->rport.lock);
3404 init_waitqueue_head(&devc->rport.queue);
3405 devc->rport.swstate = SW_OFF;
3406 devc->rport.hwstate = HW_STOPPED;
3407 devc->rport.flags = 0;
3408 devc->rport.swbuf = NULL;
3409 spin_lock_init(&devc->wport.lock);
3410 init_waitqueue_head(&devc->wport.queue);
3411 devc->wport.swstate = SW_OFF;
3412 devc->wport.hwstate = HW_STOPPED;
3413 devc->wport.flags = 0;
3414 devc->wport.swbuf = NULL;
3416 /* Success. Link us onto the local device list. */
3418 devc->next_dev = vwsnd_dev_list;
3419 vwsnd_dev_list = devc;
3420 return devc->audio_minor;
3422 /* So many ways to fail. Undo what we did. */
3425 unregister_sound_dsp(devc->audio_minor);
3427 free_irq(hw_config->irq, devc);
3430 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3432 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3434 li_destroy(&devc->lith);
3441 static int __exit unload_vwsnd(struct address_info *hw_config)
3443 vwsnd_dev_t *devc, **devcp;
3447 devcp = &vwsnd_dev_list;
3448 while ((devc = *devcp)) {
3449 if (devc->audio_minor == hw_config->slots[0]) {
3450 *devcp = devc->next_dev;
3453 devcp = &devc->next_dev;
3459 unregister_sound_mixer(devc->mixer_minor);
3460 unregister_sound_dsp(devc->audio_minor);
3461 free_irq(hw_config->irq, devc);
3462 free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
3463 free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
3464 li_destroy(&devc->lith);
3470 /*****************************************************************************/
3471 /* initialization and loadable kernel module interface */
3473 static struct address_info the_hw_config = {
3474 0xFF001000, /* lithium phys addr */
3475 CO_IRQ(CO_APIC_LI_AUDIO) /* irq */
3478 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3479 MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
3480 MODULE_LICENSE("GPL");
3482 static int __init init_vwsnd(void)
3487 DBGXV("sound::vwsnd::init_module()\n");
3489 if (!probe_vwsnd(&the_hw_config))
3492 err = attach_vwsnd(&the_hw_config);
3498 static void __exit cleanup_vwsnd(void)
3500 DBGX("sound::vwsnd::cleanup_module()\n");
3502 unload_vwsnd(&the_hw_config);
3505 module_init(init_vwsnd);
3506 module_exit(cleanup_vwsnd);