2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3 * with Common Isochronous Packet (IEC 61883-1) headers
5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6 * Licensed under the terms of the GNU General Public License, version 2.
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include <sound/rawmidi.h>
20 #define TICKS_PER_CYCLE 3072
21 #define CYCLES_PER_SECOND 8000
22 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
25 * Nominally 3125 bytes/second, but the MIDI port's clock might be
26 * 1% too slow, and the bus clock 100 ppm too fast.
28 #define MIDI_BYTES_PER_SECOND 3093
31 * Several devices look only at the first eight data blocks.
32 * In any case, this is more than enough for the MIDI data rate.
34 #define MAX_MIDI_RX_BLOCKS 8
36 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 µs */
38 /* isochronous header parameters */
39 #define ISO_DATA_LENGTH_SHIFT 16
42 /* common isochronous packet header parameters */
43 #define CIP_EOH (1u << 31)
44 #define CIP_EOH_MASK 0x80000000
45 #define CIP_FMT_AM (0x10 << 24)
46 #define CIP_FMT_MASK 0x3f000000
47 #define CIP_SYT_MASK 0x0000ffff
48 #define CIP_SYT_NO_INFO 0xffff
49 #define CIP_FDF_MASK 0x00ff0000
50 #define CIP_FDF_SFC_SHIFT 16
53 * Audio and Music transfer protocol specific parameters
54 * only "Clock-based rate control mode" is supported
56 #define AMDTP_FDF_AM824 (0 << (CIP_FDF_SFC_SHIFT + 3))
57 #define AMDTP_FDF_NO_DATA 0xff
58 #define AMDTP_DBS_MASK 0x00ff0000
59 #define AMDTP_DBS_SHIFT 16
60 #define AMDTP_DBC_MASK 0x000000ff
62 /* TODO: make these configurable */
63 #define INTERRUPT_INTERVAL 16
64 #define QUEUE_LENGTH 48
66 #define IN_PACKET_HEADER_SIZE 4
67 #define OUT_PACKET_HEADER_SIZE 0
69 static void pcm_period_tasklet(unsigned long data);
72 * amdtp_stream_init - initialize an AMDTP stream structure
73 * @s: the AMDTP stream to initialize
74 * @unit: the target of the stream
75 * @dir: the direction of stream
76 * @flags: the packet transmission method to use
78 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79 enum amdtp_stream_direction dir, enum cip_flags flags)
81 s->unit = fw_unit_get(unit);
84 s->context = ERR_PTR(-1);
85 mutex_init(&s->mutex);
86 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
89 init_waitqueue_head(&s->callback_wait);
90 s->callbacked = false;
95 EXPORT_SYMBOL(amdtp_stream_init);
98 * amdtp_stream_destroy - free stream resources
99 * @s: the AMDTP stream to destroy
101 void amdtp_stream_destroy(struct amdtp_stream *s)
103 WARN_ON(amdtp_stream_running(s));
104 mutex_destroy(&s->mutex);
105 fw_unit_put(s->unit);
107 EXPORT_SYMBOL(amdtp_stream_destroy);
109 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
113 [CIP_SFC_88200] = 16,
114 [CIP_SFC_96000] = 16,
115 [CIP_SFC_176400] = 32,
116 [CIP_SFC_192000] = 32,
118 EXPORT_SYMBOL(amdtp_syt_intervals);
120 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
121 [CIP_SFC_32000] = 32000,
122 [CIP_SFC_44100] = 44100,
123 [CIP_SFC_48000] = 48000,
124 [CIP_SFC_88200] = 88200,
125 [CIP_SFC_96000] = 96000,
126 [CIP_SFC_176400] = 176400,
127 [CIP_SFC_192000] = 192000,
129 EXPORT_SYMBOL(amdtp_rate_table);
132 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
133 * @s: the AMDTP stream, which must be initialized.
134 * @runtime: the PCM substream runtime
136 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
137 struct snd_pcm_runtime *runtime)
141 /* AM824 in IEC 61883-6 can deliver 24bit data */
142 err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
147 * Currently firewire-lib processes 16 packets in one software
148 * interrupt callback. This equals to 2msec but actually the
149 * interval of the interrupts has a jitter.
150 * Additionally, even if adding a constraint to fit period size to
151 * 2msec, actual calculated frames per period doesn't equal to 2msec,
152 * depending on sampling rate.
153 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
154 * Here let us use 5msec for safe period interrupt.
156 err = snd_pcm_hw_constraint_minmax(runtime,
157 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
162 /* Non-Blocking stream has no more constraints */
163 if (!(s->flags & CIP_BLOCKING))
167 * One AMDTP packet can include some frames. In blocking mode, the
168 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
169 * depending on its sampling rate. For accurate period interrupt, it's
170 * preferrable to aligh period/buffer sizes to current SYT_INTERVAL.
172 * TODO: These constraints can be improved with propper rules.
173 * Currently apply LCM of SYT_INTEVALs.
175 err = snd_pcm_hw_constraint_step(runtime, 0,
176 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
179 err = snd_pcm_hw_constraint_step(runtime, 0,
180 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
184 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
187 * amdtp_stream_set_parameters - set stream parameters
188 * @s: the AMDTP stream to configure
189 * @rate: the sample rate
190 * @pcm_channels: the number of PCM samples in each data block, to be encoded
191 * as AM824 multi-bit linear audio
192 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
194 * The parameters must be set before the stream is started, and must not be
195 * changed while the stream is running.
197 void amdtp_stream_set_parameters(struct amdtp_stream *s,
199 unsigned int pcm_channels,
200 unsigned int midi_ports)
202 unsigned int i, sfc, midi_channels;
204 midi_channels = DIV_ROUND_UP(midi_ports, 8);
206 if (WARN_ON(amdtp_stream_running(s)) |
207 WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
208 WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
211 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
212 if (amdtp_rate_table[sfc] == rate)
218 s->pcm_channels = pcm_channels;
220 s->data_block_quadlets = s->pcm_channels + midi_channels;
221 s->midi_ports = midi_ports;
223 s->syt_interval = amdtp_syt_intervals[sfc];
225 /* default buffering in the device */
226 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
227 if (s->flags & CIP_BLOCKING)
228 /* additional buffering needed to adjust for no-data packets */
229 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
231 /* init the position map for PCM and MIDI channels */
232 for (i = 0; i < pcm_channels; i++)
233 s->pcm_positions[i] = i;
234 s->midi_position = s->pcm_channels;
237 * We do not know the actual MIDI FIFO size of most devices. Just
238 * assume two bytes, i.e., one byte can be received over the bus while
239 * the previous one is transmitted over MIDI.
240 * (The value here is adjusted for midi_ratelimit_per_packet().)
242 s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
244 EXPORT_SYMBOL(amdtp_stream_set_parameters);
247 * amdtp_stream_get_max_payload - get the stream's packet size
248 * @s: the AMDTP stream
250 * This function must not be called before the stream has been configured
251 * with amdtp_stream_set_parameters().
253 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
255 return 8 + s->syt_interval * s->data_block_quadlets * 4;
257 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
259 static void amdtp_write_s16(struct amdtp_stream *s,
260 struct snd_pcm_substream *pcm,
261 __be32 *buffer, unsigned int frames);
262 static void amdtp_write_s32(struct amdtp_stream *s,
263 struct snd_pcm_substream *pcm,
264 __be32 *buffer, unsigned int frames);
265 static void amdtp_read_s32(struct amdtp_stream *s,
266 struct snd_pcm_substream *pcm,
267 __be32 *buffer, unsigned int frames);
270 * amdtp_stream_set_pcm_format - set the PCM format
271 * @s: the AMDTP stream to configure
272 * @format: the format of the ALSA PCM device
274 * The sample format must be set after the other paramters (rate/PCM channels/
275 * MIDI) and before the stream is started, and must not be changed while the
278 void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
279 snd_pcm_format_t format)
281 if (WARN_ON(amdtp_stream_pcm_running(s)))
288 case SNDRV_PCM_FORMAT_S16:
289 if (s->direction == AMDTP_OUT_STREAM) {
290 s->transfer_samples = amdtp_write_s16;
295 case SNDRV_PCM_FORMAT_S32:
296 if (s->direction == AMDTP_OUT_STREAM)
297 s->transfer_samples = amdtp_write_s32;
299 s->transfer_samples = amdtp_read_s32;
303 EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
306 * amdtp_stream_pcm_prepare - prepare PCM device for running
307 * @s: the AMDTP stream
309 * This function should be called from the PCM device's .prepare callback.
311 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
313 tasklet_kill(&s->period_tasklet);
314 s->pcm_buffer_pointer = 0;
315 s->pcm_period_pointer = 0;
316 s->pointer_flush = true;
318 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
320 static unsigned int calculate_data_blocks(struct amdtp_stream *s)
322 unsigned int phase, data_blocks;
324 if (s->flags & CIP_BLOCKING)
325 data_blocks = s->syt_interval;
326 else if (!cip_sfc_is_base_44100(s->sfc)) {
327 /* Sample_rate / 8000 is an integer, and precomputed. */
328 data_blocks = s->data_block_state;
330 phase = s->data_block_state;
333 * This calculates the number of data blocks per packet so that
334 * 1) the overall rate is correct and exactly synchronized to
336 * 2) packets with a rounded-up number of blocks occur as early
337 * as possible in the sequence (to prevent underruns of the
340 if (s->sfc == CIP_SFC_44100)
341 /* 6 6 5 6 5 6 5 ... */
342 data_blocks = 5 + ((phase & 1) ^
343 (phase == 0 || phase >= 40));
345 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
346 data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
347 if (++phase >= (80 >> (s->sfc >> 1)))
349 s->data_block_state = phase;
355 static unsigned int calculate_syt(struct amdtp_stream *s,
358 unsigned int syt_offset, phase, index, syt;
360 if (s->last_syt_offset < TICKS_PER_CYCLE) {
361 if (!cip_sfc_is_base_44100(s->sfc))
362 syt_offset = s->last_syt_offset + s->syt_offset_state;
365 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
366 * n * SYT_INTERVAL * 24576000 / sample_rate
367 * Modulo TICKS_PER_CYCLE, the difference between successive
368 * elements is about 1386.23. Rounding the results of this
369 * formula to the SYT precision results in a sequence of
370 * differences that begins with:
371 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
372 * This code generates _exactly_ the same sequence.
374 phase = s->syt_offset_state;
376 syt_offset = s->last_syt_offset;
377 syt_offset += 1386 + ((index && !(index & 3)) ||
381 s->syt_offset_state = phase;
384 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
385 s->last_syt_offset = syt_offset;
387 if (syt_offset < TICKS_PER_CYCLE) {
388 syt_offset += s->transfer_delay;
389 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
390 syt += syt_offset % TICKS_PER_CYCLE;
392 return syt & CIP_SYT_MASK;
394 return CIP_SYT_NO_INFO;
398 static void amdtp_write_s32(struct amdtp_stream *s,
399 struct snd_pcm_substream *pcm,
400 __be32 *buffer, unsigned int frames)
402 struct snd_pcm_runtime *runtime = pcm->runtime;
403 unsigned int channels, remaining_frames, i, c;
406 channels = s->pcm_channels;
407 src = (void *)runtime->dma_area +
408 frames_to_bytes(runtime, s->pcm_buffer_pointer);
409 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
411 for (i = 0; i < frames; ++i) {
412 for (c = 0; c < channels; ++c) {
413 buffer[s->pcm_positions[c]] =
414 cpu_to_be32((*src >> 8) | 0x40000000);
417 buffer += s->data_block_quadlets;
418 if (--remaining_frames == 0)
419 src = (void *)runtime->dma_area;
423 static void amdtp_write_s16(struct amdtp_stream *s,
424 struct snd_pcm_substream *pcm,
425 __be32 *buffer, unsigned int frames)
427 struct snd_pcm_runtime *runtime = pcm->runtime;
428 unsigned int channels, remaining_frames, i, c;
431 channels = s->pcm_channels;
432 src = (void *)runtime->dma_area +
433 frames_to_bytes(runtime, s->pcm_buffer_pointer);
434 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
436 for (i = 0; i < frames; ++i) {
437 for (c = 0; c < channels; ++c) {
438 buffer[s->pcm_positions[c]] =
439 cpu_to_be32((*src << 8) | 0x42000000);
442 buffer += s->data_block_quadlets;
443 if (--remaining_frames == 0)
444 src = (void *)runtime->dma_area;
448 static void amdtp_read_s32(struct amdtp_stream *s,
449 struct snd_pcm_substream *pcm,
450 __be32 *buffer, unsigned int frames)
452 struct snd_pcm_runtime *runtime = pcm->runtime;
453 unsigned int channels, remaining_frames, i, c;
456 channels = s->pcm_channels;
457 dst = (void *)runtime->dma_area +
458 frames_to_bytes(runtime, s->pcm_buffer_pointer);
459 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
461 for (i = 0; i < frames; ++i) {
462 for (c = 0; c < channels; ++c) {
463 *dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
466 buffer += s->data_block_quadlets;
467 if (--remaining_frames == 0)
468 dst = (void *)runtime->dma_area;
472 static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
473 __be32 *buffer, unsigned int frames)
477 for (i = 0; i < frames; ++i) {
478 for (c = 0; c < s->pcm_channels; ++c)
479 buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
480 buffer += s->data_block_quadlets;
485 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
486 * device has a FIFO, and track how much it is filled. This values increases
487 * by one whenever we send one byte in a packet, but the FIFO empties at
488 * a constant rate independent of our packet rate. One packet has syt_interval
489 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
490 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate. To avoid storing
491 * fractional values, the values in midi_fifo_used[] are measured in bytes
492 * multiplied by the sample rate.
494 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
498 used = s->midi_fifo_used[port];
499 if (used == 0) /* common shortcut */
502 used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
504 s->midi_fifo_used[port] = used;
506 return used < s->midi_fifo_limit;
509 static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
511 s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
514 static void amdtp_fill_midi(struct amdtp_stream *s,
515 __be32 *buffer, unsigned int frames)
517 unsigned int f, port;
520 for (f = 0; f < frames; f++) {
521 b = (u8 *)&buffer[s->midi_position];
523 port = (s->data_block_counter + f) % 8;
524 if (f < MAX_MIDI_RX_BLOCKS &&
525 midi_ratelimit_per_packet(s, port) &&
526 s->midi[port] != NULL &&
527 snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
528 midi_rate_use_one_byte(s, port);
537 buffer += s->data_block_quadlets;
541 static void amdtp_pull_midi(struct amdtp_stream *s,
542 __be32 *buffer, unsigned int frames)
544 unsigned int f, port;
548 for (f = 0; f < frames; f++) {
549 port = (s->data_block_counter + f) % 8;
550 b = (u8 *)&buffer[s->midi_position];
553 if ((1 <= len) && (len <= 3) && (s->midi[port]))
554 snd_rawmidi_receive(s->midi[port], b + 1, len);
556 buffer += s->data_block_quadlets;
560 static void update_pcm_pointers(struct amdtp_stream *s,
561 struct snd_pcm_substream *pcm,
567 * In IEC 61883-6, one data block represents one event. In ALSA, one
568 * event equals to one PCM frame. But Dice has a quirk to transfer
569 * two PCM frames in one data block.
571 if (s->double_pcm_frames)
574 ptr = s->pcm_buffer_pointer + frames;
575 if (ptr >= pcm->runtime->buffer_size)
576 ptr -= pcm->runtime->buffer_size;
577 ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
579 s->pcm_period_pointer += frames;
580 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
581 s->pcm_period_pointer -= pcm->runtime->period_size;
582 s->pointer_flush = false;
583 tasklet_hi_schedule(&s->period_tasklet);
587 static void pcm_period_tasklet(unsigned long data)
589 struct amdtp_stream *s = (void *)data;
590 struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
593 snd_pcm_period_elapsed(pcm);
596 static int queue_packet(struct amdtp_stream *s,
597 unsigned int header_length,
598 unsigned int payload_length, bool skip)
600 struct fw_iso_packet p = {0};
603 if (IS_ERR(s->context))
606 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
608 p.header_length = header_length;
609 p.payload_length = (!skip) ? payload_length : 0;
611 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
612 s->buffer.packets[s->packet_index].offset);
614 dev_err(&s->unit->device, "queueing error: %d\n", err);
618 if (++s->packet_index >= QUEUE_LENGTH)
624 static inline int queue_out_packet(struct amdtp_stream *s,
625 unsigned int payload_length, bool skip)
627 return queue_packet(s, OUT_PACKET_HEADER_SIZE,
628 payload_length, skip);
631 static inline int queue_in_packet(struct amdtp_stream *s)
633 return queue_packet(s, IN_PACKET_HEADER_SIZE,
634 amdtp_stream_get_max_payload(s), false);
637 static void handle_out_packet(struct amdtp_stream *s, unsigned int syt)
640 unsigned int data_blocks, payload_length;
641 struct snd_pcm_substream *pcm;
643 if (s->packet_index < 0)
646 /* this module generate empty packet for 'no data' */
647 if (!(s->flags & CIP_BLOCKING) || (syt != CIP_SYT_NO_INFO))
648 data_blocks = calculate_data_blocks(s);
652 buffer = s->buffer.packets[s->packet_index].buffer;
653 buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
654 (s->data_block_quadlets << AMDTP_DBS_SHIFT) |
655 s->data_block_counter);
656 buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
657 (s->sfc << CIP_FDF_SFC_SHIFT) | syt);
660 pcm = ACCESS_ONCE(s->pcm);
662 s->transfer_samples(s, pcm, buffer, data_blocks);
664 amdtp_fill_pcm_silence(s, buffer, data_blocks);
666 amdtp_fill_midi(s, buffer, data_blocks);
668 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
670 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
671 if (queue_out_packet(s, payload_length, false) < 0) {
672 s->packet_index = -1;
673 amdtp_stream_pcm_abort(s);
678 update_pcm_pointers(s, pcm, data_blocks);
681 static void handle_in_packet(struct amdtp_stream *s,
682 unsigned int payload_quadlets,
686 unsigned int data_blocks, data_block_quadlets, data_block_counter,
688 struct snd_pcm_substream *pcm = NULL;
691 cip_header[0] = be32_to_cpu(buffer[0]);
692 cip_header[1] = be32_to_cpu(buffer[1]);
695 * This module supports 'Two-quadlet CIP header with SYT field'.
696 * For convenience, also check FMT field is AM824 or not.
698 if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
699 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
700 ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
701 dev_info_ratelimited(&s->unit->device,
702 "Invalid CIP header for AMDTP: %08X:%08X\n",
703 cip_header[0], cip_header[1]);
707 /* Calculate data blocks */
708 if (payload_quadlets < 3 ||
709 ((cip_header[1] & CIP_FDF_MASK) ==
710 (AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
713 data_block_quadlets =
714 (cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
715 /* avoid division by zero */
716 if (data_block_quadlets == 0) {
717 dev_info_ratelimited(&s->unit->device,
718 "Detect invalid value in dbs field: %08X\n",
722 if (s->flags & CIP_WRONG_DBS)
723 data_block_quadlets = s->data_block_quadlets;
725 data_blocks = (payload_quadlets - 2) / data_block_quadlets;
728 /* Check data block counter continuity */
729 data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
730 if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
731 s->data_block_counter != UINT_MAX)
732 data_block_counter = s->data_block_counter;
734 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
735 (s->data_block_counter == UINT_MAX)) {
737 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
738 lost = data_block_counter != s->data_block_counter;
740 if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
741 dbc_interval = s->tx_dbc_interval;
743 dbc_interval = data_blocks;
745 lost = data_block_counter !=
746 ((s->data_block_counter + dbc_interval) & 0xff);
750 dev_info(&s->unit->device,
751 "Detect discontinuity of CIP: %02X %02X\n",
752 s->data_block_counter, data_block_counter);
756 if (data_blocks > 0) {
759 pcm = ACCESS_ONCE(s->pcm);
761 s->transfer_samples(s, pcm, buffer, data_blocks);
764 amdtp_pull_midi(s, buffer, data_blocks);
767 if (s->flags & CIP_DBC_IS_END_EVENT)
768 s->data_block_counter = data_block_counter;
770 s->data_block_counter =
771 (data_block_counter + data_blocks) & 0xff;
773 if (queue_in_packet(s) < 0)
777 update_pcm_pointers(s, pcm, data_blocks);
781 s->packet_index = -1;
782 amdtp_stream_pcm_abort(s);
785 static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
786 size_t header_length, void *header,
789 struct amdtp_stream *s = private_data;
790 unsigned int i, syt, packets = header_length / 4;
793 * Compute the cycle of the last queued packet.
794 * (We need only the four lowest bits for the SYT, so we can ignore
795 * that bits 0-11 must wrap around at 3072.)
797 cycle += QUEUE_LENGTH - packets;
799 for (i = 0; i < packets; ++i) {
800 syt = calculate_syt(s, ++cycle);
801 handle_out_packet(s, syt);
803 fw_iso_context_queue_flush(s->context);
806 static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
807 size_t header_length, void *header,
810 struct amdtp_stream *s = private_data;
811 unsigned int p, syt, packets, payload_quadlets;
812 __be32 *buffer, *headers = header;
814 /* The number of packets in buffer */
815 packets = header_length / IN_PACKET_HEADER_SIZE;
817 for (p = 0; p < packets; p++) {
818 if (s->packet_index < 0)
821 buffer = s->buffer.packets[s->packet_index].buffer;
823 /* Process sync slave stream */
824 if (s->sync_slave && s->sync_slave->callbacked) {
825 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
826 handle_out_packet(s->sync_slave, syt);
829 /* The number of quadlets in this packet */
831 (be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
832 handle_in_packet(s, payload_quadlets, buffer);
835 /* Queueing error or detecting discontinuity */
836 if (s->packet_index < 0) {
837 /* Abort sync slave. */
839 s->sync_slave->packet_index = -1;
840 amdtp_stream_pcm_abort(s->sync_slave);
845 /* when sync to device, flush the packets for slave stream */
846 if (s->sync_slave && s->sync_slave->callbacked)
847 fw_iso_context_queue_flush(s->sync_slave->context);
849 fw_iso_context_queue_flush(s->context);
852 /* processing is done by master callback */
853 static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
854 size_t header_length, void *header,
860 /* this is executed one time */
861 static void amdtp_stream_first_callback(struct fw_iso_context *context,
862 u32 cycle, size_t header_length,
863 void *header, void *private_data)
865 struct amdtp_stream *s = private_data;
868 * For in-stream, first packet has come.
869 * For out-stream, prepared to transmit first packet
871 s->callbacked = true;
872 wake_up(&s->callback_wait);
874 if (s->direction == AMDTP_IN_STREAM)
875 context->callback.sc = in_stream_callback;
876 else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
877 context->callback.sc = slave_stream_callback;
879 context->callback.sc = out_stream_callback;
881 context->callback.sc(context, cycle, header_length, header, s);
885 * amdtp_stream_start - start transferring packets
886 * @s: the AMDTP stream to start
887 * @channel: the isochronous channel on the bus
888 * @speed: firewire speed code
890 * The stream cannot be started until it has been configured with
891 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
892 * device can be started.
894 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
896 static const struct {
897 unsigned int data_block;
898 unsigned int syt_offset;
899 } initial_state[] = {
900 [CIP_SFC_32000] = { 4, 3072 },
901 [CIP_SFC_48000] = { 6, 1024 },
902 [CIP_SFC_96000] = { 12, 1024 },
903 [CIP_SFC_192000] = { 24, 1024 },
904 [CIP_SFC_44100] = { 0, 67 },
905 [CIP_SFC_88200] = { 0, 67 },
906 [CIP_SFC_176400] = { 0, 67 },
908 unsigned int header_size;
909 enum dma_data_direction dir;
912 mutex_lock(&s->mutex);
914 if (WARN_ON(amdtp_stream_running(s) ||
915 (s->data_block_quadlets < 1))) {
920 if (s->direction == AMDTP_IN_STREAM &&
921 s->flags & CIP_SKIP_INIT_DBC_CHECK)
922 s->data_block_counter = UINT_MAX;
924 s->data_block_counter = 0;
925 s->data_block_state = initial_state[s->sfc].data_block;
926 s->syt_offset_state = initial_state[s->sfc].syt_offset;
927 s->last_syt_offset = TICKS_PER_CYCLE;
929 /* initialize packet buffer */
930 if (s->direction == AMDTP_IN_STREAM) {
931 dir = DMA_FROM_DEVICE;
932 type = FW_ISO_CONTEXT_RECEIVE;
933 header_size = IN_PACKET_HEADER_SIZE;
936 type = FW_ISO_CONTEXT_TRANSMIT;
937 header_size = OUT_PACKET_HEADER_SIZE;
939 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
940 amdtp_stream_get_max_payload(s), dir);
944 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
945 type, channel, speed, header_size,
946 amdtp_stream_first_callback, s);
947 if (IS_ERR(s->context)) {
948 err = PTR_ERR(s->context);
950 dev_err(&s->unit->device,
951 "no free stream on this controller\n");
955 amdtp_stream_update(s);
959 if (s->direction == AMDTP_IN_STREAM)
960 err = queue_in_packet(s);
962 err = queue_out_packet(s, 0, true);
965 } while (s->packet_index > 0);
967 /* NOTE: TAG1 matches CIP. This just affects in stream. */
968 tag = FW_ISO_CONTEXT_MATCH_TAG1;
969 if (s->flags & CIP_EMPTY_WITH_TAG0)
970 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
972 s->callbacked = false;
973 err = fw_iso_context_start(s->context, -1, 0, tag);
977 mutex_unlock(&s->mutex);
982 fw_iso_context_destroy(s->context);
983 s->context = ERR_PTR(-1);
985 iso_packets_buffer_destroy(&s->buffer, s->unit);
987 mutex_unlock(&s->mutex);
991 EXPORT_SYMBOL(amdtp_stream_start);
994 * amdtp_stream_pcm_pointer - get the PCM buffer position
995 * @s: the AMDTP stream that transports the PCM data
997 * Returns the current buffer position, in frames.
999 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1001 /* this optimization is allowed to be racy */
1002 if (s->pointer_flush && amdtp_stream_running(s))
1003 fw_iso_context_flush_completions(s->context);
1005 s->pointer_flush = true;
1007 return ACCESS_ONCE(s->pcm_buffer_pointer);
1009 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1012 * amdtp_stream_update - update the stream after a bus reset
1013 * @s: the AMDTP stream
1015 void amdtp_stream_update(struct amdtp_stream *s)
1017 ACCESS_ONCE(s->source_node_id_field) =
1018 (fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
1020 EXPORT_SYMBOL(amdtp_stream_update);
1023 * amdtp_stream_stop - stop sending packets
1024 * @s: the AMDTP stream to stop
1026 * All PCM and MIDI devices of the stream must be stopped before the stream
1027 * itself can be stopped.
1029 void amdtp_stream_stop(struct amdtp_stream *s)
1031 mutex_lock(&s->mutex);
1033 if (!amdtp_stream_running(s)) {
1034 mutex_unlock(&s->mutex);
1038 tasklet_kill(&s->period_tasklet);
1039 fw_iso_context_stop(s->context);
1040 fw_iso_context_destroy(s->context);
1041 s->context = ERR_PTR(-1);
1042 iso_packets_buffer_destroy(&s->buffer, s->unit);
1044 s->callbacked = false;
1046 mutex_unlock(&s->mutex);
1048 EXPORT_SYMBOL(amdtp_stream_stop);
1051 * amdtp_stream_pcm_abort - abort the running PCM device
1052 * @s: the AMDTP stream about to be stopped
1054 * If the isochronous stream needs to be stopped asynchronously, call this
1055 * function first to stop the PCM device.
1057 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1059 struct snd_pcm_substream *pcm;
1061 pcm = ACCESS_ONCE(s->pcm);
1063 snd_pcm_stop_xrun(pcm);
1065 EXPORT_SYMBOL(amdtp_stream_pcm_abort);